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In this lecture:

Key Idea of Distributed Optimization for Federated Learning

Representative Algorithms

Convergence Results

JKL (ECE@OSU) ECE 8101: Lecture 3-1 2



Revisit the General Expectation Minimization Problem

min
x2Rd

f(x) = min
x2Rd

E⇠⇠D[f(x, ⇠)]

The SGD method using mini-batch Bk with |Bk| = Bk is:

xk+1 = xk � sk
Bk

BkX

i=1

rf(xk, ⇠i)

Key Insight: The “summation” in the mini-batched version of SGD implies a

decomposable structure that lends itself to distributed implementation!

I Each stochastic gradient rf(xk, ⇠i) can be computed by a “worker” i
I Bk workers can compute such stochastic gradients in parallel

I A server collects the stochastic gradients returned by workers and aggregate

This insight is the foundation of Distributed Learning and Federated Learning
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Distributed Learning in Data Center Setting

Distributed ML Systems

Time consuming
Resource intensive

Model ImageClassfication DeepSpeech2

Dataset ResNet50 LibriSpeech

System 8 GPUs 16 GPUs

Time 115 minutes
[1]

3-5 days
[2]

Parameter Server-Worker (SW) Architecture

......

...... PSM

Gradients Parameters

Parameter Server Worker

Database for Training Dataset

W1 W2 WN

PS1

Ring-All-Reduce (RAR) Architecture

worker 1

worker 2

worker 3

worker 4

[1] Mlperf training results, https://mlperf.org/training-results-0-6/
[2] E. B. Dario Amodei, Rishita Anubhai, C. Case, J. Casper, B. Catanzaro, J. Chen et al., ”Deep speech 2: End-to-end speech recognition in english and
mandarin,” in Proc. of the 33th International Conference on Machine Learning (ICML), 2016.
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Federated Learning System Architecture
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Federated Learning (FL)

The term “federated learning” was first coined in 2016 (arXiv):

I “We term our approach Federated Learning, since the learning task is solved
by a loose federation of participating devices (which we refer to as clients)
which are coordinated by a central server.” [McMahan et al. AISTATS’17]

Key motivations of FL:

I FL was first focused on mobile & edge devices collaborating to train a global

model and later became a general learning paradigm

I No need to transfer clients’ data to the server to preserve privacy

A very active ongoing research field with the following defining challenges:

I Dataset sizes are unbalanced across clients in general

I Datasets are non-i.i.d. across clients in general

I Could involve a massive number of client devices

I Limited communication bandwidth between server and clients

I Limited device availability (e.g., powered-o↵, charging, no wifi...)

Two widely studied FL settings:

I Cross-device: Huge number of (unreliable) clients (e.g., mobile devices)

I Cross-silo: Small number of (relatively) reliable clients (hospitals, banks, etc.)
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Cross-Device Federated Learning

According to [Kairouz et al. arXiv-1912.04977]:

Total population: 106–1010 devices

Device selected per-round: 50–5000

Total devices participated in training a model: 105–107

Number of rounds for convergence: 500–10000

Wall-clock training time: 1–10 days

Data partition: By samples
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Cross-Silo Federated Learning

The number of clients is relatively small. Often reasonable to assume that

clients are available at all times

Relevant when a number of companies or organizations share incentive to

training a model based on their data, but cannot share data directly

Data partition: Could be either by samples or by features

I Also referred to as “horizontal” and “vertical” FL in the literature, respectively

I By examples: Relevant in cross-silo FL when a single organization cannot

centralize their data

I By features: Relevant in cross-silo FL if data security/privacy is of higher

concerns (e.g., banks)

Challenges:

I Incentive mechanisms: participants might be competitors; utility fairness

among clients (free-rider problem); dividing earning among participants, etc.

I Preserving privacy on di↵erent levels (clients, users, etc.)
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Applications of Federated Learning

Cross-device FL:

Google Gboard Apple QuickType Apple “Hey Siri”

I Google: Extensive use of cross-device FL in Gboard mobile keyboard, features on
Pixel phones, and Android Messages

I Apple: Use of cross-device FL in QuickType keyboard next word prediction and vocal
classifier for “Hey Siri”

I doc.ai uses cross-device FL for medical research, Snips uses cross-device FL for

hotword detection, etc.

Cross-silo FL:

I Financial risk prediction for reinsurance, pharmaceutical discovery, electronic health

record mining, medical data segmentation, smart manufacturing, etc.
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Typical Federated Training Process

Client selection:

I Server samples from a set of available clients (idle, on wi-fi, plugged in...)

Broadcast:

I The selected clients download the current model weights

Client computation:

I Each selected client locally computes an update to the model by some

algorithm (e.g., SGD or variants) on the local data

I Potential additional processing: Privacy, compression, etc.

Aggregation:

I Server collects an aggregates of the updates from clients

I Potential additional processing: filtering for security, etc.

Model update:

I The server updates the global model based on aggregated updates

I Potential additional processing: additional scaling, momentum, extra data, etc.
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Why Does Federated Learning Generate So Much Interest?

FL is inherently inter-disciplinary:

I Machine learning

I Distributed optimization techniques

I Cryptography

I Security

I Di↵erential privacy

I Fairness

I Compressed sensing

I Crowd-sensing

I Wireless networking

I Economics

I Statistics

I May play a role in emerging technologies (Blockchains, Metarverse, ...)

Many of the hardest problems in FL are at the intersections of multiple areas
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Optimization Algorithms for Federated Learning

Key di↵erences between distributed optimization and FL:

I Non-i.i.d. and unbalanced datasets across clients

I Limited communication bandwith

I Unreliable and limited client device availability

FedAvg Algorithm (aka Local SGD/parallel SGD): basic template of FL

I N : Num. of clients; M : Clients per round;

I T : Total communication round; K: Num. of local steps per round

I At Server:

1 Initialize x0
2 for each round t = 1, 2, . . . , T do

St  (random set of M clients)
for each client i 2 St in parallel do

xt+1
i  ClientUpdate(i, x̄t)

x̄t+1  (1/M)
PM

i=1 x
t+1
i

I ClientUpdate(i,x):
1 x0  x
2 for local step k = 0, . . . ,K � 1 do

xk+1  xk � skrf(xk, ⇠) for ⇠ ⇠ Pi
3 Return xK to server
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Convergence Results: FedAvg with I.I.D. Datasets

Mini-batch of data used for a client’s local update is statistically identical to

a uniform sampling (with replacement) from the union of all clients’ datasets

Although unlikely in practice, i.i.d. case provides basic understanding for FL

For simplicity, assume for now M = N . Consider the problem:

min
x2Rm

f(x) , min
x2Rm

1

N

NX

i=1

fi(x),

where fi(x) , E⇠i⇠Di [Fi(x, ⇠i)] is nonconvex

Assumptions:

I L-smooth: krfi(x)�rfi(y)k  Lkx� yk, 8x,y.
I Bounded variance and second moments:

E⇠i⇠Pi [krF (x, ⇠i)�rfi(x)k2]  �2
, E⇠i2Di [krFi(x, ⇠i)k2]  G2

, 8x, i
I Unbiased stochastic gradient: Gt

i = rFi(x
t�1
i , ⇠ti) with

E⇠ti⇠Di
[Gt

i|⇠[t�1]] = rfi(x
t�1
i ), 8i, where ⇠[t�1] , [⇠⌧i ]i2[N ],⌧2[t�1]
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Convergence Results: FedAvg with I.I.D. Datasets

To fix notation, we use the following equivalent code for FedAvg (also referred to

as Parallel Restarted SGD in [Yu et al. AAAI’19]):

1 Initialize x0
i = ȳ 2 Rm

. Choose constant step-size s > 0 and synchronization

interval K > 0
2 for t = 1, . . . , T do

Each client i observes stochastic gradient Gt
t of fi(·) at xt�1

i
if t mod K = 0 then

Compute node average y , 1
N

PN
i=1 x

t�1
i

Each client i in parallel updates its local solution

xt
i = ȳ � sGt

i, 8i

else

Each client i in parallel updates its local solution:

xt
i = xt�1

i � sGt
i, 8i

end if

end for
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Convergence Results: FedAvg with I.I.D. Datasets

Theorem 1 ([Yu et al. AAAI’19])

Under the stated assumptions and if s 2 (0, 1
L ], then for all T � 1, then the

iterates {xt} generated by FedAvg satisfies:

1

T

TX

t=1

E[krf(x̄t�1)k2]  2

sT
(f(x̄0)� f⇤) + 4s2K2G2L2 +

L

N
s�2,

where f⇤ is the optimal value of the FL problem.
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Convergence Results: FedAvg with I.I.D. Datasets

Corollary 2 ([Yu et al. AAAI’19])

If we let s =
p
N

L
p
T
:

1

T

TX

t=1

E[krf(x̄t�1)k2]  2Lp
NT

(f(x̄0)� f⇤) + 4
N

T
K2G2 +

1p
NT

�2

If we further let K  T 1/4

N3/4 :

1

T

TX

t=1

E[krf(x̄t�1)k2]  2Lp
NT

(f(x̄0)� f⇤) +
4p
NT

G2 +
1p
NT

�2
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Federated Learning with Non-I.I.D. Datasets

“Client drift” problem with non-i.i.d. datasets (figure from [Karimireddy et

al. ICML’20])

Impose a limit on the number of local updates in FL with non-i.i.d. datasets

(di↵erent algorithmic designs in FL lead to di↵erent limits)
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What Do You Mean Exactly by Saying ”Non-I.I.D” in FL?

Bounded di↵erence between client and global gradients (e.g., [Yu et al. ICML

2019] or [Yang et al. ICLR’21]):

1

N

NX

i=1

krfi(x)�rf(x)k2  �
2
G or krfi(x)�rf(x)k2  �

2
G

A unified bounded gradient dissimilarity (G,B)-BGD model [Karimireddy et

al. ICML’20]:

1

N

NX

i=1

krfi(x)k2  G
2 +B

2krf(x)k2

Bounded di↵erence between client and global optimal values (e.g., [Li et al.,

ICLR’20]):

f
⇤ �

NX

i=1

pif
⇤
i , � < 1
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Convergence Results: FedAvg with Non-I.I.D. Datasets

Theorem 3 ([Yu et al. ICML’19] Momentum-less Version)

Under the stated assumptions and if s 2 (0, 1
L ] and K  1

6Ls , then for all T � 1,
then the iterates {xt} generated by FedAvg satisfies:

1

T

T�1X

t=0

E[krf(x̄t)k2]  2

sT
(f(x̄0)� f

⇤) +
L

N
s�

2 + 4s2KG
2
L
2 + 9L2

s
2
K

2
�
2
G,

where f
⇤ is the optimal value of the FL problem.
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Convergence Results: FedAvg with Non-I.I.D. Datasets

Corollary 4 ([Yu et al. ICML’19])

If we let s =
p
Np
T

and K = 1, then for T � 36L2
N

1

T

T�1X

t=0

E[krf(x̄t)k2] = O

✓
1p
NT

◆
+O

✓
N

T

◆

If we let s =
p
Np
T

and let K = O( T 1/4

N3/4 ), then for T � L
2
N :

1

T

T�1X

t=0

E[krf(x̄t)k2] = O

✓
1p
NT

◆
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Next Class

Decentralized Consensus Optimization
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