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Outline

In this lecture:

The Polyak- Lojasiewicz (PL) Condition

Convergence of Various Methods under the PL Condition

The PL Condition and the Over-parameterized Regime
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Convergence Results of Methods We Learned Thus Far

First-order and zeroth-order methods for nonconvex optimization in learning:

I GD/SGD-style algorithms

I Only focus on stationarity gap

I Typically sublinear convergence rates: O(1/K), O(1/
p
K), ... (O(1/K2) is

order-optimal)

Meanwhile, it’s well-known from convex optimization that:

I GD achieves linear convergence rate under strong convexity

I Convergence of global optimality

Can global linear convergence to optimality happen under weaker conditions?
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The Polyak- Lojasiewicz Condition

Definition 1 ([Polyak, ’63], [ Lojasiewicz, ’63])

A function f(x) is said to satisfy the Polyak- Lojasiewicz (PL) condition if for all

x 2 Rd
, there exists a constant µ > 0 such that:

2µ(f(x)� f(x⇤))  krf(x)k22.

Remarks

Aka “gradient dominated” condition (e.g., [Reddi et al., ICML’16])

Implies any stationary point is a global min, although not necessarily unique

Automatically holds for strongly convex functions

Many nonconvex functions satisfy PL condition, especially in the

over-parameterized regime

PL condition means that the optimality gap f(x)� f⇤
is upper bounded by a

quadratic function of the stationarity gap

JKL (ECE@OSU) ECE 8101: Lecture 5-1 4



Prop .sc→ PL .
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toes - fell>Y⇔Ñ+¥lHfkÑ= too- Ifill>flap
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Nice Features of the PL Condition

Ease of verification compared to strong convexity (SC):

I One only needs to access krf(x)k and f(x). In comparison, SC requires
checking PD of the Hessian matrix H (accurate estimation of �min(H))

Robustness of the condition

I krf(x)k is more resilient to perturbation of the obj function than �min(H)

Allows multiple global minima:

I Modern ML problems are over-parameterized and have manifolds of global
minima, not compatible with SC in general but compatible with PL

Invariance under transformation:

I PL is invariant under a broad class of nonlinear coordinate transformations
arising from feature extraction/transformation of many ML applications

PL on manifolds:

I PL allows for e�cient optimization on manifolds, while being invariant under
the choice of coordinates (see [Weber and Sra, arXiv:1710:10770]

Linear convergence of GD and SGD:

I PL is su�cient not only for GD but also for SGD
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Gradient Descent under the PL Condition

Theorem 2 (Linear Convergence Rate for GD)

Consider the unconstrained optimization problem minx2Rd f(x), where f has an
L-Lipschitz continuous gradient, a non-empty solution set X ⇤, and satisfies the
PL condition. Then, the gradient descent method with a step-size of 1/L, i.e.,
xk+1 = xk � 1

Lrf(xk), has a global linear convergence rate:

f(xk)� f⇤ 
⇣
1� µ

L

⌘k
(f(x0)� f⇤).

Remarks

For twice di↵erentiable functions, L-smoothness means eigenvalues of

r2f(x) are bounded from above by L (curvature upper bound)
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Proof : GD under PL .
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Stochastic Gradient Descent under the PL Condition

The finite-sum minimization problem: minx2Rd f(x) = 1
N

PN
i=1 fi(x)

Consider the SGD method that uses the iteration: xk+1 = xk � skrikf(xk)

Theorem 3 (Convergence Rate for SGD)

Assume that f has L-Lipschitz continuous gradients and a non-empty solution set
X ⇤, and it satisfies the PL condition, and f satisfies krfik(xk)k  C2 for all xk

and some constant C > 0. Then, it holds that:

SGD with diminishing step-size sk = 2k+1
2µ(k+1)2 has a convergence rate of:

E[f(xk)� f⇤]  LC2

2µ2k
.

SGD with constant step-size sk = s  1
2µ has a convergence rate of:

E[f(xk)� f⇤]  (1� 2sµ)k[f(x0)� f⇤] +
LC2s

4µ
.
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Proof -
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g- Ck-11 ) ≤ g- IN -1¥É ≤ ofck) +¥ . c☒
.

<2

Summing 14 Tom k=o to K-1 and ojco )=EE[fc%) -g-
*1--0 .

g. in ≤ ÷+¥¥ ⇒ E¥lt⇔-F7≤÷¥
⇒ Effete)-t*t≤¥ .

EYˢˢⁿe§
2° Constant step -sire : g. = s for some so# . Applying in C'

☒ [flair - f-
* 7- ≤ a-2M$)ᵗE[fear - t;]+¥-=Éa→pi
≤ a-2M$)kE[fear -F)+¥ Éoa→pi
= a-zµ$F¥[t⇔-7¥÷r ☒



SGD under PL Condition in Over-parameterized Regime

Consider ERM in over-parameterized regime: minx2Rd f(x) = 1
N

PN
i=1 fi(x)

I f(x) is L-smooth: krf(x)�rf(y)k  Lkx� yk, 8x,y
I fi(x) satisfies: krfi(x)�rfi(y)k  L̃|fi(x)� fi(y)| for some L̃ > 0
I In ML problems, w.l.o.g., we can assume that infx2Rd f(x) = 0 and so the PL

condition can be modified as µ-PL⇤: 2µf(x)  krf(x)k22

Over-parameterized regime: d � N
I The interpolation e↵ect: for every sequence x1,x2, . . . such that

limk!1 f(xk) = 0, we have

lim
k!1

fi(xk) = 0, 1  i  N.

I Meaning: In the over-parameterized regime, the richness of the model is so
high such that fit all training samples
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SGD under PL Condition in Over-parameterized Regime

Consider the general mini-batched version of SGD with constant step-size s:

xk+1 = xk � s

B

BX

j=1

rfijk
(xk),

I B: the mini-batch size; the sample indices {i1k, . . . , iBk } in the mini-batch are
drawn uniformly with replacement in each iteration k from {1, . . . , N}

Theorem 4 ([Bassily et al., arXiv:1811.02564])

Consider the mini-batch SGD with smooth losses as stated. Suppose the
interpolation condition holds. Suppose that the ERM function f(x) is µ-PL⇤ for
some µ > 0. For any mini-batch size B 2 N, the mini-batch SGD with constant
step-size s⇤(B) , 2µB

L(L̃+L(B�1))
guarantees that:

E[f(xk)]  (1� µs⇤(B))k f(x0)
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Proof : From descent lemma :

flea ) ≤ flank after)T (Ertl -2*-1%11%+1 -14T .

Using SGD dynamics :
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⇔
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Other Methods under the PL Condition

Similar linear convergence rate results can be shown for other methods under the

µ-PL, L-smoothness, and uniform variance bound conditions, which implies the

following sample complexity results:

GD [Polyak, ’63]:
L
µ log �0

✏

SGD [Karimi et al., ECML-KDD’16]:
L
µ (

maxi Li
µ log(�0

✏ ) + maxi Li�⇤
µ✏ )

SVRG [Reddi et al., NeurIPS’16]: (N + N2/3 maxi Li
µ ) log(�0

✏ )

SAGA [Reddi et al., NeurIPS’16]: (N + N2/3 maxi Li
µ ) log(�0

✏ )

PAGE [Li et al., ICML’21]: (b+
p
bLavg

µ ) log(�0
✏ ), where b = min{�2

µ✏ , N}
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PL Condition and Over-parameterized Regime

Landscape of under-parameterized and over-parameterized models (figure

from [Liu et al., arXiv:2003:00307]

Key Insight:

I Convexity is not the right framework for analyzing the loss landscape of
over-parameterized systems, even locally

I Instead, the µ-PL⇤ condition (i.e., krf(w)k22 � 2µf(w), 8w) is a more
appropriate framework
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PL Condition and Over-parameterized Regime

The essence of supervised learning:

Given a dataset of size N , D = {xi, yi}Ni=1, xi 2 Rd
, y 2 R

A parametric family of models f(w,x) (e.g., a neural network)

Goal: To find a model with parameter w⇤
that fits the training data:

f(w⇤,xi) ⇡ yi, i = 1, 2, . . . , N

Mathematically: Equivalent to solving (exactly or approximately) a system of

N nonlinear equations:

F(w) = y,

where w 2 Rd
, y 2 RN

, and F(·) : Rd ! RN
with (F(w))i = f(w,xi).

The system of equations is solved by minimizing a certain loss function L(w)

I E.g., the square loss: L(w) = 1
2kF(w)� yk2 = 1

2

PN
i=1(f(w,xi)� yi)

2
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PL Condition and Over-parameterized Regime

µ-PL⇤ condition emerges through the spectrum of the tangent kernel

Let DF(w) 2 RN⇥d
be the di↵erential of the mapping F at w

The tangent kernel of F is defined as an N ⇥N matrix:

K(w) , DF(w)DF>(w)

I It follows from the definition that K(w) is PSD

The square loss L is µ-PL⇤ at w [Liu, et al., arXiv:2003:00307], where

µ = �min(K(w)),

is the smallest eigenvalue of the kernel matrix

Thus, the PL
⇤
condition is inherently tied to the spectrum of the tangent kernel

matrix associated with F
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PL Condition and Over-parameterized Regime

Wide (hence over-parameterized) neural networks satisfy PL
⇤
condition:

A powerful tool: the neural tangent kernel (NTK)

I First appeared in a landmark paper [Jacot et al., NeurIPS’18]

I Tangent kernel of a single-layer wide neural networks with linear output layer
(f(x) =

Pd
i=1 �(w

>
x)) are nearly constant in a ball B of a certain radius

around the ball with a random center (note: d is also the width of the NN):

kHF (w)k = O
⇤(1/

p
d),

where HF (w) is a N ⇥ d⇥ d tensor with (HF )ijk = @2Fi
@wj@wk

I Constancy of NTK implies training dynamic of wide NNs is approximately a
linear model ) linear convergence of gradient flow (hence GD)

I It can be shown that [Liu, et al., arXiv:2003:00307]:

|�min(K(w))� �min(K(w0))| < O

✓
sup
w2B

kHF (w)k
◆

= O(1/
p
d)

Thus, the PL
⇤
condition holds for single-layer wide NN
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N-k.in#rgh-levelontnitrbn..-
1° If loss is convex , then GD (SGD) conveyor

to global min .
2° Linear/ kneonel model exhibit convex toes landscape .
I Will prove wide NN , landscape looks like a kernel model .

3.→ I → i

1) Gradient dynamic for linear models :

Dataset { k-iiyiif.fi ui=ÑIi

" / ERN ☒=/
- - - ai - _

y
'i'Rᵈ

' a- ffa) do>n

i
UN -KI-

- Nod

square -loss : Lock -1¥
,

Igi -1in -5=-1117-11115

Optimize via GD : w-t-w-s.TW)

7µW ) = - £2:(Yi- ni ) = -* ly- k )
- E-I

s→ 0 : d¥- =→Lewy = #y-y ) ¢ OPE for w_ evolution)
.

Gradient flow .

GD
:
a finite - time discretization of this ODE

ᵈ÷*=☒¥=¥¥=¥ÉCy-1) = EH-11 .

¥



Remakes :

1° Linear OPE can be solved on closed form .
Let [ = y - a

ᵈ¥=ᵈ¥hˢ= - oka = - EE
IH) = exp C- E-E) IN

4- E- is full rank , damn (E) 20 .

GD converges exp . fast → 0 loss
.

É k==☒É const
. Configuration of data pts with Amin (E)

allows GD to converge fast .

3° All that matters is set of pairwise probit [KIij-a-T.es
" kernel trick

"

.

kernel fn :

[E) ij
⇐ < Cei ) , 9K;)>

.

/
where 9 is

"

feature nap ?

2) .

General dynamics for non-linear model : FCK ) .

For ki i Wi = f- CU , Ei )
.

Squat loss : tent = -15¥
,
( %
-

t%g)
The grad w.at . any one weight parameter:

Twi LIK ) = - É #-iʰi_ cyj - ui ) .

g- -4 2Wi

ᵈñ÷=É,÷%¥-=-É¥¥2Wh



=ñÉ⇒:÷[É*÷e% -v1
-.

= ¥
,

< ,
#ÉI > Cyrus )

2W• 2M£

= É [E) ijlyi -n;) ,
where [k7ij=É ,

¥-142 >
2W• 2M£

5=-1

=&±::÷*÷÷÷
KEI

Et = DF(w_t)DFTw* ) .

Kennel matrix
.

-_ = -4+(7-1) .

← nonlinear ODE
.

i. Et 20 ,
tt

.

kernel mapping :& : El→¥?w?I c- Rᵈ
If f- is NN , then 9 is

"

NTK
"

.

37. Wide NW exhibits linear model dynamics . [Pu , ICLRR
'

191

1° Randomly initialize ≈ at t=o .

2° At t=u
,

we 'll show NTK Eo is full rank .

3° For wide Nws , Et ≈ ¥ ◦ ,
hence Et is full rank ft .

Conside 2- Layer NN w/ M hidden neurons
.
/ with *mice diff 'ble

Y activation tn .

→

Fix and layer . only train a-i&#☆¥E1st layer .

m neutrons .



fck / E) = -4m¥ ar4Kw_riʰ > ) .

i ar= -1-1

Initialize [w,
) - - - wmco ) IT stand normal distr

.

atcezhh.ie#---pnara-iY'Kw-rco)ia-iS) .

so
,
NTK at 1--0 :[E1ij=É¥E÷ . #É¥ ) .

= x-i-a-jf-mEakyikw-rcoi.EDU/'Kw-rW-1.a-i>)]
8--1

F-each entry : of [E) ij is a v.v. with mean being equal to :

ZIZI F-www.z , Y' LEEK )Y'K¥w_ I
£ [ E↑ij

As m→os ,
NTK at t=o is quad to E*

i. for e> 0 if m > ! (¥ ) .
then 11¥10 ) - ¥-11 ≤ e whip .

I suppose yi= -1-1 , with bonded throughout training , o≤e≤ t .

for e>o . if m ≥ E¥÷ ) .
then 11kt-4 - ¥*N≤ e. ww

. hip .

Remarks :
a) . width sales ploy went . N . [ song etat . Near285478K¥)
14 . Dependence on data : [Nguyen etat . ] : OCND )

in For L- layer NN, widths need to scale as poly CML ) .



Next Class

First-Order Methods under Additional Assumptions
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