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Outline

In this lecture:
@ Motivation of Variance-Reduced Zeroth-Order Methods
@ Representative Algorithms

@ Convergence Results
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Finite-Sum Minimization with VR Zeroth-Order Methods

o Consider ZO methods for special case of min f(x): finite-sum minimization

xERd

N
. 1
min f(x) = N z:lfl(x)
i=
» We have studied finite-sum minimization with VR first-order methods

@ Need for solving finite-sum minimization problem with ZO methods:

» Reinforcement learning (e.g., [Fazel et al., ICML'18]) L&R.
> Non-stationary online optimization problems [Zhang et al., arXiv:2010.07378]

@ We have seen that SGD-type ZO methods with noisy f have sample
complexity O(de=%) in the last lecture

Can we do better (at least for finite-sum minimization)?
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Variance Reduction in First-Order Methods
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We will develop their ZO counterparts J
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Z0O-SVRG [Liu et al., NeurlPS'18]
@ A zeroth-order version of SVRG

o Consider a non-convex finite-sum problem:

min f(x) NZfz

> fi e Oy (IVfi(x) = Vi(y)ll2 < Llx — yll2, ¥x,y € RY, Vi € {1,...,N})
» Bounded variance of stochastic gradient: + SN IVAi(x) - Vix)|; < o?

@ The following gradient estimations are used in [Liu, et al

., NeurlPS'18]:
- d
A RandGradEst: Vfl(x) = /._L[fZ(X + pu;) — fi(x)]ui 2'r+
"sf’m

o Avg-RandGradEst: Vfi(x) =

d q
—Z[fZ(X-l-pul i) — X)]Ui,jff‘ﬂ)'/’f'
rq =
Duluminie CoordGradEst: V f;(x) = ii[f (x+ pie;) — filx — pse;)le;
CFD ’ v - 2“’ — e Hj€;j % Hi€; J
(sce-lml). J=1
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ZO-SVRG [Liu et al., NeurlPS'18]
The ZO-SVRG Algorithm

e Required: Step-sizes {n’}, epoch length T, starting point xo € RY,

smoothing parameter j, number of iterations K = S - T, ¢g = x)

o fors=0,1,2,...,5 -1 .
Compute ZO full gradient estimate V f(¢s)
ort=20,1,2,...,7 — 1 then
Uniformly randomly pick I; C {1,..., N} with |I;| = B with
: coutest
replacement. Compu;ﬁ.‘L it )W;

e A
vi= = SIVAG) - V6] + V()

i€l
t+1 _ t to,t
Xs = X5 T 1NsVs 4 ,’f
&T ¢:2 ef"'['
end for

k Let ds1 = X0y = X}
end for
Output: x¢, where ¢ is picked uniformly at random from {0,..., K — 1}
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Z0O-SVRG [Liu et al., NeurlPS'18]

@ Compared to FO-SVRG, the only difference is:
FO-SVRG: xt'|r1 =x\—nivl v
ZO-SVRG: x!T = x! —nlvt

where @fl(x) = % Dier @fl(x)

o Key Problem: Vf(x?) is no longer unbiased ZO gradient estimate

, Vg

@ Under stated assumptions, ZO-SVRG after K = ST steps achleveﬁs ols?)

RandGradEst: E[|V f(x¢)|l3] = O d + 1) et O(?)
T B

_ 2 d 1
Avg-RandGradEst: E[||V f(x¢)||3] = O (T ey i q] (gt)-pt

CoordGradEst: E[[|V/(x¢)[2] = O (%) dehminichc. " CFp".

@ Insight: CoordGradEst (i.e., deterministic gradient estlmatlon) achieves same
convergence rate as FO-SVRG O()V>
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Z0O-SVRG [Liu et al., NeurlPS'18]

@ Blackbox classification problem motivated by material science:
» A nonlinear least square problem f;(x) = (y; — ¢(x;a;))? for i € [N], where
¢(x,a;) is a blackbox function that only returns function value
» N = 1,000 crystalline materials/compounds extracted from Open Quantum

Materials Database; each compound has d = 145 chemical features
asqna Ver. 20-SyRG,
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SpiderSZO [Fang et al., NeurlPS'18]

o Required: ny = [1, M] Lipschitz constant L, epoch T, initial

xo € R?, outer and inner batch-sizes B; and By, num. of iterations KX = ST.
o fork=0,1,2,..., K -1
~_ if mod (k,T) = 0 then

”olwbb"("”r". Uniformly randomly pick I, C {1,..., N} with |I;| = By with
replacement. Compute:

7o,
v — f): (1 ) [fi(xx + pej) — fi(xk)]> e;

=S\ B H

else
Create set of pairs I, = {(i,u;)} w/ |Ix| = Bz, where i ~ U[N]
(with replacement) and indep. u; ~ N(0,1,). Compute:

1 ) (fi(xk +pu;) — fi(xk)ui  fi(xp—1 4 pug) — fi(xkfl)uZ) @

Vi = —
2 (iu,)€ly = £ g
s
end if
Let X1 = X — Nk VE, Where g = min(m, Tns) = 0(%).
end for

Output: x¢, where § is picked uniformly at random from {0,..., K — 1}
9



SpiderSZO [Fang et al., NeurlPS'18]

1 ): - O(eﬂ')

€
Lnollvk |’ 2Lno
» Follows from normalized gradient descent (NGD) [Nesterov, Book’'04]
> Inversely proportional to norm of “gradient”

@ Learning rate 1, = min(

Theorem 1 ([Fang et al., NeurlPS'18])
After K = O(e™?) iterations, with O(dmin_2,e_3}) incremental

zeroth-order oracle (I1ZO, i.e., returning the value of f;(x) given x and i) calls,
SpiderSZO ensures that:

E[IVf(x¢)ll2] < Ge.

@ This result is better than the sample complexity of [Nesterov and Spokoiny,
FCM'17] by a factor of N'1/2
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

o A tighter analysis f\?J ZO-SVRG in [Ji et al., ICML'19]: ool

» ZO-SVRG-Coord has a better convergence rate E[||V f(x¢)[|3] = O(1/K)

» d times better than the previous analysis in [Liu et al., NeurlPS'18]

» To achieve an e-stationary point (i.e., E[||Vf(x¢)|3] < €?), ZO-SVRG-Coord’s
function query complexity is O(min{N2/3de’2, de’lo/g})

@ Proof Sketch:

@ Consider an intermediate variant of ZO-SVRG-Coord and ZO-SVRG-Ave
called ZO-SVRG-Coord-Rand that uses CFD and SSG for the @f(qbs) and
Vfi(xt) = Vful@s) partsin vi= LY, %ﬁg — N Fi6)] + V().
respectively, as opposed to [Liu et al., Neur[PS'18] that“ﬂsed only She type of
gradient estimation at once.

@ [Ji et al., ICML'19] showed that, although the replacement of SSG with CFD
requires d more oracle calls, it achieves more accurate gradient estimation,
which yields a convergence rate E[||V f(x¢)||3] = O(1/K). So, the
convergence rate stays the same for ZO-SVRG-Coord.
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

@ A new variant of ZO-SPIDER in [Ji et al., ICML'19]: ZO-SPIDER-Coord:

» Similar to ZO-SVRG-Coord: Use CFD instead of GSG in SpiderSZO

» Show that ZO-SPIDER-Coord has the same convergence rate as SpiderSZO,
but with a bigger size-size n, = 1/4L and doesn’t depend on € (using similar

idea as in SpiderBoost) (ons t

epoch Inrulﬂa_
» With appropriate choices of learning rate, sampling radius parameters, outer
batch size, ZO-SPIDER-Coord achieves a convergence rate O(v/B1/K)

» To achieve an e-stationary point (i.e., E[||V f(x¢)|3] < €?), ZO-SVRG-Coord’s
function query complexity is O(min{N'/2de™2, de™3})
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

@ Numerical result comparisons:

> Generation of black-box adversarial examples (DNN for MNIST handwritten
digit classification, use the blackbox attacking loss in [Liu et al. NeurlPS'18])
Nonconvex logistic regression on LIBSVM [Chang and Lin, ACM TIST'11]
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Figure I. Comparison of different zeroth-order algorithms for generating black-box adversarial examples for digit *1" class
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Figure 2. Comparison of different zeroth-order algorithms for logistic regression problem with a nonconvex regularizer
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Next Class

First-Order Methods under Additional Assumptions
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