ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 4-1: Zeroth-Order Methods with Random Directions of Gradient Estimations

Jia (Kevin) Liu
Assistant Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Spring 2022

Outline

In this lecture:

- Overview of Zeroth-Order Methods and Their Applications
- Representative Techniques for Random Directions of Gradient Estimations
- Convergence Results

Overview of Zeroth-Order Methods

- Zeroth-order (gradient free) method: Use only function values
- Reinforcement learning [Malik et al., AISTATS'20]
- Blackbox adversarial attacks on DNN [Papernot et al., CCS'17]
- Or problems with structure making gradients difficult or infeasible to obtain
- Two major classes of zeroth-order methods
- Methods that do not have any connections to gradient
« Random search algorithm [Schumer and Steiglitz, TAC'68]
* Nelder-Mead algorithm [Nelder and Mead, Comp J. '65]
\star Model-based methods [Conn et al., SIAM'09]
* Stochastic three points methods (STP) [Bergou et al., SIAM J. Opt. '20]
^ STP with momentum [Gorbunov et al., ICLR'20]
- Methods that rely on gradient estimations
* More modern approach, the focus of this course

Ex: Discrefe-time Linear - Quadratic Requlator (LQR)

$$
\begin{aligned}
& \left(\underline{s}_{t}, \underline{a}_{t}\right): \int C_{t}=\underline{s}_{t}^{\top} \underline{Q} \underline{s}_{t}+\underline{a}_{6}^{\top} R a_{t} \quad(\underline{Q}, R>0)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m} \text { m } \mathrm{Fk} \text {. } \\
& \text { (A, B }
\end{aligned}
$$

w. (co.g. assmme \underline{v} ar.vac. $\underline{v} \sim D$ s.t. $\mathbb{F}[\underline{v}]=\underline{\mathbb{E}}\left[\underline{N} \underline{v}^{\top}\right]=I$

$$
\mathbb{E}\left[\underline{v} \underline{V}^{\top}\right]=\sum_{=}^{-} \quad \sum_{=}^{-\frac{1}{r}} \underline{V} \underline{V}^{\top} \sum_{=}^{-\frac{1}{2}}=\frac{I}{I}
$$

Ry classical opt. $\operatorname{ctr}\left(\right.$ theor, $\underline{a}_{t}=-\underline{K}^{*} \underline{s}_{t}$, where $\underline{k}_{\approx}^{*}$ cand be found by the dt-Ricarti eqn. (assunng A, B, Q, R)

If we don't know $\underline{A}, \underline{B}, \underline{R}, \underline{Q}$, we can search over lin. policies:

1. Rand witialization: $C_{\text {init }}\left(k, \underline{s}_{0}\right) \in \operatorname{cost}$ of executing a lin policy k from s_{0}.

$$
C_{\text {init }}\left(k, s_{0}\right)=\sum_{t=0}^{\infty}\left(\underline{s}^{t} \underline{Q} s_{t}+a_{t}^{\top} R \underline{\underline{s}}_{t}+\gamma_{t}\right) \gamma^{t}
$$

God: $\quad \min C_{\text {init, } \gamma}(k)=\frac{\mathbb{E}_{s_{0} \sim D_{0}}\left[C_{\text {mit, }, \gamma}\left(k, s_{0}\right)\right]}{\text { we don't know }}$
A policy K is said to be ctrlible for (A, B) if $P(A-K B)<1$

$$
\{k: p(A-k \underline{\underline{k}})<1\}
$$

Note: 1.. LQR is locally Lipschite

$$
\left|\operatorname{cin}^{2}+, r\left(\underline{k^{\prime}}, \underline{s}_{0}\right)-C_{\operatorname{in} i, r}\left(\underline{k}_{\underline{x}}, \underline{s}_{0}\right)\right| \leqslant \lambda \quad\left\|k^{\prime}-\underline{k}\right\|_{F}
$$

2°. LQR has locally Lipschite cont. pred.
3. Cinit, (\underline{k}) is nonconvex: $\{k: P(A-k B)<1\}$ is noneonvex.
4. LQR is PL

Basic Idea of (Deterministic) Gradient Estimation

- Gradient estimation with finite-difference directional derivative estimation:

$$
\begin{aligned}
& \text { (Forward version): } \mathbf{g}(\mathbf{x})=\sum_{i=1}^{d} \frac{f\left(\mathbf{x}+\mu \mathbf{e}_{i}\right)-f(\mathbf{x})}{\mu} \mathbf{e}_{i}, \quad d+1 \\
& \text { (Centered version): } \mathbf{g}(\mathbf{x})=\sum_{i=1}^{d} \frac{f\left(\mathbf{x}+\mu \mathbf{e}_{i}\right)-f\left(\mathbf{x}-\mu \mathbf{e}_{i}\right)^{2 d}}{2 \mu} \mathbf{e}_{i},
\end{aligned}
$$ where \mathbf{e}_{i} is the i-th natural basis vector of $\mathbb{R}^{\boldsymbol{d}}$ and μ is the sampling raditheric cont. dirt.

- For the gradient estimation above, it can be shown that for $f \in C 1\left(\begin{array}{c}\text { (ie., }\end{array}\right.$ continuously differentiable with Lipschitz-continuous gradient)

$$
\|\mathbf{g}(\mathbf{x})-\nabla f(\mathbf{x})\|_{2} \leq \mu L \sqrt{d}
$$

notation.

- Natural idea: Replace actual gradient with gradient estimation in any first-order optimization scheme (deterministic ZO methods)
- Pro: Use Lipschitz-like bound above to characterize convergence performance
- Con: Suffer from problem dimensionality for large $d(\underline{O(d)}$ ZO-oracle calls)

Randomized Gradient Estimation

- Two-point random gradient estimator
2-pt.

$$
\hat{\nabla} f(\mathbf{x})=(d / \mu)[f(\underline{\mathbf{x}+\mu \mathbf{u}})-f(\underline{\mathbf{x}})] \mathbf{u}
$$

where \mathbf{u} is an i.i.d. random direction

- (q+1)-point random gradient estimator

$$
\hat{\nabla} f(\mathbf{x})=(d /(\mu q)) \sum_{i=1}^{q}\left[f\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-f(\mathbf{x})\right] \underline{\mathbf{u}}_{i},
$$

which is also referred to as average random gradient estimator

- Benefits:
- Make every iteration simpler
- Easy convergence proof
- For problems limited to only several (or even one) ZO oracle queries

Formalization of Stochastic Zeroth-Order Methods

- Consider the problem of the following form:

$$
\min _{\substack{\mathbf{x} \in Q \subseteq \mathbb{R}^{d} \\ \text { "d } \\ R_{d}^{d}}} f(\mathbf{x})
$$

- A stochastic ZO method generates $\left\{\mathbf{x}_{k}\right\}$ as follows:

$$
\mathbf{x}_{k+1}=\mathcal{A}\left(\hat{f}, \mathbf{X}, P,\left\{\mathbf{x}_{i}\right\}_{i=0}^{k},\left\{\mathbf{u}_{i}\right\}_{i=0}^{k}\right)
$$

- \hat{f} : ZO-oracle (could be noisy, i.e., \hat{f} is not necessarily equal to f; e.g., $\hat{f}(\mathbf{x})=f(\mathbf{x})+\epsilon(\mathbf{x})$ or $\hat{f}(\mathbf{x}, \mathbf{u})=f(\mathbf{x})+\epsilon(\mathbf{x}, \mathbf{u})$ with $\left.\mathbb{E}_{\mathbf{u}}[\hat{f}(\mathbf{x}, \mathbf{u})]=f(\mathbf{x})\right)$
- $\left\{\mathbf{x}_{i}\right\}_{i=0}^{k}$: history of \mathbf{x}-variables
- $\left\{\mathbf{u}_{i}\right\}_{i=0}^{k}$: random sampling directions
- P: parameters (dimension d of \mathbf{x}, L-Lipschitz constant, etc.)
- This lecture: Focus on non-convex objective function

Random Directions Gradient Estimations

- Consider the following ZO scheme using gradient approximation:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbf{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)
$$

where $\mathbf{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)$ follows the two-point random gradient estimator:

$$
\mathbf{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)=\frac{\hat{f}\left(\mathbf{x}_{k}+\mu \mathbf{u}_{k}\right)-\hat{f}\left(\mathbf{x}_{k}\right)}{\mu} \mathbf{u}_{k}
$$

- It makes sense to use centrally symmetric distributions for \mathbf{u}_{k} :
- Uniformly distributed over unit Euclidean sphere [Flaxman et al. SODA'05], [Gorbunov et al. SIOPT'18], [Dvurechensky et al., E. J. OR'21]:

$$
\mathbf{u}_{k} \sim \mathcal{U}\left\{S^{d-1}\right\}, \text { where } S^{d-1}=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2}=1\right\}
$$

- Gaussian smoothing [Nesterov and Spokoiny, Math Prog. '06]:

$$
\mathbf{u}_{k} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right)
$$

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

- Gaussian smoothing approximation:

$$
f_{\mu}(\mathbf{x})=\frac{1}{\kappa} \int_{\mathbb{R}^{d}} f(\mathbf{x}+\mu \mathbf{u}) e^{-\frac{1}{2}\|\mathbf{u}\|_{2}^{2}} d \mathbf{u},
$$

where $\kappa=\int_{\mathbb{R}^{d}} e^{-\frac{1}{2}\|\mathbf{u}\|_{2}^{2}} d \mathbf{u}=(2 \pi)^{d / 2}$.

- Good properties:
- Convexity preservation: If f is convex, so is f_{μ}
- Differentiability
- If $f \in C_{L_{0}}^{0,0}$ (or $f \in C_{L_{1}}^{1,1}$), the same holds for f_{μ} with $L_{0}\left(f_{\mu}\right) \leq L_{0}(f)$ (or $\left.L_{1}\left(f_{\mu}\right) \leq L_{1}(f)\right)$
- $\left|f_{\mu}(\mathbf{x})-f(\mathbf{x})\right| \leq \mu L_{0} \sqrt{d}$ if $f \in C_{L_{0}}^{0,0}$

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

- Consider the following algorithm:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbf{g}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \text { and } \mathbf{u}_{k} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right)
$$

- For nonconvex $f \in C_{L_{1}}^{1,1}$, we have (let $U=\left\{\mathbf{u}_{k}\right\}_{k=0}^{K-1}$):

$$
\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_{U}\left[\left\|\nabla f_{\mu}\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq 8(d+4) L_{1}[\frac{f_{\mu}\left(\mathbf{x}_{0}\right)-f^{\hbar}}{K}+\partial\left(\frac{1}{k}\right) \underbrace{\frac{3 \mu^{2}(d+4)}{32} L_{1}}_{\text {Constr. "error }}
$$

- Using the facts that $\left\|f_{\mu}(\mathbf{x})-\nabla f(\mathbf{x})\right\|_{2} \leq \frac{\mu L_{1}}{2}(d+3)^{\frac{3}{2}}$ and ball." $\|\nabla f(\mathbf{x})\|_{2}^{2}<2\left\|\nabla j_{\mu}(\mathbf{x})-\nabla f(\mathbf{x})\right\|_{2}^{2}+2\left\|\nabla f_{\mu}(\mathbf{x})\right\|_{2}^{2}$, we obtain:

$$
\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_{U}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq 2 \frac{\mu^{2} L_{1}^{2}}{4}(d+3)^{3} \quad O\left(d^{3}\right)
$$

$$
+16(d+4) L_{1}\left[\frac{f_{\mu}\left(\mathbf{x}_{0}\right)-f^{*}}{K}+\frac{3 \mu^{2}(d+4)}{32} L_{1}\right]
$$

$O(k)$ cons. rate.

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

- Choosing $\mu=O\left(\underset{\epsilon}{\epsilon} /\left[d^{3} L_{1}\right]\right)$ ensures $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_{U}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq \epsilon^{2}$, which implies the following sample complexity:
similar to GD
"SPIDER".

$$
K=O\left(d \epsilon^{-2}\right) \text {. But dep. on dim. }
$$

- For $f \in C_{L_{0}}^{0,0}$, we have (let $S_{K}=\sum_{k=0}^{K-1} s_{k}$):

$$
\frac{1}{S_{K}} \sum_{k=0}^{K-1} s_{k} \mathbb{E}_{U}\left[\left\|\nabla f_{\mu}\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq \frac{1}{S_{K}}\left[\left(f_{\mu}\left(\mathbf{x}_{0}\right)-f^{*}\right)+\frac{1}{\mu} d^{\frac{1}{2}}(d+4)^{2} L_{0}^{3} \sum_{k=0}^{K-1} s_{k}^{2}\right]
$$

- Consider a bounded domain Q with $\operatorname{diam}(Q) \leq R$. To ensure $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_{U}\left[\left\|\nabla f_{\mu}\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq \epsilon^{2}$ and $\left|f_{\mu}(\mathbf{x})-f(\mathbf{x})\right| \leq \delta$, we have the following sample complexity:
$N_{0} f \|(r f(x) \|$

$$
K=O\left(\frac{d(d+4)^{2} L_{0}^{5} R}{\epsilon^{4} \delta}\right) \cdot O\left(d^{3} \varepsilon^{-4}\right)
$$

- If $s_{k} \rightarrow 0$ and $\mu \rightarrow 0$, convergence of $\mathbb{E}_{U}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}\right]$ can also be proved.

Extensions of Gaussian Smoothing to Noisy \hat{f}

Consider the following:

- Noisy $\hat{f}:|\hat{f}(\mathbf{x})-f(\mathbf{x})| \leq \delta \quad$ RL: a "rollout".
- Hölder continuous gradient (intermediate smoothness)

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{2} \leq L_{\nu}\|\mathbf{x}-\mathbf{y}\|_{2}^{\nu}, \text { for some } \nu \in[0,1]
$$

which implies the following generalized descent lemma:

$$
f(\mathbf{y}) \leq f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x})+\frac{L_{\nu}}{1+\nu}\|\mathbf{y}-\mathbf{x}\|^{1+\nu}
$$

- To ensure $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}$ OO\| $\left.\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right] \leq \epsilon^{2}$, we have the following sample complexity [Shibaev et al., Opt. Lett. '21]:

$$
\text { as } \nu \dagger \text {, sample complouty } \downarrow
$$

$$
K=O\left(\frac{d^{2+\frac{1-\nu}{2 \nu}}}{\epsilon^{\frac{2}{\nu}}}\right) \text { if } \delta=O\left(\frac{\epsilon^{\frac{3+\nu}{2 \nu}}}{d^{\frac{3+7 \nu}{4 \nu}}}\right) .
$$

as $\nu \uparrow, \delta \downarrow$ depiond more sensitive.

Extensions of Gaussian Smoothing to Noisy \hat{f}

- Special case of $\nu=1$ (i.e., $f \in C_{L_{1}}^{1,1}$): Sample complexity is improved to

$$
\begin{aligned}
& K=O\left(d \epsilon^{-2}\right), \quad \text { similar tu GD. } \\
& \text { dap. on } d .
\end{aligned}
$$

which is d times better, [Nesterov and Spokoiny, FCM'17]

- If $|\hat{f}(\mathbf{x})-f(\mathbf{x})| \leq \epsilon_{f}$, where f is convex and 1-Lipschitz and $\epsilon_{f} \sim \max \left\{\epsilon^{2} / \sqrt{d}, \epsilon / d\right\}$, then [Risteski and Li, NeurIPS'16] showed that there exists an a ${ }^{6}$ orithm that finds ϵ-optimal solution (ie., $\hat{f}(\mathbf{x})-\hat{f}^{*} \leq \epsilon$) with sample complexity $\frac{\operatorname{Poly}\left(d, \epsilon^{-1}\right)}{\hbar}$. Also, the dependence $\epsilon_{f}(\epsilon)$ is optimal

$$
\angle B \text { - matching. }
$$

Randomized Stochastic Gradient-Free Methods

$O\left(\frac{1}{\sqrt{T}}\right)$ if $s_{k}=\frac{1}{\sqrt{T}} \cdot r k$.
Gaussian smoothing is extended to [Ghadimi and Lan, SIAM J. Opt. '13] [Ghadimi et al., Math Prog. '16] (unconstrained case, ie., $Q=\mathbb{R}^{d}$):
 whose distribution P is supported on $\Xi \subseteq \mathbb{R}^{d}$

- $F(\cdot, \xi)$ has L_{1}-Lipschitz continuous gradient
- Consider the following randomized stochastic gradient-free method (RSGF):

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} G\left(\mathbf{x}_{k}, \xi_{k}, \mathbf{u}_{k}\right) \\
& G\left(\mathbf{x}_{k}, \xi_{k}, \mathbf{u}_{k}\right)=\frac{\hat{f}\left(\mathbf{x}_{k}+\mu \mathbf{u}_{k}, \xi_{k}\right)-\hat{f}\left(\mathbf{x}_{k}, \xi_{k}\right)}{\mu} \mathbf{u}_{k}
\end{aligned}
$$

- It follows from $\mathbb{E}_{\xi}[F(\mathbf{x}, \xi)]=f(\mathbf{x})$ that $\mathbb{E}_{\xi, \mathbf{u}}[G(\mathbf{x}, \xi, \mathbf{u})]=\nabla f_{\mu}(\mathbf{x})$
- Similar to FO-SGD in [Ghadimi and Lan, SIAM J. Opt. '13], RSGF chooses \mathbf{x}_{R} from $\left\{\mathbf{x}_{k}\right\}_{k=1}^{K}$ where R is a r.v. with p.m.f. P_{R} supported on $\{1, \ldots, K\}$ \uparrow rand. termination index.

Randomized Stochastic Gradient-Free Methods

- For $f \in C_{L_{1}}^{1,1}$, smoothing parameter $\mu, D_{f}=\left(2\left(f\left(\mathbf{x}_{1}\right)-f^{*}\right) / L\right)^{\frac{1}{2}}$, and $\mathbb{E}_{\xi}\left[\|\nabla \hat{f}(\mathbf{x}, \xi)-\nabla f(\mathbf{x})\|_{2}^{2}\right] \leq \sigma^{2}$ and p.m.f. of R being:

$$
P_{R}(k)=\frac{s_{k}-2 L(d+4) s_{k}^{2}}{\sum_{i=1}^{K}\left(s_{i}-2 L(d+4) s_{i}^{2}\right)},
$$

it then holds that:

$$
\begin{aligned}
& \frac{1}{L_{1}} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{R}\right)\right\|_{2}^{2}\right] \leq \frac{1}{\sum_{k=1}^{K}\left[s_{k}-2 L_{1}(d+4) s_{k}^{2}\right]}\left[D_{f}^{2}+2 \mu^{2}(d+4) \times\right. \\
&\left.\left(1+L_{1}(d+4)^{2} \sum_{k=1}^{K}\left(\frac{s_{k}}{4}+L s_{k}^{2}\right)\right)+2(d+4) \sigma^{2} \sum_{k=1}^{K} s_{k}^{2}\right]
\end{aligned}
$$

where the expectation is taken w.r.t. R and $\left\{\xi_{k}\right\}$.

Randomized Stochastic Gradient-Free Methods

- Choose constant step-size $s_{k}=\frac{1}{\sqrt{d+4}} \min \left\{\frac{1}{4 L \sqrt{d+4}}, \frac{\tilde{D}}{\sigma \sqrt{K}}\right\}$ for some $\tilde{D}>0$ (some estimation of D_{f}):

$$
\frac{1}{L_{1}} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{R}\right)\right\|_{2}^{2}\right] \leq \frac{12(d+4) L_{1} D_{f}^{2}}{K}+\frac{2 \sigma \sqrt{d+4}}{\sqrt{K}}\left(\tilde{D}+\frac{D_{f}^{2}}{\tilde{D}}\right)
$$

- To ensure $\operatorname{Pr}\left\{\left\|\nabla f\left(\mathbf{x}_{R}\right)\right\|_{2}^{2} \leq \boldsymbol{k}\right\} \geq 1-\delta$ (i.e., (ϵ, δ)-solution), the zeroth-order oracle sample complexity is: w.h.p.

$$
\begin{aligned}
& O\left(\frac{d L_{1}^{2} D_{f}^{2}}{\delta \epsilon}+\frac{\left.\frac{d L_{1}^{2}}{\delta^{2}}\left(\tilde{D}+\frac{D_{f}^{2}}{\tilde{D}}\right) \frac{\sigma^{2}}{\frac{\epsilon^{2}}{\varepsilon^{4}}}\right)}{O\left(\delta^{-2}\right)} \quad O\left(d \varepsilon^{-4}\right)\right. \text { similar to SGD. }
\end{aligned}
$$

$$
0(\ln (t)
$$

Randomized Stochastic Gradient-Free Methods

Two-phase randomized stochastic gradient-free method (2-RSGF) [Ghadimi and Lan, SIAM J. Opt. '13]

- Run RSGF $S=\log (1 / \delta)$ times as a subroutine producing a list $\left\{\overline{\mathrm{x}}_{k}\right\}_{k=1}^{S}$
- Output point $\overline{\mathbf{x}}^{*}$ is chosen in such a way that:

$$
\left\|\mathbf{g}\left(\overline{\mathbf{x}}^{*}\right)\right\|_{2}=\min _{s=1, \ldots, S}\left\|\mathbf{g}\left(\overline{\mathbf{x}}_{s}\right)\right\|_{2}, \text { where } \mathbf{g}\left(\overline{\mathbf{x}}_{s}\right)=\frac{1}{T} \sum_{k=1}^{T} G_{\mu}\left(\overline{\mathbf{x}}_{s}, \xi_{k}, \mathbf{u}_{k}\right),
$$

where $G_{\mu}\left(\overline{\mathbf{x}}_{s}, \xi_{k}, \mathbf{u}_{k}\right)$ is defined as in RSGF

- The zeroth-order oracle sample complexity for achieving (ϵ, δ)-solution:

$$
\text { polylog dep. on } \frac{1}{8} \quad O\left(d \varepsilon^{-2}\right)
$$

$O\left(\frac{d L_{1}^{2} D_{f}^{2} \log (1 / \delta)}{\epsilon}+d L_{1}^{2}\left(\tilde{D}+\frac{D_{f}^{2}}{\tilde{D}}\right)^{2} \frac{\sigma^{2}}{\epsilon^{2}} \operatorname{log(1/\delta)}+\frac{d \log ^{2}(1 / \delta)}{\delta}\left(1+\frac{\sigma^{2}}{\epsilon}\right)\right)$

- A more general problem $\min _{\mathbf{x} \in Q \subseteq \mathbb{R}^{d}} \Psi(\mathbf{x})=f(\mathbf{x})+h(\mathbf{x})$ is also solved in [Ghadimi et al., Math Prog.'16] non-smooth.
- $f \in C_{L}^{1,1}$: nonconvex; $h(\mathbf{x})$ is simple convex and possibly non-smooth

RSGF Based on Uniform Sampling over Unit Sphere

- Consider the problem $\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[F(\mathbf{x}, \xi)]=\mathbb{E}_{\xi}[\hat{f}(\mathbf{x}, \xi)]$
- $f(\mathbf{x})$ is L-Lipschitz and μ-smooth $\nabla f(\underline{x})$ is μ-Lipschite: μ happers to he
- $|F(\mathbf{x}, \xi)| \leq \Omega$ and F^{\prime} 's variance is bounded by $V_{f} \quad$ sampling radins.
- Stochastic gradient estimation based on uniform sampling over unit sphere:

$$
\mathbf{g}\left(\mathbf{x}_{k}, \xi_{k}, \mathbf{u}_{k}\right)=n \frac{\hat{f}\left(\mathbf{x}_{k}+\mu \mathbf{u}_{k}, \xi_{k}\right)-\hat{f}\left(\mathbf{x}_{k}-\mu \mathbf{u}_{k}, \xi_{k}\right)}{2 \mu}
$$

where $\mathbf{u}_{k} \sim \mathcal{U}\left(S^{n-1}\right)$. The update process is $\mathbf{x}_{k+1}=\mathbf{x}_{k}-s \mathrm{~g}\left(\mathbf{x}_{k}, \xi_{k}, \mathbf{u}_{k}\right)$

- After K steps, we have [Sener and Koltun, ICML'20]:

$$
\begin{aligned}
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right]=O\left(\frac{n}{K^{1 / 2}}+\frac{\left.\frac{n^{2 / 3}}{\frac{K^{1 / 3}}{\uparrow}}\right)}{}\right. \\
\text { dominant tem. }
\end{aligned}
$$

RSGF Based on Uniform Sampling over Unit Sphere

- Consider the case for a given $\xi, F(\mathbf{x}, \xi)=g\left(r\left(\mathbf{x}, \theta^{*}\right), \Psi^{*}\right)$, where $g(\cdot, \Psi)$ and ${ }^{197}$ $r(\cdot, \theta)$ are parameterized function classes
- $r\left(\cdot, \theta^{*}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$, where $d \ll n \quad$ CNN. "cons, dropout".
- $F(\cdot, \xi): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is actually defined on a d-dimensional manifold \mathcal{M} for all ξ
- Thus, if one knows the manifold (i.e., θ^{*}) and g and r are smooth, we have from chain rule: $\nabla f(\mathbf{x})=J\left(\mathbf{x}, \theta^{*}\right) \nabla_{r} g(r, \Psi)$, where $J\left(\mathbf{x}, \theta^{*}\right)=\frac{\partial r\left(\mathbf{x}, \theta^{*}\right)}{\partial \mathbf{x}}$. This leads to [Saner and Koltun, ICML'20]:

Jacobian.

$$
G\left(\mathbf{x}_{k}, \xi_{k}, \mathbf{u}_{k}\right)=d \frac{\hat{f}\left(\mathbf{x}_{k}+\mu J_{q} \mathbf{u}_{k}, \xi_{k}\right)-\hat{f}\left(\mathbf{x}_{k}-\mu J_{q} \mathbf{u}_{k}, \xi_{k}\right)}{2 \mu} \mathbf{u}_{k}
$$

where J_{q} is the orthonomalized $J\left(\mathbf{x}_{k}, \theta^{*}\right)$ and $\mathbf{u}_{k} \sim \mathcal{U}\left(S^{d-1}\right)$. It follows that

$$
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right]=O\left(\frac{n^{1 / 2}}{K}+\frac{n^{1 / 2}+d+d n^{1 / 2}}{K^{1 / 2}}+\frac{d^{2 / 3}+n^{1 / 2} d^{2 / 3}}{K^{1 / 3}}\right) .
$$

which is much better than the previous bound for $d \leq n^{1 / 2}$.

Which Gradient Estimation Works Better?

- Gradient estimations with random directions are worse than finite differences in terms of \# of samples required to ensure the norm condition:

$$
\|\mathbf{g}(\mathbf{x})-\nabla f(\mathbf{x})\|_{2} \leq \theta\|\nabla f(\mathbf{x})\|_{2}, \text { for some } \theta \in[0,1)
$$

- Gradient estimation methods are studied in [Berahas et al., FCM'21]:

Compare the \# of calls r (ie., "batch size") to ensure norm condition
${ }^{-1}$ FFD (Forward Finite Differences): $\sum_{i=1}^{d} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{e}_{i}\right)-\hat{f}(\mathbf{x})}{\mu} \mathbf{e}_{i}$

- CFD (Centered Finite Differences): $\sum_{i=1}^{d} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{e}_{i}\right)-\hat{f}\left(\mathbf{x}-\mu \mathbf{e}_{i}\right)}{2 \mu} \mathbf{e}_{i}$
- LI (Linear Interpolation): $\sum_{i=1}^{d} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-\hat{f}(\mathbf{x})}{\mu} \mathbf{u}_{i}, \mathbf{u}_{i}=[\mathbf{Q}]_{i}$ any non-sngulari

T- GSG (Gaussian Smoothed Gradients): $\frac{1}{\mathcal{O}} \sum_{i=1}^{\bigotimes} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-\hat{f}(\mathbf{x})}{\mu} \mathbf{u}_{i}, \mathbf{u}_{i} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right)$

- cGSG (Centered GSG): $\frac{1}{\oplus} \sum_{i=1}^{@} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-\hat{f}\left(\mathbf{x}-\mu \mathbf{u}_{i}\right)}{2 \mu} \mathbf{u}_{i}, \mathbf{u}_{i} \sim \mathcal{N}\left(0, \mathbf{I}_{d}\right)$
- SSG (Sphere Smoothed Gradients): $\frac{d}{r} \sum_{i=1}^{r} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-\hat{f}(\mathbf{x})}{\mu} \mathbf{u}_{i}, \mathbf{u}_{i} \sim \mathcal{U}\left(S^{d-1}\right)$
- cSSG (Centered SSG): $\frac{d}{r} \sum_{i=1}^{r} \frac{\hat{f}\left(\mathbf{x}+\mu \mathbf{u}_{i}\right)-\hat{f}\left(\mathbf{x}-\mu \mathbf{u}_{i}\right)}{2 \mu} \mathbf{u}_{i}, \mathbf{u}_{i} \sim \mathcal{U}\left(S^{d-1}\right)$

Which Gradient Estimation Works Better?

- Consider an unconstrained problem $\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})$ [Berahas et al., FCM '21]:
- Noisy ZO oracle: $\hat{f}(\mathbf{x})=f(\mathbf{x})+\epsilon(\mathbf{x})$
- Noise ϵ is bounded uniformly: $|\epsilon(\mathbf{x})| \leq \epsilon_{f}$ (noise not neccessarily random)
- $f(\mathbf{x}) \in C^{(1)}$) or $f(\mathbf{x}) \in C_{(2) 2}^{2}$ (twice continuously differentiable with M-Lipschitz Hessian)

Method	Number of calls r	$\\|\nabla f(\mathbf{x})\\|_{2}$
FFD	d	$\frac{2 \sqrt{d L \epsilon_{f}}}{\theta}$
CFD	d	$\frac{2 \sqrt{d} \sqrt[3]{M \epsilon_{f}^{2}}}{\sqrt[3]{6} \theta}$
LI	d	$\frac{2\left\\|Q^{-1}\right\\| \sqrt{d L \epsilon_{f}}}{\theta}$
GSG	$\frac{12 d}{\sigma \theta^{2}}+\frac{d+20}{16 \delta}$ (0 (d)	$\frac{6 d \sqrt{L \epsilon_{f}}}{\theta}$
cGSG	$\left.\frac{12 d}{\sigma \theta^{2}}+\frac{d+30}{144 \delta}\right\}^{(0(d)}$	$\frac{12}{\sqrt[3]{d^{7 / 2} M \epsilon_{f}^{2}}}$ $\}$
SSG	$\left.\left[\frac{8 d}{\theta^{2}}+\frac{8 d}{3 \theta}+\frac{11 d+104}{24}\right] \log \frac{d+1}{\theta}\right]$	$\frac{\frac{4 d \sqrt{L \epsilon_{f}}}{\theta}}{\sqrt[3]{d^{7 / 2}{ }^{\text {a }}}}$
cSSG	$\left.\left[\frac{8 d}{\theta^{2}}+\frac{8 d}{3 \theta}+\frac{9 d+192}{27}\right] \log \frac{d+1}{\theta}\right]$	$\frac{\sqrt[4]{d^{7 / 2} M \epsilon_{f}^{2}}}{\theta}$

- LI is essentially FFD with directions given as columns of a nonsingular matrix \mathbf{Q}
- For GSG, cGSG, SSG, and cSSG, results are w.p. $1-\delta$

Next Class

Variance-Reduced Zeroth-Order Methods

