ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 3-1: Federated Learning (feat. Distributed Learning)

Jia (Kevin) Liu

Assistant Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Spring 2022

Outline

In this lecture:

- Key Idea of Distributed Optimization for Federated Learning
- Representative Algorithms
- Convergence Results

Revisit the General Expectation Minimization Problem

$$\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) = \min_{\mathbf{x}\in\mathbb{R}^d} \mathbb{E}_{\xi\sim\mathcal{D}}[f(\mathbf{x},\xi)]$$

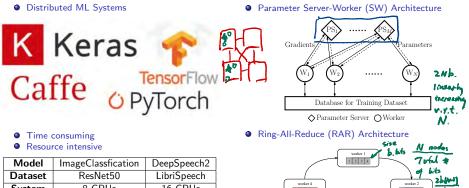
• The SGD method using mini-batch \mathcal{B}_k with $|\mathcal{B}_k| = B_k$ is:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \underbrace{B_k}_{B_k} \sum_{i=1}^{B_k} \nabla f(\mathbf{x}_k, \xi_i)$$

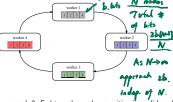
- Key Insight: The "summation" in the mini-batched version of SGD implies a decomposable structure that lends itself to <u>distributed implementation</u>!
 - Each stochastic gradient $abla f(\mathbf{x}_k, \xi_i)$ can be computed by a "worker" i
 - B_k workers can compute such stochastic gradients in parallel
 - A server collects the stochastic gradients returned by workers and aggregate

This insight is the foundation of Distributed Learning and Federated Learning

Distributed Learning in Data Center Setting



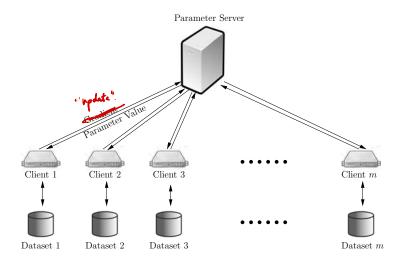
Model	ImageClassfication	DeepSpeech2
Dataset	ResNet50	LibriSpeech
System	8 GPUs	16 GPUs
Time	115 minutes ^[1]	3-5 days ^[2]



MIperf training results. https://mlperf.org/training-results-0-6/

[2] E. B. Dario Amodei, Rishita Anubhai, C. Case, J. Casper, B. Catanzaro, J. Chen et al., "Deep speech 2: End-to-end speech recognition in english and mandarin," in Proc. of the 33th International Conference on Machine Learning (ICML), 2016.

Federated Learning System Architecture



Federated Learning (FL)

- The term "federated learning" was first coined in 2016 (arXiv):
 - "We term our approach Federated Learning, since the learning task is solved by a loose federation of participating devices (which we refer to as clients) which are coordinated by a central server." [McMahan et al. AISTATS'17]
- Key motivations of FL:
 - FL was first focused on mobile & edge devices collaborating to train a global model and later became a general learning paradigm
 - No need to transfer clients' data to the server to preserve privacy
- A very active ongoing research field with the following defining challenges:
 - Dataset sizes are unbalanced across clients in general
 - Datasets are non-i.i.d. across clients in general
 - Could involve a massive number of client devices
 - Limited communication bandwidth between server and clients
 - Limited device availability (e.g., powered-off, charging, no wifi...)
- Two widely studied FL settings:
 - ► Cross-device: Huge number of (unreliable) clients (e.g., mobile devices)
 - Cross-silo: Small number of (relatively) reliable clients (hospitals, banks, etc.)

Cross-Device Federated Learning

According to [Kairouz et al. arXiv-1912.04977]: 59 anthore.

- Total population: $10^6 10^{10}$ devices
- Device selected per-round: 50-5000
- Total devices participated in training a model: 10^5-10^7
- Number of rounds for convergence: 500-10000
- Wall-clock training time: 1–10 days
- Data partition: By samples

Cross-Silo Federated Learning

- The number of clients is relatively small. Often reasonable to assume that clients are available at all times
- Relevant when a number of companies or organizations share incentive to training a model based on their data, but cannot share data directly
- Data partition: Could be either by samples or by features
 - Also referred to as "horizontal" and "vertical" FL in the literature, respectively
 - By examples: Relevant in cross-silo FL when a single organization cannot centralize their data
 - By features: Relevant in cross-silo FL if data security/privacy is of higher concerns (e.g., banks)

• Challenges:

- Incentive mechanisms: participants might be competitors; utility fairness among clients (free-rider problem); dividing earning among participants, etc.
- Preserving privacy on different levels (clients, users, etc.)

Applications of Federated Learning

• Cross-device FL:

Google Gboard

Apple QuickType

Apple "Hey Siri"

- Google: Extensive use of cross-device FL in Gboard mobile keyboard, features on Pixel phones, and Android Messages
- Apple: Use of cross-device FL in QuickType keyboard next word prediction and vocal classifier for "Hey Siri"
- doc.ai uses cross-device FL for medical research, Snips uses cross-device FL for hotword detection, etc.

• Cross-silo FL:

 Financial risk prediction for reinsurance, pharmaceutical discovery, electronic health record mining, medical data segmentation, smart manufacturing, etc.

Typical Federated Training Process

- Client selection:
 - Server samples from a set of available clients (idle, on wi-fi, plugged in...)
- Broadcast:
 - The selected clients download the current model weights
- Client computation:
 - Each selected client locally computes an update to the model by some algorithm (e.g., SGD or variants) on the local data
 - Potential additional processing: Privacy, compression, etc.
- Aggregation:
 - Server collects an aggregates of the updates from clients
 - Potential additional processing: filtering for security, etc.
- Model update:
 - The server updates the global model based on aggregated updates
 - Potential additional processing: additional scaling, momentum, extra data, etc.

Why Does Federated Learning Generate So Much Interest?

• FL is inherently inter-disciplinary:

- Machine learning
- Distributed optimization techniques
- Cryptography
- Security
- Differential privacy
- Fairness
- Compressed sensing
- Crowd-sensing
- Wireless networking
- Economics
- Statistics
- May play a role in emerging technologies (Blockchains, Metarverse, ...)
- Many of the hardest problems in FL are at the intersections of multiple areas

Optimization Algorithms for Federated Learning

- Key differences between distributed optimization and FL:
 - Non-i.i.d. and unbalanced datasets across clients
 - Limited communication bandwith
 - Unreliable and limited client device availability
- FedAvg Algorithm (aka Local SGD/parallel SGD): basic template of FL
 - ▶ N: Num. of clients; M: Clients per round;
 - ▶ T: Total communication round; K: Num. of local steps per round

• At Server:
• Initialize
$$\bar{\mathbf{x}}_0$$

• for each round $t = 1, 2, ..., T$ do
 $S_t \leftarrow (random set of M clients)
for each client $i \in S_t$ in parallel do
 $\mathbf{x}_i^{t+1} \leftarrow \text{ClientUpdate}(i, \bar{\mathbf{x}}^t)$
 $\bar{\mathbf{x}}^{t+1} \leftarrow (1/M) \sum_{i=1}^M \mathbf{x}_i^{t+1}$
• ClientUpdate (i, \mathbf{x}) :
• $\mathbf{x}_0 \leftarrow \mathbf{x}$
• for local step $k = 0, ..., K - 1$ do
 $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k - \mathbf{s}_k \nabla f(\mathbf{x}_k, \xi)$ for $\xi \sim \mathcal{P}_i$
• Return \mathbf{x}_K to server
• $\mathbf{x}_k^{t+1} \leftarrow \mathbf{x}_k - \mathbf{s}_k \nabla f(\mathbf{x}_k, \xi)$ for $\xi \sim \mathcal{P}_i$
• $\mathbf{Transmit}$ "update': $-\frac{\xi}{\xi_1}$ for ξ .$

G-FedArg-Two-Svoled-LR: (Yang-Fong-Lin, JetR'21), Client i: send $\Delta_i^t = -s_i \sum_{j \in k} g_{j,k}^t$ Server: [Receive Di, HiES 2° Let $\Delta^{\dagger} = \frac{1}{|S|} \sum_{i \in S} \Delta^{\dagger}_{i}$ $z^{\circ} \overline{z}^{t+1} = \overline{z}^{t} + s \Delta^{t}$ $\mathbf{Z}^{\dagger+1} = \mathbf{Z}^{\dagger} + \mathbf{S}_{\mathbf{S}_{\mathbf{L}}} (\cdots)$ effective LR. Orig FedArg. Cleant \overline{i} : $\mathbb{E}_{\overline{i}}^{\pm} = \underline{x}_{\overline{i}}^{\pm} - \underline{s}_{L} \sum_{i=1}^{k} \underline{g}_{i,k}^{\pm}$ Server: Zt+1 = 15 Z Zt+1 $\overline{z}^{t+1} = -\int_{|S|} \sum_{i \in S} \overline{z}_i^{t+1} = -\int_{|S|} \sum_{i \in S} \left[\overline{z}_i^{t} - s_2 \sum_{k=0}^{t} \overline{z}_{i,k}^{t} \right]$ $= \frac{1}{|S|} \sum_{i \in S} x_i^{\dagger} + \frac{1}{|S|} \sum_{i \in S} \left(\sum_{k=0}^{K-1} \left(-\frac{1}{2} \right)_{i,k} \right) = \chi^{\dagger}$ $= \overline{z}^{\dagger} + \underbrace{\sum}_{|S|} \underbrace{\sum}_{i \in S} \underbrace{\Delta_i^{\dagger}}_{i t}$ special case of G-FedArg-TSLR W/ S=1. $= \underline{x}^{t} + | \cdot \Delta^{t}$

Convergence Results: FedAvg with I.I.D. Datasets

- Mini-batch of data used for a client's local update is statistically identical to a uniform sampling (with replacement) from the union of all clients' datasets
- Although unlikely in practice, i.i.d. case provides basic understanding for FL
- For simplicity, assume for now M = N. Consider the problem:

$$\min_{\mathbf{x}\in\mathbb{R}^m} f(\mathbf{x}) \triangleq \min_{\mathbf{x}\in\mathbb{R}^m} \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x}),$$

where $f_i(\mathbf{x}) \triangleq \mathbb{E}_{\xi_i \sim \mathcal{D}_i}[F_i(\mathbf{x}, \xi_i)]$ is nonconvex

- Assumptions:
 - ► L-smooth: $\|\nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{y})\| \le L \|\mathbf{x} \mathbf{y}\|, \forall \mathbf{x}, \mathbf{y}.$
 - ▶ Bounded variance and second moments: $\mathbb{E}_{\xi_i \sim \mathcal{P}_i}[\|\nabla F(\mathbf{x}, \xi_i) - \nabla f_i(\mathbf{x})\|^2] \leq \sigma^2$, $\mathbb{E}_{\xi_i \in \mathbb{D}_i}[\|\nabla F_i(\mathbf{x}, \xi_i)\|^2] \leq G^2$, $\forall \mathbf{x}, i$
 - Unbiased stochastic gradient: $\mathbf{G}_{i}^{t} = \nabla F_{i}(\mathbf{x}_{i}^{t-1}, \xi_{i}^{t})$ with $\mathbb{E}_{\xi_{i}^{t} \sim \mathcal{D}_{i}}[\mathbf{G}_{i}^{t}|\boldsymbol{\xi}^{[t-1]}] = \nabla f_{i}(\mathbf{x}_{i}^{t-1}), \forall i$, where $\boldsymbol{\xi}^{[t-1]} \triangleq [\xi_{i}^{\tau}]_{i \in [N], \tau \in [t-1]}$

Convergence Results: FedAvg with I.I.D. Datasets

To fix notation, we use the following equivalent code for FedAvg (also referred to as Parallel Restarted SGD in [Yu et al. AAAI'19]):

- Initialize $\mathbf{x}_i^0 = \bar{\mathbf{y}} \in \mathbb{R}^m$. Choose constant step-size s > 0 and synchronization interval K > 0
- if t = 1,...,T do
 Each client i observes stochastic gradient G^t of f_i(·) at x^{t-1} if t mod K = 0 then
 Compute node average y ≜ 1/N ∑^N_{i=1} x^{t-1} i

Each client i in parallel updates its local solution

$$\mathbf{x}_i^t = \bar{\mathbf{y}} - s\mathbf{G}_i^t, \quad \forall i$$

else

Each client i in parallel updates its local solution:

$$\mathbf{x}_i^t = \mathbf{x}_i^{t-1} - s\mathbf{G}_i^t, \quad \forall i$$

end if end for

JKL (ECE@OSU)

Theorem 1 ([Yu et al. AAAI'19])

Under the stated assumptions and if $s \in (0, \frac{1}{L}]$, then for all $T \ge 1$, then the iterates $\{\mathbf{x}_t\}$ generated by FedAvg satisfies:

$$\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}[\|\nabla f(\bar{\mathbf{x}}^{t-1})\|^2] \leq \frac{2}{sT}(f(\bar{\mathbf{x}}^0) - f^*) + 4s^2K^2G^2L^2 + \frac{L}{N}s\sigma^2,$$

where f^* is the optimal value of the FL problem.

Convergence Results: FedAvg with I.I.D. Datasets

Corollary 2 ([Yu et al. AAAI'19]) • If we let $s = \frac{\sqrt{N}}{L \sqrt{T}}$: $\frac{1}{T}\sum_{t=1}^{T}\mathbb{E}[\|\nabla f(\bar{\mathbf{x}}^{t-1})\|^2] \leq \frac{2L}{\sqrt{NT}}(f(\bar{\mathbf{x}}^0) - f^*) + 4\frac{N}{T}K^2G^2 + \frac{1}{\sqrt{NT}}\sigma^2$ $\cong O(\sqrt{T}) \leq \sqrt{NT} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$ • If we further let $K \leq \frac{T^{1/4}}{N^{3/4}}$: $\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(\bar{\mathbf{x}}^{t-1})\|^2] \leq \frac{2L}{\sqrt{NT}} (f(\bar{\mathbf{x}}^0) - f^*) + \frac{4}{\sqrt{NT}} G^2 + \frac{1}{\sqrt{NT}} \sigma^2$ $\operatorname{Trr} SGD: = \underbrace{T}_{t=1}^{T} \mathbb{E}\left[\left[\left[\left[T \right] (X^{t+1}) \right]^{2} \right] = \underbrace{T}_{t=1}^{T} \leq \varepsilon^{2} \Rightarrow T \geq O\left(\frac{1}{\varepsilon^{2}} \right).$ $\operatorname{FedAvg}: + \sum_{i=1}^{T} \mathbb{E}\left[\left\|\nabla_{f}(\mathbf{x}^{t-1})\right\|^{2}\right] = \frac{C'}{NT} \leq \varepsilon^{2} \Rightarrow T \geq O\left(\sqrt{\varepsilon}t\right) \leftarrow \operatorname{linear speedup}.$

Theorem 1 ([Yu et al. AAAI'19])

Under the stated assumptions and if $s \in (0, \frac{1}{L}]$, then for all $T \ge 1$, then the iterates $\{\mathbf{x}_t\}$ generated by FedAvg satisfies:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(\bar{\mathbf{x}}^{t-1})\|^2] \le \frac{2}{sT} (f(\bar{\mathbf{x}}^0) - f^*) + 4s^2 K^2 G^2 L^2 + \frac{L}{N} s\sigma^2$$

$$= 0(f^*)$$

where f^* is the optimal value of the FL problem.

Proof: From L-smoothness and descend lemma:

$$\begin{aligned}
\mathbb{E}[f(\mathbb{Z}^{t})] &= \mathbb{E}[f(\mathbb{Z}^{t-1})] + \mathbb{E}[\nabla f(\mathbb{Z}^{t-1})^{\mathsf{T}}(\mathbb{Z}^{t} - \mathbb{Z}^{t-1})] + \frac{1}{2} \mathbb{E}[||\mathbb{Z}^{t} - \mathbb{Z}^{t+1}||^{2}] \\
\text{We first bud the quadratic term: (1)} \\
\mathbb{Z}^{t} &= \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} (\mathbb{X}_{i}^{t-1} - \mathbb{S}_{1i}^{t}) = \mathbb{Z}^{t-1} - \frac{1}{N} \leq \sum_{i=1}^{N} G_{i}^{t} \quad (2). \\
\mathbb{Therefore, } \mathbb{E}[||\mathbb{Z}^{t} - \mathbb{Z}^{t-1}||_{2}^{2}] = \mathbb{E}[||\mathbb{S} + \sum_{i=1}^{N} G_{i}^{t}||_{2}^{2}] \\
= s^{2} \mathbb{E}[||\frac{1}{N} \sum_{i=1}^{N} G_{i}^{t}||^{2}] \\
= s^{2} \mathbb{E}[||\frac{1}{N} \sum_{i=1}^{N} G_{i}^{t}||^{2}] \\
\mathbb{E}[|\mathbb{P}^{t}|] \\
\mathbb{E}[|\mathbb{P}^{t}|] \\
\mathbb{E}[|\mathbb{P}^{t}|] \\
\mathbb{E}[\mathbb{P}^{t}|] \\
= \sum_{i=1}^{N} \sum_{i=1}^{N} \mathbb{E}[||\mathbb{S}_{i}^{t} - \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] + s^{2} \mathbb{E}[||\mathbb{N} + \sum_{i=1}^{N} \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] \\
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[||\mathbb{S}_{i}^{t} - \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] + s^{2} \mathbb{E}[||\mathbb{N} + \sum_{i=1}^{N} \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] \\
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[||\mathbb{S}_{i}^{t} - \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] + s^{2} \mathbb{E}[||\mathbb{N} + \sum_{i=1}^{N} \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] \\
= \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[||\mathbb{S}_{i}^{t} - \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] + s^{2} \mathbb{E}[||\mathbb{N} + \sum_{i=1}^{N} \nabla f_{i}^{t}(\mathbb{Z}_{i}^{t-1})||^{2}] \\
\leq \sqrt{N} \sum_{i=1}^{N} \mathbb{E}[||\mathbb{N} + \sum_{i=1}^{N} \nabla f_{i}^{t}(\mathbb{X}_{i}^{t-1})||^{2}] \quad (3)$$

$$\begin{split} & \text{Now, for the cross term:} \\ & \mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T}(\underline{z}^{t}-\overline{z}^{t-1})\right] = -s\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} \cdot \frac{1}{N} \sum_{i=1}^{N} G_{i}^{t}\right] \\ & \text{Har: invert int } \\ & \stackrel{\text{def}}{=} -s\mathbb{E}\left[\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} \cdot \frac{1}{N} \sum_{i=1}^{N} G_{i}^{t}\left[S_{i}^{t+1}\right]\right] \\ & = -s\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right] \\ & = -s\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right] \\ & = -s\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right] \\ & = -s\mathbb{E}\left[\nabla f(\overline{z}^{t-1})^{T} + \left[\left(\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right)^{T} - \left(\nabla f(\overline{z}^{t-1}) - \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right)^{T}\right] \\ & = -\frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{2} + \left(\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right)^{T} - \left(\nabla f(\overline{z}^{t-1}) - \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right)^{T}\right] \\ & \quad (4) \\ p \text{Inggiven} (b) \text{ and } (4) \text{ into } (1) \\ & \mathbb{E}\left[f(\overline{z}^{t})\right] \le \mathbb{E}\left[f(\overline{z}^{t-1})\right]^{T} + \frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1}) - \sqrt{n} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right\right]^{T}\right] \\ & \quad -\frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] + \frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1}) - \sqrt{n} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right\right]^{T}\right] \\ & \quad -\frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] + \frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1}) - \sqrt{n} \sum_{i=1}^{N} \nabla f_{i}^{t}(\overline{z}^{t-1})\right\right]^{T}\right] \\ & \quad -\frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] + \frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] \\ & \quad -\frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] + \frac{s}{2}\mathbb{E}\left[\left\|\nabla f(\overline{z}^{t-1})\right\|^{T}\right] \\ & \quad (7). \\ & \quad (7)$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\| z^{\pm i} - z_{i}^{\pm i} \|^{2} \right]$$

climit digit.
Lomma 1: (Chinit Drojf): Under Telding, it hilds that

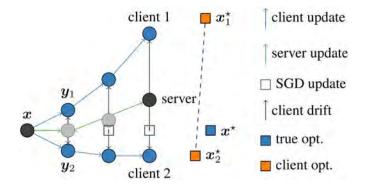
$$\mathbb{E} \left[\| \overline{z}^{\pm} - z_{i}^{\pm} \|^{2} \right] \leq 4 \leq K \leq^{2}.$$

where $\overline{z}^{\pm} \triangleq \frac{1}{N} \sum_{i=1}^{N} \overline{z}^{\pm}.$
Proof. For $t > 1$ and $i \in [N]$. Note Fedding calcultoss
diant average $\overline{y} \triangleq \frac{1}{N} \sum_{i=1}^{N} \frac{1}{i}$. Consider the largest $t_{i} \leq t$
s.t. $\overline{y} = \overline{z}^{\dagger_{0}}$ (to is most vacant global updde).
From the updates in Tedding:
 $\overline{z}_{i}^{\pm} = \overline{y} - s \sum_{i=1}^{L} \frac{G^{\mp}}{G^{\mp}_{i}}$
Thus, $\overline{z}^{\pm} \triangleq \frac{1}{N} \sum_{i=1}^{N} \frac{1}{i} \sum_{i=1}^{L} \frac{1}{N} \sum_{i=1}^{K} \frac{G^{\mp}_{i}}{(\overline{y} - s \sum_{i=1}^{L} \frac{G^{\mp}_{i}}{(\overline{z})})}$
 $= \overline{y} - s \sum_{i=1}^{L} \frac{1}{N} \sum_{i=1}^{K} \frac{1}{S} \sum_{i=1}^{L} \frac{1}{N} \sum_{i=1}^{K} \frac{G^{\mp}_{i}}{(\overline{z})} \sum_{i=1}^{L + 1} \frac{1}{N} \sum_{i=1}^{K} \frac{1}{N} \sum_{i=1}^{K} \frac{G^{\mp}_{i}}{(\overline{z})} \sum_{i=1}^{L + 1} \frac{1}{N} \sum_{i=1}^{K} \frac{1}{N} \sum$

 $\leq 25^{2} \mathbb{E} \left[\left\| \sum_{t=t_{off}}^{t} \int_{i=1}^{t} G_{i}^{T} \right\|^{2} + \left\| \sum_{t=t_{off}}^{t} G_{i}^{T} \right\|^{2} \right]$ $\leq 25^{2} (t-t_{o}) \mathbb{E} \left[\sum_{t=t_{off}}^{t} \int_{i=1}^{t} G_{i}^{T} \right\|^{2} + \sum_{t=t_{off}}^{t} \left\| G_{i}^{T} \right\|^{2} \right]$ wing (x)w/ $n=t-t_0$ $W_{n} = N$ $\leq 4 s^2 k^2 G^2$. (Continue the Proof of Thim): With Comma (, (7) pecomes: $\mathbb{E}\left[f(\mathbb{R}^{t})\right] \leq \mathbb{E}\left[f(\mathbb{R}^{t-t})\right] - \frac{s-s^{2}L}{2} \mathbb{E}\left[\left\|\int_{\mathbb{R}^{t}} \sum_{i=1}^{t} \nabla f_{i}(\mathbb{R}^{t-1})\right\|^{2}\right]$ $-\frac{s}{2} \mathbb{E} \left[\| \nabla f(\overline{z}^{t-1}) \|^2 \right] + 2 S^2 k^2 G^2 L^2 + \frac{L S \overline{D}}{2N}$ (8). Also, note that $0 \le s \le \frac{1}{2} \Rightarrow \frac{1}{2}(1-sL) \ge 0$. Then $(8) \leq \mathbb{E}\left[f(\overline{z^{t+1}}) - \frac{s}{2}\mathbb{E}\left[\|\nabla f(\overline{z^{t+1}})\|^2\right] + 2s^3k^2G^2L^2 + \frac{Ls'\sigma'}{2N}\right]$ Dividing both sides by $\frac{s}{2}$ and rearranging: $\mathbb{E}\left[\left\|\mathbb{E}\left[\left[\mathbb{E}\left[\frac{s}{2}\right]^{-1}\right]\right\|^{2}\right] \leq \frac{1}{3}\left(\mathbb{E}\left[\left[\frac{s}{2}\right]^{-1}\right] - \mathbb{E}\left[\left[\frac{s}{2}\right]^{2}\right]\right) + 4s\mathbb{E}\left[\frac{s}{2}\right]^{2} + \frac{Ls}{2}\right]$ Summing over $t \in [T]$, dividing both sides by T. and using $\mathbb{E}[f(\mathbf{X}^T)] \ge f^*$, we complete the poost.

Federated Learning with Non-I.I.D. Datasets

• "Client drift" problem with non-i.i.d. datasets (figure from [Karimireddy et al. ICML'20])



• Impose a limit on the number of local updates in FL with non-i.i.d. datasets (different algorithmic designs in FL lead to different limits)

What Do You Mean Exactly by Saying "Non-I.I.D" in FL?

Bounded difference between client and global gradients (e.g., [Yu et al. ICML 2019] or [Yang et al. ICLR'21]): gradients

$$\frac{1}{N}\sum_{i=1}^{N} \|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \le \sigma_G^2 \quad \text{or} \quad \|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|^2 \le \sigma_G^2$$

• A unified bounded gradient dissimilarity (*G*, *B*)-BGD model [Karimireddy et al. ICML'20]:

• Bounded difference between client and global optimal values (e.g., [Li et al., ICLR'20]):

$$f^* - \sum_{i=1}^N p_i f_i^* \triangleq \Gamma < \infty$$

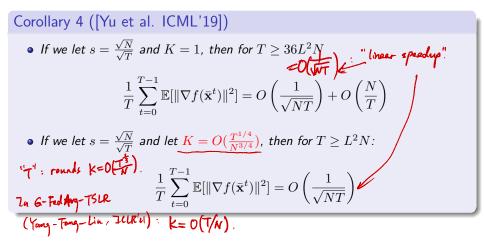
Convergence Results: FedAvg with Non-I.I.D. Datasets

Theorem 3 ([Yu et al. ICVL'19] Momentum-less Version)

Under the stated assumptions and if $s \in (0, \frac{1}{L}]$ and $K \leq \frac{1}{6Ls}$, then for all $T \geq 1$, then the iterates $\{\mathbf{x}_t\}$ generated by FedAvg satisfies:

$$\frac{1}{T}\sum_{t=0}^{T-1}\mathbb{E}[\|\nabla f(\bar{\mathbf{x}}^t)\|^2] \leq \underbrace{\frac{2}{sT}(f(\bar{\mathbf{x}}^0) - f^*)}_{\text{O(f_T)}} + \underbrace{\frac{L}{N}s\sigma^2 + 4s^2KG^2L^2 + 9L^2s^2K^2\sigma_G^2}_{\text{Const. error.}},$$
where f^* is the optimal value of the FL problem.

Convergence Results: FedAvg with Non-I.I.D. Datasets



Next Class

Decentralized Consensus Optimization