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Outline

In this lecture:

Motivation of Variance-Reduced Zeroth-Order Methods

Representative Algorithms

Convergence Results
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Finite-Sum Minimization with VR Zeroth-Order Methods

Consider ZO methods for special case of min f(x): finite-sum minimization

min
x2Rd

f(x) =
1

N

NX

i=1

fi(x)

I We have studied finite-sum minimization with VR first-order methods

Need for solving finite-sum minimization problem with ZO methods:
I Reinforcement learning (e.g., [Fazel et al., ICML’18])

I Non-stationary online optimization problems [Zhang et al., arXiv:2010.07378]

We have seen that SGD-type ZO methods with noisy f̂ have sample
complexity O(d✏�4) in the last lecture

Can we do better (at least for finite-sum minimization)?
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Variance Reduction in First-Order Methods

SAG

SVRG

SAGA

SARAH

SPIDER/SpiderBoost

PAGE

We will develop their ZO counterparts
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ZO-SVRG [Liu et al., NeurIPS’18]

A zeroth-order version of SVRG

Consider a non-convex finite-sum problem:

min
x2Rd

f(x) =
1

N

NX

i=1

fi(x)

I fi 2 C
1,1
L (krfi(x)�rfi(y)k2  Lkx� yk2, 8x,y 2 Rd

, 8i 2 {1, . . . , N})
I Bounded variance of stochastic gradient:

1
N

PN
i=1 krfi(x)�rf(x)k22  �

2

The following gradient estimations are used in [Liu, et al., NeurIPS’18]:

RandGradEst: r̂fi(x) =
d

µ
[fi(x+ µui)� fi(x)]ui

Avg-RandGradEst: r̂fi(x) =
d

µq

qX

j=1

[fi(x+ µui,j)� fi(x)]ui,j

CoordGradEst: r̂fi(x) =
1

2µ

dX

j=1

[fi(x+ µjej)� fi(x� µjej)]ej
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ZO-SVRG [Liu et al., NeurIPS’18]

The ZO-SVRG Algorithm

Required: Step-sizes {⌘ts}, epoch length T , starting point x0 2 Rd,
smoothing parameter µ, number of iterations K = S · T , �0 = x0

0

for s = 0, 1, 2, . . . , S � 1
Compute ZO full gradient estimate r̂f(�s)
for t = 0, 1, 2, . . . , T � 1 then

Uniformly randomly pick It ⇢ {1, . . . , N} with |It| = B with
replacement. Compute:

vt
s =

1

B

X

i2It

[r̂fi(x
t
s)� r̂fi(�s)] + r̂f(�s)

xt+1
s = xt

s � ⌘
t
sv

t
s

end for

Let �s+1 = x0
s+1 = xt

s

end for

Output: x⇠, where ⇠ is picked uniformly at random from {0, . . . ,K � 1}
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ZO-SVRG [Liu et al., NeurIPS’18]

Compared to FO-SVRG, the only di↵erence is:

FO-SVRG: xt+1
s = xt

s � ⌘
t
sv

t
s, vt

s = rfIt(x
t
s)�rfIt(x

0
s) +rf(x0

s)

ZO-SVRG: xt+1
s = xt

s � ⌘
t
sv̂

t
s, v̂t

s = r̂fIt(x
t
s)� r̂fIt(x

0
s) + r̂f(x0

s)

where r̂fI(x) =
1
B

P
i2I r̂fi(x)

Key Problem: r̂f(x0
s) is no longer unbiased ZO gradient estimate

Under stated assumptions, ZO-SVRG after K = ST steps achieves:

RandGradEst: E[krf(x⇠)k22] = O

✓
d

T
+

1

B

◆

Avg-RandGradEst: E[krf(x⇠)k22] = O

✓
d

T
+

1

Bmin{d, q}

◆

CoordGradEst: E[krf(x⇠)k22] = O

✓
d

T

◆

Insight: CoordGradEst (i.e., deterministic gradient estimation) achieves same
convergence rate as FO-SVRG
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ZO-SVRG [Liu et al., NeurIPS’18]

Blackbox classification problem motivated by material science:
I A nonlinear least square problem fi(x) = (yi � �(x;ai))

2
for i 2 [N ], where

�(x,ai) is a blackbox function that only returns function value

I N = 1, 000 crystalline materials/compounds extracted from Open Quantum

Materials Database; each compound has d = 145 chemical features
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SpiderSZO [Fang et al., NeurIPS’18]

Required: n0 = [1, 30(2d+9)�
✏ ], Lipschitz constant L, epoch T , initial

x0 2 Rd, outer and inner batch-sizes B1 and B2, num. of iterations K = ST .

for k = 0, 1, 2, . . . ,K � 1
if mod (k, T ) = 0 then

Uniformly randomly pick Ik ⇢ {1, . . . , N} with |Ik| = B1 with
replacement. Compute:

vk =
dX

j=1

0

@ 1

B1

X

i2Ik

[fi(xk + µej)� fi(xk)]

µ

1

A ej

else

Create set of pairs Ik = {(i,ui)} w/ |Ik| = B2, where i ⇠ U [N ]
(with replacement) and indep. ui ⇠ N (0, Id). Compute:

vk =
1

B2

X

(i,ui)2Ik

✓
fi(xk + µui)� fi(xk)

µ
ui �

fi(xk�1 + µui)� fi(xk�1)

µ
ui

◆
+vk�1

end if

Let xk+1 = xk � ⌘kvk, where ⌘k = min( ✏
Ln0kvkk ,

1
2Ln0

)
end for

Output: x⇠, where ⇠ is picked uniformly at random from {0, . . . ,K � 1}
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SpiderSZO [Fang et al., NeurIPS’18]

Learning rate ⌘k = min( ✏
Ln0kvkk ,

1
2Ln0

):

I Follows from normalized gradient descent (NGD) [Nesterov, Book’04]

I Inversely proportional to norm of “gradient”

Theorem 1 ([Fang et al., NeurIPS’18])Theorem 1 (Theorem 1 ([Fang et al., NeurIPS’18])

After K = O(✏�2) iterations, with O(dmin{N1/2
✏
�2

, ✏
�3}) incremental

zeroth-order oracle (IZO, i.e., returning the value of fi(x) given x and i) calls,

SpiderSZO ensures that:

E[krf(x⇠)k2]  6✏.

This result is better than the sample complexity of [Nesterov and Spokoiny,
FCM’17] by a factor of N1/2
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]

A tighter analysis for ZO-SVRG in [Ji et al., ICML’19]:
I ZO-SVRG-Coord has a better convergence rate E[krf(x⇠)k22] = O(1/K)
I d times better than the previous analysis in [Liu et al., NeurIPS’18]

I To achieve an ✏-stationary point (i.e., E[krf(x⇠)k22]  ✏
2
), ZO-SVRG-Coord’s

function query complexity is O(min{N2/3
d✏

�2
, d✏

�10/3})

Proof Sketch:
1 Consider an intermediate variant of ZO-SVRG-Coord and ZO-SVRG-Ave

called ZO-SVRG-Coord-Rand that uses CFD and SSG for the r̂f(�s) and
r̂fi(x

t
s)� r̂fi(�s) parts in vt

s = 1
B

P
i2It

[r̂fi(x
t
s)� r̂fi(�s)] + r̂f(�s),

respectively, as opposed to [Liu et al., NeurIPS’18] that used only one type of

gradient estimation at once.

2 [Ji et al., ICML’19] showed that, although the replacement of SSG with CFD

requires d more oracle calls, it achieves more accurate gradient estimation,

which yields a convergence rate E[krf(x⇠)k22] = O(1/K). So, the
convergence rate stays the same for ZO-SVRG-Coord.
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]

A new variant of ZO-SPIDER in [Ji et al., ICML’19]: ZO-SPIDER-Coord:

I Similar to ZO-SVRG-Coord: Use CFD instead of GSG in SpiderSZO

I Show that ZO-SPIDER-Coord has the same convergence rate as SpiderSZO,

but with a bigger size-size ⌘k = 1/4L and doesn’t depend on ✏ (using similar

idea as in SpiderBoost)

I With appropriate choices of learning rate, sampling radius parameters, outer

batch size, ZO-SPIDER-Coord achieves a convergence rate O(
p
B1/K)

I To achieve an ✏-stationary point (i.e., E[krf(x⇠)k22]  ✏
2
), ZO-SVRG-Coord’s

function query complexity is O(min{N1/2
d✏

�2
, d✏

�3})
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML’19]

Numerical result comparisons:
I Generation of black-box adversarial examples (DNN for MNIST handwritten

digit classification, use the blackbox attacking loss in [Liu et al. NeurIPS’18])

I Nonconvex logistic regression on LIBSVM [Chang and Lin, ACM TIST’11]
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Next Class

First-Order Methods under Additional Assumptions
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