ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 5-1: The Polyak-Łojasiewicz (PL) Condition (feat. Neural Tangent Kernel)

Jia (Kevin) Liu

Assistant Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Spring 2022

Outline

In this lecture:

- The Polyak-Łojasiewicz (PL) Condition
- Convergence of Various Methods under the PL Condition
- The PL Condition and the Over-parameterized Regime

Convergence Results of Methods We Learned Thus Far

- First-order and zeroth-order methods for nonconvex optimization in learning:
 - GD/SGD-style algorithms
 - Only focus on stationarity gap
 - Typically <u>sublinear</u> convergence rates: O(1/K), $O(1/\sqrt{K})$, ... $(O(1/K^2)$ is order-optimal)

GD (Convexty)

- Meanwhile, it's well-known from convex optimization that:
 - GD achieves linear convergence rate under strong convexity
 - Convergence of global optimality

Can global linear convergence to optimality happen under weaker conditions?

(AGD, ...)

The Polyak-Łojasiewicz Condition

Definition 1 ([Polyak, '63], [Łojasiewicz, '63])

A function $f(\mathbf{x})$ is said to satisfy the Polyak-Łojasiewicz (PL) condition if for all $\mathbf{x} \in \mathbb{R}^d$, there exists a constant $\mu > 0$ such that:

 $2\mu(f(\mathbf{x}) - f(\mathbf{x}^*)) \le \|\nabla f(\mathbf{x})\|_2^2.$

Remarks

- Aka "gradient dominated" condition (e.g., [Reddi et al., ICML'16])
- Implies any stationary point is a global min, although not necessarily unique
- Automatically holds for strongly convex functions
- Many nonconvex functions satisfy PL condition, especially in the over-parameterized regime
- PL condition means that the optimality gap $f(\mathbf{x}) f^*$ is upper bounded by a quadratic function of the stationarity gap

Nice Features of the PL Condition

- Ease of verification compared to strong convexity (SC):
 - One only needs to access ||∇f(x)|| and f(x). In comparison, SC requires checking PD of the Hessian matrix H (accurate estimation of λ_{min}(H))
- Robustness of the condition
 - $\|\nabla f(\mathbf{x})\|$ is more resilient to perturbation of the obj function than $\lambda_{\min}(\mathbf{H})$
- Allows multiple global minima:
 - Modern ML problems are over-parameterized and have manifolds of global minima, not compatible with SC in general but compatible with PL
- Invariance under transformation:
 - PL is invariant under a broad class of nonlinear coordinate transformations arising from feature extraction/transformation of many ML applications
- PL on manifolds:
 - PL allows for efficient optimization on manifolds, while being invariant under the choice of coordinates (see [Weber and Sra, arXiv:1710:10770]

Frank-Wolfe

- Linear convergence of GD and SGD:
 - PL is sufficient not only for GD but also for SGD

Gradient Descent under the PL Condition

Theorem 2 (Linear Convergence Rate for GD)

Consider the unconstrained optimization problem $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x})$, where f has an L-Lipschitz continuous gradient, a non-empty solution set \mathcal{X}^* , and satisfies the PL condition. Then, the gradient descent method with a step-size of 1/L, i.e., $\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L}\nabla f(\mathbf{x}_k)$, has a global linear convergence rate:

$$f(\mathbf{x}_k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k \left(f(\mathbf{x}_0) - f^*\right).$$

Remarks

• For twice differentiable functions, *L*-smoothness means eigenvalues of $\nabla^2 f(\mathbf{x})$ are bounded from above by *L* (curvature upper bound)

Theorem 2 (Linear Convergence Rate for GD)

Consider the unconstrained optimization problem $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x})$, where f has an L-Lipschitz continuous gradient, a non-empty solution set \mathcal{X}^* , and satisfies the PL condition. Then, the gradient descent method with a step-size of 1/L, i.e., $\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k)$, has a global linear convergence rate:

$$f(\mathbf{x}_k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k \left(f(\mathbf{x}_0) - f^*\right).$$

Stochastic Gradient Descent under the PL Condition

- The finite-sum minimization problem: $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) = \frac{1}{N}\sum_{i=1}^N f_i(\mathbf{x})$
- Consider the SGD method that uses the iteration: $\mathbf{x}_{k+1} = \mathbf{x}_k s_k \nabla_{i_k} f(\mathbf{x}_k)$

Theorem 3 (Convergence Rate for SGD)

Assume that f has L-Lipschitz continuous gradients and a non-empty solution set \mathcal{X}^* , and it satisfies the PL condition, and f satisfies $\|\nabla f_{i_k}(\mathbf{x}_k)\| \leq C^2$ for all \mathbf{x}_k and some constant C > 0. Then, it holds that:

• SGD with diminishing step-size $s_k = \frac{2k+1}{2\mu(k+1)^2}$ has a convergence rate of:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] \le \frac{LC^2}{2\mu^2 k} = O(f_k) \left(\begin{array}{c} \mathcal{A}_k & \mathcal{A}_k \\ \text{for } O(f_k) \end{array} \right)$$

• SGD with constant step-size $s_k = s \leq \frac{1}{2\mu}$ has a convergence rate of:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] \le (1 - 2s\mu)^k [f(\mathbf{x}_0) - f^*] + \frac{LC^2 s}{4\mu}.$$

Theorem 3 (Convergence Rate for SGD)

Assume that f has L-Lipschitz continuous gradients and a non-empty solution set \mathcal{X}^* , and it satisfies the PL condition, and f satisfies $\|\nabla f_{i_k}(\mathbf{x}_k)\| \leq C^2$ for all \mathbf{x}_k and some constant C > 0. Then, it holds that:

• SGD with diminishing step-size $s_k = \frac{2k+1}{2\mu(k+1)^2}$ has a convergence rate of:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] \le \frac{LC^2}{2\mu^2 k} = O(\mathbf{x}) \quad \begin{pmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{pmatrix}$$

• SGD with constant step-size $s_k = s \leq \frac{1}{2\mu}$ has a convergence rate of:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] \le (1 - 2s\mu)^k [f(\mathbf{x}_0) - f^*] + \frac{LC^2s}{4\mu}$$

$$\begin{split} & \left[f(x_{k+1}) \leq f(x_{k}) + \nabla f(x_{k})^{T} (x_{k+1} - x_{k}) + \frac{1}{2} \left\| \nabla f_{i}(x_{k}) \right\|^{2} \right] \\ & \left[\int_{\mathbb{T}}^{S(n,p)} \int_{\mathbb{T}}^{S(n,p)} f(x_{k}) + \frac{1}{2} \int_{\mathbb{T}}^{S(n,p)} \left\| \nabla f_{i}(x_{k}) \right\|^{2} \right] \\ & \left[\int_{\mathbb{T}}^{S(n,p)} \int_{\mathbb{T}}^$$

Subtracting
$$f^{\dagger}$$
 on both sides:

$$\overline{\mathbb{E}\left(f(\underline{x}_{k+1}) - f^{\star}\right)} \leq ((-2\mu s_{k})\overline{\mathbb{E}\left(f(\underline{x}_{k}) - f^{\star}\right)} + \frac{LC^{2}s_{k}^{\star}}{2} \qquad (1)$$

$$\int_{0}^{0} d_{1}m_{1}n_{2}h_{0}n_{3} \operatorname{step-size} : s_{k} = \frac{2k+1}{2\mu(k+1)^{2}} = O(\mu_{k}).$$

$$\overline{\mathbb{E}\left(f(\underline{x}_{k+1}) - f^{\star}\right)} \leq \frac{k^{2}}{(k+1)^{2}} \overline{\mathbb{E}\left(f(\underline{x}_{k}) - f^{\star}\right)} + \frac{LC^{2}(2k+1)^{2}}{8\mu^{2}(k+1)^{4}}$$

Multiplying both sides by
$$(k+1)^{2}$$
 and $(ething \delta_{f}(k) = k^{2} \mathbb{E}[f(x_{k}) - f^{k}]]$
 $\delta_{f}(k+1) \leq \delta_{f}(k) + \frac{LC^{2}(k+1)^{2}}{8\mu^{2}(k+1)^{2}} \leq \delta_{f}(k) + \frac{LC^{2}}{2\mu^{2}}$ (2)
Summing (2) from $k=0$ to $k-1$ and $\delta_{f}(0) = 0^{2}\mathbb{E}[f(x_{0}) - f^{k}] = 0$.
 $\delta_{f}(k) \leq \delta_{f}(0) + \frac{LC^{k}}{2\mu^{2}} \Rightarrow k^{2}\mathbb{E}[f(x_{k}) - f^{k}] \leq \frac{LC^{2}k}{2\mu^{2}}$
 $\Rightarrow \mathbb{E}[f(x_{k}) - f^{k}] \leq \frac{LC^{2}}{2\mu^{2}}$
 $recursishedy$
 2^{0} Constand slep-size: $s_{k} = s$ for some $s \leq \frac{1}{2\mu}$. Applying in (1).
 $\mathbb{E}[f(x_{k+1}) - f^{k}] \leq (1-2\mu s)^{k} \mathbb{E}[f(x_{0}) - f^{k}] + \frac{LC^{2}s^{2}}{2} \sum_{k=0}^{k} (1-2s\mu)^{i}$
 $= (1-2\mu s)^{k} \mathbb{E}[f(x_{0}) - f^{k}] + \frac{LC^{2}s^{2}}{2} \sum_{k=0}^{k} (1-2s\mu)^{i}$
 $= (1-2\mu s)^{k} \mathbb{E}[f(x_{0}) - f^{k}] + \frac{LC^{2}s^{2}}{2} \sum_{k=0}^{k} (1-2s\mu)^{i}$
 $= (1-2\mu s)^{k} \mathbb{E}[f(x_{0}) - f^{k}] + \frac{LC^{2}s^{2}}{2} \sum_{k=0}^{k} (1-2s\mu)^{i}$

SGD under PL Condition in Over-parameterized Regime

• Consider ERM in over-parameterized regime: $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$ • $f(\mathbf{x})$ is L-smooth: $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|$, $\forall \mathbf{x}, \mathbf{y}$ • $f_i(\mathbf{x})$ satisfies: $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\| \le \tilde{L} |f_i(\mathbf{x}) - f_i(\mathbf{y})|$ for some $\tilde{L} > 0$ Lipsdifference in ML problems, w.l.o.g., we can assume that $\inf_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) = 0$ and so the PL condition can be modified as μ -PL*: $2\mu f(\mathbf{x}) \le \|\nabla f(\mathbf{x})\|_2^2$ $\|\nabla f(\mathbf{x})\|^2 \ge \mu (f(\mathbf{x}) - f^*)$

• Over-parameterized regime: $d \gg N$

▶ The interpolation effect: for every sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ such that $\lim_{k\to\infty} f(\mathbf{x}_k) = 0$, we have

$$\lim_{k \to \infty} f_i(\mathbf{x}_k) = 0, \quad 1 \le i \le N.$$

Meaning: In the over-parameterized regime, the richness of the model is so high such that fit all training samples A x = b, A \in R^{NXA}, x e R^d f = mm + [[A x - b]]². N>d. Mult space : N-d dimension :

SGD under PL Condition in Over-parameterized Regime

• Consider the general mini-batched version of SGD with constant step-size s:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s}{B} \sum_{j=1}^{B} \nabla f_{i_k^j}(\mathbf{x}_k),$$

▶ B: the mini-batch size; the sample indices {i¹_k,...,i^B_k} in the mini-batch are drawn uniformly with replacement in each iteration k from {1,...,N}

Theorem 4 ([Bassily et al., arXiv:1811.02564])

Consider the mini-batch SGD with smooth losses as stated. Suppose the interpolation condition holds. Suppose that the ERM function $f(\mathbf{x})$ is μ -PL* for some $\mu > 0$. For any mini-batch size $B \in \mathbb{N}$, the mini-batch SGD with constant step-size $s^*(B) \triangleq \frac{2\mu B}{L(\tilde{L}+L(B-1))}$ guarantees that:

$$\mathbb{E}[f(\mathbf{x}_k)] \le \left(1 - \mu s^*(B)\right)^k f(\mathbf{x}_0)$$

Theorem 4 ([Bassily et al., arXiv:1811.02564])

Consider the mini-batch SGD with smooth losses as stated. Suppose the interpolation condition holds. Suppose that the ERM function $f(\mathbf{x})$ is μ -PL* for some $\mu > 0$. For any mini-batch size $B \in \mathbb{N}$, the mini-batch SGD with constant step-size $s^*(B) \triangleq \frac{2\mu B}{L(\tilde{L}+L(B-1))}$ guarantees that:

$$\mathbb{E}[f(\mathbf{x}_k)] \le (1 - \mu s^*(B))^k f(\mathbf{x}_0)$$

Proof: From descent lemma: f(3kn) < f(3k)+ vf(3k) (Xkn) - 3k) + - 1/2kn - 3kl/2. Using SGD dynamics: Fix. Zk, and take expertation over choice { ik, ..., ik}. Note: indices are i.i.d., Then, we have: $\mathbb{E}\left[f(\mathbf{X}_{k+1}) - f(\mathbf{X}_{k}) | \mathbf{X}_{k}\right] \leq -s \left\|\nabla f(\mathbf{X}_{k})\right\|^{2} + \frac{s^{2}}{2} \left(\frac{1}{B} \mathbb{E}\left[\left\|\mathbf{X}_{f_{i_{1}}}^{*}(\mathbf{X}_{k})\right\|^{2}\right]$ $+\frac{B-1}{B}\left\|\nabla f(\mathbf{x}_{k})\right\|^{2}$

Since
$$\forall i \in \{1, --, N\}$$
, $f_i(\cdot)$ satisfies:

$$\|\nabla f_i(X_k) - \nabla f_i(X^*)\| \leq \tilde{L} \|f_i(X_k) - f_i(X^*)\| = \tilde{L} \|f_i(X_k)\| \leq 2\tilde{L} f_i(X_k)$$

$$= 0.$$

$$= 0.$$

$$= 0.$$

Thus. $\mathbb{E}\left[f(\mathfrak{A}_{k}) - f(\mathfrak{A}_{k}) | \mathfrak{A}_{k}\right] \leq -S\left(I - \frac{sL}{2} \cdot \frac{B}{B}\right) \left[\mathbb{E}\left[\mathfrak{A}_{k}\right] | \mathbb{E}\left[+\frac{s^{2}L}{B} + \frac{s^{2}L}{B}\right] + \frac{s^{2}L}{B} + \frac{s^{2}L}{B}\right]$

$$PL \leq 2\mu s \left(1 - \frac{sL(B+1)}{B}\right) f(x_{k}) + \frac{sL\tilde{L}}{B} f(x_{k})$$
non-neg.
$$f(s) = s \left(-2\mu - \frac{sL}{B}\right) (\mu(B-1) + \tilde{L}\right) f(x_{k}).$$
Finally, rearranging & taking full expectation:
$$\overline{F}\left[f(x_{k+1})\right] \leq \left[\left[-2s\mu + \frac{s^{2}L}{B}\right] (\mu(B-1) + \tilde{L}\right] \overline{F}\left[f(x_{k})\right] \quad (3).$$

$$Optimizing the grad term in (3) w.r.t. s yield s^{*}(B),$$

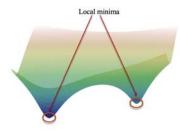
$$\overline{F}\left[f(x_{k+1})\right] \leq (1 - \mu s^{*}(B)) \overline{F}\left[f(x_{k})\right], \quad (3).$$

Other Methods under the PL Condition

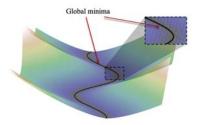
Similar linear convergence rate results can be shown for other methods under the μ -PL, *L*-smoothness, and uniform variance bound conditions, which implies the following sample complexity results:

- GD [Polyak, '63]: $\frac{L}{\mu} \log \frac{\Delta_0}{\epsilon}$
- SGD [Karimi et al., ECML-KDD'16]: $\frac{L}{\mu} \left(\frac{\max_i L_i}{\mu} \log(\frac{\Delta_0}{\epsilon}) + \frac{\max_i L_i \Delta_*}{\mu \epsilon} \right)$
- SVRG [Reddi et al., NeurIPS'16]: $(N + \frac{N^{2/3} \max_i L_i}{\mu}) \log(\frac{\Delta_0}{\epsilon})$
- SAGA [Reddi et al., NeurIPS'16]: $(N + \frac{N^{2/3} \max_i L_i}{\mu}) \log(\frac{\Delta_0}{\epsilon})$
- PAGE [Li et al., ICML'21]: $(b + \sqrt{b} \frac{L_{avg}}{\mu}) \log(\frac{\Delta_0}{\epsilon})$, where $b = \min\{\frac{\sigma^2}{\mu\epsilon}, N\}$

• Landscape of under-parameterized and over-parameterized models (figure from [Liu et al., arXiv:2003:00307]



(a) Loss landscape of under-parameterized models



(b) Loss landscape of over-parameterized models

 $d \gg N$.

- Key Insight:
 - Convexity is not the right framework for analyzing the loss landscape of over-parameterized systems, even locally
 - ▶ Instead, the μ -PL^{*} condition (i.e., $\|\nabla f(\mathbf{w})\|_2^2 \ge 2\mu f(\mathbf{w}), \forall \mathbf{w}$) is a more appropriate framework

The essence of supervised learning:

- Given a dataset of size N, $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, $\mathbf{x}_i \in \mathbb{R}^d$, $y \in \mathbb{R}$
- A parametric family of models $f(\mathbf{w},\mathbf{x})$ (e.g., a neural network)
- \bullet Goal: To find a model with parameter \mathbf{w}^* that fits the training data:

$$f(\mathbf{w}^*, \mathbf{x}_i) \approx y_i, \quad i = 1, 2, \dots, N$$

• Mathematically: Equivalent to solving (exactly or approximately) a system of N nonlinear equations:

$$\mathcal{F}(\mathbf{w}) = \mathbf{y},$$

where $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}^N$, and $\mathcal{F}(\cdot) : \mathbb{R}^d \to \mathbb{R}^N$ with $(\mathcal{F}(\mathbf{w}))_i = f(\mathbf{w}, \mathbf{x}_i)$.

 $\bullet\,$ The system of equations is solved by minimizing a certain loss function $\mathcal{L}(\mathbf{w})$

• E.g., the square loss:
$$\mathcal{L}(\mathbf{w}) = \frac{1}{2} \|\mathcal{F}(\mathbf{w}) - \mathbf{y}\|^2 = \frac{1}{2} \sum_{i=1}^{N} (f(\mathbf{w}, \mathbf{x}_i) - y_i)^2$$

 $\mu\text{-}\mathsf{PL}^*$ condition emerges through the spectrum of the tangent kernel

- Let $D\mathcal{F}(\mathbf{w}) \in \mathbb{R}^{N imes d}$ be the differential of the mapping \mathcal{F} at \mathbf{w}
- The tangent kernel of $\mathcal F$ is defined as an $N \times N$ matrix:

$$\mathbf{K}(\mathbf{w}) \triangleq D\mathcal{F}(\mathbf{w}) D\mathcal{F}^{\top}(\mathbf{w})$$

• It follows from the definition that $\mathbf{K}(\mathbf{w})$ is PSD $\|\mathbf{r}_{\mu}\| \ge \mathcal{P}(f^{(\mathcal{U})})$. • The square loss \mathcal{L} is μ -PL* at \mathbf{w} [Liu, et al., arXiv:2003:00307], where $\|\mathbf{r}_{\mu}\| \ge \mathcal{P}(f^{(\mathcal{U})}) = \mathcal{P}(f^{(\mathcal{U})})$. $= 0 \ \mu = \lambda_{\min}(\mathbf{K}(\mathbf{w})),$

is the smallest eigenvalue of the kernel matrix

Thus, the PL* condition is inherently tied to the spectrum of the tangent kernel matrix associated with ${\cal F}$

Wide (hence over-parameterized) neural networks satisfy PL* condition:

- A powerful tool: the neural tangent kernel (NTK)
 - First appeared in a landmark paper [Jacot et al., NeurIPS'18]
 - ► Tangent kernel of a single layer wide neural networks with linear output layer $(f(\mathbf{x}) = \sum_{i=1}^{d} \sigma(\mathbf{w}^{\top}\mathbf{x}))$ are nearly constant in a ball \mathcal{B} of a certain radius around the ball with a random center (note: d is also the width of the NN):

$$\|\mathbf{H}_{\mathcal{F}}(\mathbf{w})\| = O^*(1/\sqrt{d}),$$

where $\mathbf{H}_{\mathcal{F}}(\mathbf{w})$ is a $N \times d \times d$ tensor with $(\mathbf{H}_{\mathcal{F}})_{ijk} = \frac{\partial^2 \mathcal{F}_i}{\partial w_j \partial w_k}$

- Constancy of NTK implies training dynamic of wide NNs is approximately a linear model ⇒ linear convergence of gradient flow (hence GD)
- It can be shown that [Liu, et al., arXiv:2003:00307]:

$$|\lambda_{\min}(\mathbf{K}(\mathbf{w})) - \lambda_{\min}(\mathbf{K}(\mathbf{w}_0))| < O\left(\sup_{\mathbf{w}\in\mathcal{B}} \|\mathbf{H}_{\mathcal{F}}(\mathbf{w})\|\right) = O(1/\sqrt{d})$$

Thus, the PL* condition holds for single-layer wide NN

NTK: Hogh-level ontrition, I 1 LOSS is convex, then GD (SGD) converger to plabal min. 2° Linear/knonel model exhibit convex loss landscape. 3 hould prove wide NN, landscape looks like a kernel model. $3^{\circ} \rightarrow 2^{\circ} \rightarrow 1^{\circ}$ 1) Gradient degramic for linear models: Detaset $\{(\underline{x}_i, \underline{y}_i)\}_{i=1}^N$ $u_i = \underline{w}^T \underline{x}_i \in \mathbb{R}^d$ Square loss: $L(w) = \frac{1}{2} \sum_{i=1}^{N} (y_i - x_i^T w)^2 = \frac{1}{2} \|y - x_i^T w\|^2$ Optimize via GD: $W^{\dagger} = W - S \mathcal{P}[W]$ $\mathcal{P}[W] = -\sum_{i=1}^{N} \mathcal{I}_i(y_i - u_i) = -\mathcal{I}_i^T(y - u_i)$ (OPE for w evolution) $s \rightarrow 0$: $\frac{dw}{dt} = -\nabla L(w) = \tilde{X}^{T}(y - u)$ Gradient flow. GD; a tinite-time discretization of this ODE $\frac{du}{dt} = \frac{d(\underline{x} \underline{y})}{dt} = \underline{x} \frac{dw}{dt} = \underline{x} \underline{x}^{\mathsf{T}}(\underline{y} - \underline{y}) = \underline{k}(\underline{y} - \underline{y}).$

Remarks. l' Lincor OPE can be solved on closed form. Let r=y-u $\frac{dr}{dA} = \frac{d(y-y)}{dA} = -\frac{dy}{dt} = -\frac{kr}{dt}$ $\underline{r}(t) = \exp\left(-\underline{k}\underline{r}\right) \underline{r}(0)$ If E is full rank, Amin (E) >0. GD converges exp. fast > 0 loss. $\dot{z} \not\equiv = \chi \chi^{T}$ const. Configuration of dotter pts with $\lambda_{min}(\xi)$ allows GD to converge fast. 3° Al that matters is set of pair wise product [] = 21, 2, "kernel trick". Kernel fn: $[K]_{ij} = \langle \phi(Z_i), \phi(Z_j) \rangle$, where ϕ is "feature nonp" 2). General dynamites for non-Inear model: f(W). For \underline{x}_i , $u_i = f(\underline{w}, \underline{x}_i)$. Squate Loss: $L(\underline{n}) = \pm \sum_{j=1}^{n} (\underline{y}_j - \underline{f}(\underline{w}_j, \underline{x}_j))$ The grad w.r.t. any one weight parameter: $\nabla_{w_i} L(w) = -\sum_{j=1}^{N} \frac{\partial f(w, x_i)}{\partial w_i} (y_j - u_i).$ $\frac{du_i}{dt} = \sum_{k=1}^{d} \frac{\partial u_i}{\partial w_k} \frac{dw_k}{dt} = \sum_{k=1}^{d} \frac{\partial f(w, z_i)}{\partial w_k} \frac{dw_k}{dt}$

 $= \sum_{k=1}^{d} \frac{\partial f(w, \overline{x}_{i})}{\partial w_{k}} \left[\sum_{j=1}^{N} \frac{\partial f(w, \overline{x}_{j})}{\partial w_{k}} (y_{j} - u_{j}) \right]$ $= \sum_{j=1}^{N} \langle \frac{\partial f(w, x_j)}{\partial w}, \frac{\partial f(w, x_j)}{\partial w} \rangle (y_j - u_j)$ $= \sum_{i=1}^{N} [k_{ij}^{ij} (y_{j} - u_{j}^{ij}), \text{ where } [k_{ij}^{ij}] = \langle \frac{\partial f(w_{ij}, x_{j})}{\partial w} \rangle$ $= \sum_{k=1}^{d} \frac{\Im f(w,z_i)}{\Im w_k} \cdot \frac{\Im f(w,z_i)}{\Im w_k}$ $K_{\pm} = DF(W_{\pm}) DF^{T}(W_{\pm})$ kend matrix. $\frac{du}{dt} = -k_{\pm}(y-u)$ ~ nonlinear OPE. $f : \underset{z + \geq 0}{\overset{k}{\to}}$ bernel mapping $\phi : z \mapsto \frac{\partial f(w, z)}{\partial w} \in \mathbb{R}^d$ 2f f is NN, then p is "NTK". 3). Wide NN exhibits linear model dynamics. [Pu, ICLR'19] l' Rondomly on Halize wat t=0. 2° At t=0, we'll show NTK Ko is full rank. 3° For wide NNs, Ktako, hence kt is full rounde Ht Conside 2-Layer NN W/ m hidden neurons, with truice deffible Y activation fr. Zi i vr a o Fix and layer, only train lst layer. m newtons.

$$f(w, x) = \int_{m}^{m} \sum_{r=1}^{m} a_r \psi(\langle w_r, x \rangle), \quad a_r = \pm 1$$

$$\text{Initialize} \quad [w_1(0) - \cdots w_m(0)]^T \text{ stand normal distr.}$$

$$\frac{\partial f(w_1(0), x_0)}{\partial w_r} = \frac{1}{\sqrt{m}} a_r x_0 \psi'(\langle w_r(0), x_0 \rangle),$$

$$\text{So, NTK at } t=0: \quad [E]_{ij} = \langle \frac{\partial f(w, x_0)}{\partial w_r}, \frac{\partial f(w, x_0)}{\partial w_r} \rangle$$

$$= x_i^T x_j \left[\int_{m}^{m} \sum_{r=1}^{m} a_r^2 \psi'(\langle w_r(0), x_0 \rangle) \psi'(\langle w_r(0), x_j \rangle) \right]$$

Each entry of
$$[\underline{F}]_{ij}$$
 is a r.v. with mean being equal to:
 $\underline{z}_i = \underline{z}_j = \underline{F}_{\underline{w} \sim N(0, \underline{z})} \psi'(\underline{x}_i = \underline{w}) \psi'(\underline{x}_j = \underline{w}) \stackrel{\text{def}}{=} [\underline{F}_{\underline{v}}]_{ij}$

As
$$m \to \infty$$
, NTK at $t=0$ is goal to E^*
 $\int_{0}^{\infty} for \geq 0$ if $m > \tilde{O}\left(\frac{N^{4}}{\epsilon^{2}}\right)$, then $\|E(0) - E^*\| \leq \epsilon$ w.h.p.
 2° Suppose $y_{i}=\pm |$, $u_{i}(\tau)$ boded throughout training, $0 \leq \tau \leq t$.
for $\epsilon > 0$, if $m \geq \tilde{O}\left(\frac{N^{6}t^{2}}{\epsilon^{2}}\right)$, then $\|E(\tau) - E^{*}\| \leq \epsilon$, w.h.p.
Remarks:
(1). width seedes ploy w.r.t. N. [song et al. Neur2ps'21] $\tilde{O}(N^{2})$
(2). Pependence on data : $\epsilon Nguyen et al.]: O(Nd)$
(3) For L-(ager NN, Widths need to scale as $poly(N,L)$.

Next Class

First-Order Methods under Additional Assumptions