ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-5: Variance-Reduced First-Order Methods

Jia (Kevin) Liu
Assistant Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Spring 2022

Outline

In this lecture:

- Key Idea of Variance-Reduced Methods
- SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE
- Convergence results

Recap: Stochastic Gradient Descent

- SGD Convergence Performace
- Constant step-size: SGD converges quickly to an approximation
\star Step-size s and batch size B, converges to a $\frac{s \sigma^{2}}{B}$-error ball
- Decreasing step-size: SGD converges slowly to exact solution
- Two "control knobs" to improve SGD convergence performance
- Decrease (gradually) step-sizes:
* Improves convergence accuracy
« Make convergence too slow
- Increase batch-sizes:
« Leads to faster rate of iterations
\star Makes setting step-sizes easier
* But increases the iteration cost
- Question: Could we achieve fast convergence rate with small batch-size?

Stochastic Average Gradient (SAG)

- Growing batch-size B_{k} eventually requires $O(N)$ samples per iteration
- Question: Can we achieve one sample per iteration and same iteration complexity as deterministic first-order methods?
- Answer: Yes, the first method was the stochastic average gradient (SAG) method [Le Roux et al. 2012]
- To understand SAG, it's insightful to view GD as performing the following iteration in solving the finite-sum problem:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\frac{s_{k}}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}
$$

where in each step we set $\mathbf{v}_{k}^{i}=\nabla f_{i}\left(\mathbf{x}_{k}\right)$ for all i

- SAG method: Only set $\mathbf{v}_{k}^{i_{k}}=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$ for randomly chosen i_{k}
- All other $\mathbf{v}_{k}^{i_{k}}$ are kept at their previous values (a lazy update approach)

Stochastic Average Gradient (SAG)

- One can think of SAG as having a memory:

$$
\nabla f\left(\underline{x}_{k}\right)=\left[\begin{array}{ccc}
\square & \mathbf{v}^{1} & \square \\
& \mathbf{v}^{2} & \square \\
& \vdots & \\
& \mathbf{v}^{N} & \square
\end{array}\right]
$$

where \mathbf{v}^{i} is the gradient $\nabla f_{i}\left(\mathbf{x}_{k^{\prime}}\right)$ from the last k^{\prime} where i is selected

- In each iteration:
- Randomly choose one of the \mathbf{v}^{i} and update it to the current gradient
- Take a step in the direction of the average of these \mathbf{v}^{i}

Stochastic Average Gradient (SAG)

- Basic SAG algorithm (maintains $\mathrm{g}=\sum_{i=1}^{N} \mathbf{v}^{i}$):
- Set $\mathbf{g}=\mathbf{0}$ and gradient approximation $\mathbf{v}^{i}=\mathbf{0}$ for $i=1, \ldots, N$.
- while (1):
(1) Sample i from $\{1,2, \ldots, N\}$
(2) Compute $\nabla f_{i}(\mathbf{x})$
(3) $\mathbf{g}=\mathbf{g}-\mathbf{v}^{i}+\nabla f_{i}(\mathbf{x})$
(4) $\mathbf{v}^{i}=\nabla f_{i}(\mathbf{x})$
(6) $\mathbf{x}^{+}=\mathbf{x}-\frac{s}{N} \mathbf{g}$
- Iteration cost is $O(d)$ (one sample)
- Memory complexity is $O(N d)$
- Could be less if the model is sparse
- Could reduce to $O(N)$ for linear models $f_{i}(\mathbf{x})=h\left(\mathbf{x}^{\top} \boldsymbol{\xi}^{i}\right)$:

$$
\nabla f_{i}(\mathbf{x})=\underbrace{h^{\prime}\left(\mathbf{x}^{\top} \boldsymbol{\xi}^{i}\right)}_{\text {scalar }} \underbrace{\mathbf{x}^{i}}_{\text {data }}
$$

- But for neural networks, would still need to store all activations (typically impractical)

Stochastic Average Gradient (SAG)

- The SAG algorithm:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\frac{s_{k}}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}
$$

where in each iteration, $\mathbf{v}_{k}^{i_{k}}=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$ for a randomly chosen i_{k}

- Unlike batching in SGD, use a "gradient" for every sample
- But the gradient might be out of date due to lazy update
- Intuition: $\mathbf{v}_{k}^{i} \rightarrow \nabla f_{i}\left(\mathbf{x}^{*}\right)$ at the same rate that $\mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$
- so the variance $\left\|\mathbf{e}_{k}\right\|^{2}$ ("bad term") converges linearly to 0

Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each ∇f_{i} is L-Lipschitz continuous and f is strongly convex, with $s_{k}=1 / 16 L$, SAG satisfies:

$$
\mathbb{E}\left[f\left(\mathbf{x}_{k}\right)-f^{*}\right]=O\left(\left(1-\min \left\{\frac{\mu}{16 L}, \frac{1}{8 N}\right\}^{*}\right)^{k}\right)
$$

- Sample Complexity: Number of ∇f_{i} evaluations to reach accuracy ϵ :
- Stochastic: $O\left(\frac{L}{\mu}(1 / \epsilon)\right)$
- Gradient: $O\left(n \frac{L}{\mu} \log (1 / \epsilon)\right)$
- Nesterov: $O\left(n \sqrt{\frac{L}{\mu}} \log (1 / \epsilon)\right)$
- SAG: $O\left(\max \left\{n, \frac{L}{\mu}\right\} \log (1 / \epsilon)\right)$

- Note: L values are different between algorithms

Stochastic Variance-Reduced Gradient (SVRG)

Idea: Get rid of memory by periodically computing full gradient [Johnson\&Zhang,'13]

- Start with some $\tilde{\mathbf{x}}^{0}=\mathbf{x}_{m}^{0}=\mathbf{x}_{0}$, where m is a parameter. Let $S=\lceil T / m\rceil$
- for $s=0,1,2, \ldots, S-1$
- $\mathbf{x}_{0}^{s+1}=\mathbf{x}_{m}^{s}$
- $\nabla f\left(\tilde{\mathbf{x}}^{s}\right)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}\left(\tilde{\mathbf{x}}^{s}\right)$
\rightarrow for $k=0,1,2, \ldots, m-1$
* Uniformly pick a batch $I_{k} \subset\{1,2, \ldots, N\}$ at random (with replacement), with batch size $\left|I_{k}\right|=B$
\star Let $\mathbf{v}_{k}^{s+1}=\frac{1}{B} \sum_{i=1}^{B}\left[\nabla f_{i_{k}}\left(\mathbf{x}_{k}^{s+1}\right)-\nabla f_{i_{k}}\left(\tilde{\mathbf{x}}^{s}\right)\right]+\nabla f\left(\tilde{\mathbf{x}}^{s}\right)$
$\star \mathbf{x}_{k+1}^{s+1}=\stackrel{\mathbf{S}^{\boldsymbol{s}+1}}{\mathbf{x}}-s_{k} \mathbf{v}_{k}^{s+1}$
$\rightarrow \tilde{\mathbf{x}}^{s+1}=\mathbf{x}_{m}^{s+1}$
- Output: Chose \mathbf{x}_{a} uniformly at random from $\left\{\left\{\mathbf{x}_{k}^{s+1}\right\}_{k=0}^{m-1}\right\}_{s=0}^{S-1}$

Convex settings: Conyergence properties similar to SAG for suitable q

- Theoretically ${ }^{m}$ depends on L, μ, and $N(\underset{m}{m}=N$ works well empirically)
- $O(d)$ storage complexity (2B+1 gradients per iteration on average)
- Last step $\tilde{\mathbf{x}}^{s+1}$ in outer loop can be randomly chosen from inner loop iterates

Convergence Rate of SVRG (Nonconvex)

- Consider finite-sum problem $\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^{N} f_{i}(\mathbf{x})$, where both $f(\cdot)$ and $f_{i}(\cdot)$ are nonconvex, differentiable, and L-smooth.
- Define a sequence $\left\{\Gamma_{k}\right\}$ with $\Gamma_{k} \triangleq s_{k}-\frac{c_{k+1} s_{k}}{\beta_{k}}-s_{k}^{2} L-2 c_{k+1} s_{k}^{2}$, where parameters c_{k+1} and β_{k} are TBD shortly.

Theorem 2 ([Reddi et al. '16])

Let $c_{m}=0, s_{k}=s>0, \beta_{k}=\beta>0$, and
$c_{k}=c_{k+1}\left(1+s \beta+2 s^{2} L^{2} / B\right)+s^{2} L^{3} / B$ such that $\Gamma_{k}>0$ for $k=0, \ldots, m-1$. Let $\gamma=\min _{k} \Gamma_{k}$. Also, let T be a multiple of m. Then, the output \mathbf{x}_{a} of SVRG satisfies:

$$
\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{a}\right)\right\|^{2}\right] \leq \frac{f\left(\mathbf{x}_{0}-f^{*}\right)-}{T \gamma} .=O\left(\frac{1}{T}\right) .
$$

Theorem 2 ([Reddi et al. '16])
Let $c_{m}=0, s_{k}=s>0, \beta_{k}=\beta>0$, and $c_{k}=c_{k+1}\left(1+s \beta+2 s^{2} L^{2} / B\right)+s^{2} L^{3} / B$ such that $\Gamma_{k}>0$ for $k=0, \ldots, m-1$. Let $\gamma=\min _{k} \Gamma_{k}$. Also, let T be a multiple of m. Then, the output \mathbf{x}_{a} of SVRG satisfies:

$$
\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{a}\right)\right\|^{2}\right] \leq \frac{f\left(\mathbf{x}_{0}-f^{*}\right.}{T \gamma} .=O\left(\frac{1}{T}\right) .
$$

Proof: Dermal. Define a "Lyapunov $f_{n}: R_{k}^{s+1} \triangleq \mathbb{T}\left[f\left(\underline{x}_{k}^{(+1}\right)^{\Sigma}+c_{k}\left\|\underline{\underline{x}}_{k}^{s+1}-\tilde{x}^{5}\right\|^{2}\right]$
For $c_{k}, c_{k+1}, \beta_{k}>0$, suppose we have the following:

$$
c_{k}=c_{k+1}\left(1+s_{k} \beta_{k}+\frac{2 s_{k}^{2} L^{2}}{B}\right)+\frac{s_{s}^{3} l^{3}}{B}, k=0, \cdots, m-1 .
$$

Let s_{k}, β_{k}, c_{k} be chosen s.t. $\Gamma_{k}>0$, Then $\left\{\underline{\underline{x}}_{k}^{s+1}\right\}$ satisfies:

$$
\mathbb{E}\left[\left\|\nabla f\left(\frac{x_{k}^{s+1}}{-1}\right)\right\|^{2}\right] \leqslant \frac{R_{k}^{s+1}-R_{k+1}^{s+1}}{\Gamma_{k}}
$$

Q 11°
Proof of Lemma: Since f is L-smooth, we have from descent

$$
\begin{equation*}
\mathbb{E}\left[f\left(\underline{x}_{k+1}^{s+1}\right)\right] \leqslant \mathbb{E}\left[f\left(x_{k}^{s+1}\right)+\nabla f\left(x_{k}^{s+1}\right)^{\top} \frac{\left(x_{k+1}^{s+1}-x_{k}^{s+1}\right)}{=s_{k} v_{k}^{s+1} \lambda}+\frac{L}{2}\left\|\frac{x_{k+1}^{s+1}-x_{k}^{s+1}}{\mathbb{E}\left[v_{1}^{s+1}\right]}\right\|^{2}\right] \tag{1}
\end{equation*}
$$

Using SVRG update and also the unbiasedness: $\mathbb{E}\left[v_{k}^{s+1}\right]=\nabla f\left(x_{k}^{s+1}\right)$

Consider the Lyapunor pr: $R_{k}^{s+1}=\mathbb{E}\left[f\left(x_{k}^{s+1}\right)+c_{k}\left\|\underline{x}_{k}^{s+1}-\underline{\tilde{x}}^{s}\right\|^{2}\right]$
Next, we will analyze 1-step Lyapunov drift: $R_{k+1}^{s+1}-R_{k}^{s+1}$.

To do so, we first bnd $\mathbb{E}\left[\left\|\underline{x}_{k+1}^{s+1}-\underline{\underline{x}}\right\|^{2}\right]$:

$$
\begin{align*}
& \text { I }\left[\left\|\underline{x}_{k+1}^{s+1}-\underline{\tilde{x}}^{s}\right\|^{2}\right] \stackrel{\text { add } \varepsilon \text { sudtract }}{\underline{x_{+1}}} \mathbb{E}\left[\left\|\underline{x}_{k+1}^{s+1}-\underline{x}_{k}^{s+1}+\underline{x}_{k}^{s+1}-\tilde{x}^{s}\right\|^{2}\right] \\
& =\mathbb{E}\left[\left\|\underline{x}_{k+1}^{s+1}-\underline{x}_{k}^{s+1}\right\|^{2}+\left\|\underline{x}_{k}^{s+1}-\underline{\tilde{x}}^{s}\right\|^{2}+2\left\langle\frac{\left.\underline{x}_{k+1}^{s+1}-\underline{x}_{k}^{s+1}, \underline{x}_{k}^{s+1}-\tilde{x}^{s}\right\rangle}{\downarrow \text { VRGG }}\right]\right. \\
& =\mathbb{E}\left[s_{k}^{2}\left\|\underline{v}_{k}^{s+1}\right\|^{2}+\left\|\underline{x}_{k}^{s+1}-\underline{\tilde{x}}^{s}\right\|^{2}\right]-2 s_{k} \mathbb{E}\left[\frac{\left\langle\nabla f\left(\underline{x}_{k}^{s+1}\right), \underline{x}_{k}^{s+1}-\hat{x}^{s}\right\rangle}{\text { Fenchel- Foung's Ineq. }}\right] \\
& \leq \mathbb{E}\left[s_{k}^{2}\left\|\underline{v}_{k}^{s+1}\right\|^{2}+\left\|\underline{x}_{k}^{s+1}-\underline{\underline{x}}^{s}\right\|^{2}\right]-2 s_{k} \mathbb{E}\left[\frac{1}{2 \beta_{k}}\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}+\frac{\beta_{k}}{2}\| \|_{k}^{s+1}-\underline{\tilde{x}}^{s} \|^{2}\right] \tag{3}
\end{align*}
$$

Ploriging (2) and (3) into R_{k+1}^{s+1} to obtain:

$$
\begin{aligned}
& R_{k+1}^{s+1}=\mathbb{F}\left[\frac{f\left(x_{k+1}^{s+1}\right)}{(2)}+c_{k+1} \frac{\left\|\underline{x}_{k+1}^{s+1}-\tilde{x}^{s}\right\|^{2}}{(3)}\right] \\
& \leq \mathbb{T}\left[f\left(\underline{x}_{k}^{s+1}\right)-s_{k}\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}+\frac{\left(s_{k}^{2}\right.}{2}\left\|\underline{v}_{k}^{s+1}\right\|^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
& 2 c_{k+1} s_{k} \mathbb{E}[\frac{1}{2 \beta_{k}}\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}+\underbrace{\frac{\beta_{k}}{2}\left\|x_{k}^{s+1}-\tilde{x}^{s}\right\|^{2}}_{\Delta}] \\
& =\mathbb{E}\left[f\left(x_{k}^{s+1}\right)\right]-\left(s_{k}-\frac{c_{k+1} s_{k}}{\rho_{k}}\right) \mathbb{E}\left[\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}\right]+\left(\frac{\left(s_{k}^{2}\right.}{2}+c_{k+1} s_{k}^{2}\right) \mathbb{E}\left[\| \|_{k}^{s+1} \|^{2}\right] \\
& +\left(c_{k+1}+c_{k+1} s_{k} \beta_{k}\right) \mathbb{E}\left[\left\|\underline{x}_{k}^{s+1}-\tilde{z}^{s}\right\|^{2}\right] \tag{4}
\end{align*}
$$

(1)-20: C(arm: $\mathbb{E}\left[\left\|\underline{S}_{-k}^{s+1}\right\|^{2}\right] \leqslant 2 \mathbb{E}\left[\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}\right]+\frac{2 L^{2}}{\beta} \mathbb{E}\left[\| \|_{k}^{s+1}-\underline{\tilde{x}}^{s} \|^{2}\right]$

Proof: Let $\delta_{-k}^{s+1}=\frac{1}{B} \sum_{i \in I_{k}}\left(\nabla f_{i k}\left(x_{k}^{s+1}\right)-\nabla f_{i k}\left(\hat{x}^{s}\right)\right)$.
Note: $\nabla f\left(x_{k}^{s+1}\right)=\mathbb{I}\left[\underline{\delta}_{k}^{s+1}+\nabla f\left(\hat{x}^{s}\right)\right] \quad$ (unbioasedness).
From definition of \underline{v}_{k}^{s+1} :

$$
\mathbb{E}\left[\left\|\underline{\underline{s}}_{k}^{s+1}\right\|^{2}\right]=\mathbb{E}\left[\left\|\underline{\delta}_{k}^{s+1}+\nabla f\left(\underline{x}^{2}\right)\right\|^{2}\right]
$$

$$
\begin{aligned}
& \text { adde sultac }
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 2 \mathbb{E}\left[\left\|\nabla f\left(s_{k}^{s+1}\right)\right\|^{2}\right]+2 \mathbb{E}\left[\left\|\delta_{-k}^{s+1}-\mathbb{E}\left[\delta_{k}^{s+1}\right]\right\|^{2}\right]\left(\begin{array}{l}
\mathbb{E}\left[\left\|z_{1}+\cdots+z_{k}\right\|^{2}\right] \\
\leq r \mathbb{E}\left[\left\|z_{1}\right\|^{2}+\cdots+\left\|z_{k}\right\|^{2}\right]
\end{array}\right. \\
& \left.=2 \mathbb{E}\left[\left\|x f\left(x_{k}^{s+1}\right)\right\|^{2}\right]+\frac{2}{B^{2}} \mathbb{E}\left[\| \sum_{i_{k} \in I_{k}} \frac{\left(\nabla f_{i_{k}}^{(} \hat{x}_{k}^{s+1}\right)-\nabla f_{i k}\left(\tilde{\underline{x}}^{s}\right)}{\delta_{-k}^{s+1}}-\mathbb{E}\left[\underline{-}_{-k}^{s+1}\right]\right) \|^{2}\right] \\
& \leqslant 2 \mathbb{E}\left[\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}\right]+\frac{2}{B^{2}} \mathbb{E}\left[\sum_{i \in I_{k}} \frac{\| f_{i_{k}}\left(z_{k}^{s+1}\right)-\nabla f_{i_{k}}\left(\underline{\underline{x}}^{s}\right)}{\delta_{-k}^{s+1}}-\mathbb{E}\left[\delta_{k}^{s+1}\right] \|^{2}\right]
\end{aligned}
$$

$\leq 2 \mathbb{E}\left[\left\|\nabla f\left(x_{k}^{s+1}\right)\right\|^{2}\right]+\frac{2}{B^{s}} \cdot \beta \cdot L^{2} \mathbb{E}\left[\left\|x_{k}^{s+1}-\hat{x}^{s}\right\|^{2}\right]$. The claim is proved.

Using the Claim in (4)

$$
\begin{aligned}
& R_{k+1}^{s+1} \leqslant\left[\begin{array}{l}
{\left[\begin{array}{l}
\mathbb{E}\left[f\left(\underline{z}_{k}^{s+1}\right)\right]- \\
\left.+\left[\frac{\left(s_{k}-\frac{c_{k+1} s_{k}}{\beta_{k}}-s_{k}^{2} L-2 c_{k+1} s_{k}^{2}\right)}{\Delta \Gamma_{k}}\left[\| \nabla \Gamma_{k} \beta_{k}+2 \frac{s_{k}^{2} L^{2}}{\beta}\right)+\frac{s_{k}^{2} L^{3}}{B}\right] \mathbb{E}\left[\| \underline{x}_{k}^{s+1}\right) \|^{2}\right] \\
\triangleq c_{k}
\end{array}\left\|\underline{x}_{k}^{s+1}-\tilde{x}^{s}\right\|^{2}\right]}
\end{array}=R_{k}^{s+1}\right.
\end{aligned}
$$

To complete the proof of Thu 2:
Since $s_{k}=s$. He, using Lemma and telescoping sum (inner Coop).

$$
\begin{aligned}
& \sum_{k=b}^{m-1} \mathbb{E}\left[\left\|\nabla f\left(\underline{x}_{k}^{s+1}\right)\right\|^{2}\right] \leq \frac{R_{0}^{s+1}-R_{m}^{s+1}}{\gamma} \\
& R_{m}^{s+1}=\mathbb{E}\left[f\left(\underline{x}_{m}^{s+1}\right)\right]=\mathbb{E}\left[f\left(\underline{x}^{s+1}\right)\right] \\
& \left.R_{0}^{s+1}=\mathbb{E}\left[f\left(\underline{x}^{s}\right)\right] \quad \text { (since } \underline{x}_{0}^{s+1}=\underline{\tilde{x}}^{s}\right) .
\end{aligned}
$$

Siumining over all epochs yields:

$$
\frac{1}{T} \sum_{s=0}^{s-1} \sum_{k=0}^{m-1} \mathbb{E}\left[\left\|\nabla f\left(\underline{x}_{k}^{s+1}\right)\right\|^{2}\right] \leqslant \frac{f\left(\underline{x}_{0}\right)-f^{*}}{T r}
$$

Let $s=\frac{\mu_{0}}{L N^{\alpha}}$, where $\mu_{0} \in(0,1)$ and $\alpha \in(0,1], \beta=L / N^{\alpha}$ $m=\left\lfloor N^{\frac{3 \alpha}{2}} /\left(3 \mu_{0}\right)\right\rfloor, T$ is some multiple of m. Then, \exists constants $\mu_{0}, \nu>0$, set. we have $\gamma \geqslant \frac{\nu}{L N^{\alpha}}$, and

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\nabla f\left(\underline{x}_{a}\right)\right\|^{2}\right] \leqslant \frac{L N^{\alpha}\left(f\left(x_{0}\right)-f^{*}\right)}{T \nu} \leq \varepsilon^{2} \\
& \Rightarrow \text { Sample complexity } \begin{cases}O\left(N+\left(N^{1-\frac{\alpha}{2}} / \varepsilon^{2}\right)\right), & \text { if } \alpha \leqslant \frac{2}{3} \\
O\left(N+N^{\alpha} / \varepsilon^{2}\right) & \text { if } \alpha>\frac{2}{3}\end{cases} \\
& \text { if } \alpha=\frac{2}{3}, \Rightarrow \theta\left(N+N^{\frac{2}{3}} \Delta_{0} \varepsilon^{-2}\right) \quad\left(G D: N \varepsilon^{-2}\right) \\
& \uparrow \\
& f\left(x_{0}\right)-f^{*}
\end{aligned}
$$

SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

- Initialize \mathbf{x}_{0}; Create a table, containing gradients and $\mathbf{v}_{0}^{i}=\nabla f_{i}\left(\mathbf{x}_{0}\right)$
- In iterations $k=0,1,2, \ldots$.
(1) Pick a random $i_{k} \in\{1, \ldots, N\}$ uniformly at random and compute $\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$.
(2) Update \mathbf{x}_{k+1} as follows:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k}\left(\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\mathbf{v}_{k}^{i_{k}}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}\right)
$$

(3) Update table entry $\mathbf{v}_{k+1}^{i_{k+1}}=\nabla f_{i}\left(\mathbf{x}_{k}\right)$. Set all other $\mathbf{v}_{k+1}^{i}=\mathbf{v}_{k}^{i}, i \neq i_{k}$, i.e., other table entries remain the same

SAGA (SAG Again?)

$$
N^{\frac{2}{3}} \varepsilon^{-2}
$$

- SAGA basically matches convergence rates of SAG (for both convex and strongly convex cases), but the proof is simpler (due to unbiasedness)
- Another strength of SAGA is that it can extend to composite problems:

$$
\min _{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f_{i}(\mathbf{x})+h(\mathbf{x}),
$$

where each $f_{i}(\cdot)$ is L-smooth, and h is convex and non-smooth, but has a known proximal operator

$$
\mathbf{x}_{k+1}=\operatorname{prox}_{h, s_{k}}\left\{\mathbf{x}_{k}-s_{k}\left(\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\mathbf{v}_{k}^{i_{k}}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}\right)\right\} .
$$

But it is unknown whether SAG is convergent or not under proximal operator

SAGA Variance Reduction

- Stochastic gradient in SAGA:

$$
\underbrace{\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)}_{X}-\underbrace{\left(\mathbf{v}_{k}^{i_{k}}-\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}\right)}_{Y}
$$

- Note: $\mathbb{E}[X]=\nabla f\left(\mathbf{x}_{k}\right)$ and $\mathbb{E}[Y]=0 \Rightarrow$ we have an unbiased estimator
- Note: $X-Y \rightarrow 0$ as $k \rightarrow \infty$, since \mathbf{x}_{k} and \mathbf{x}_{k-1} converges to some $\overline{\mathbf{x}}$, the difference between the first two terms converges to zero. The last term converges to gradient at stationarity, i.e., also zero
- Thus, the overall ℓ_{2} norm estimator (i.e., variance) decays to zero

Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate $\mathbb{E}[X]$

- Suppose we can compute $\mathbb{E}[Y]$ for a r.v. Y that is highly correlated with X
- Consider the estimator θ_{α} as an approximation to $\mathbb{E}[X]$:

$$
\theta_{\alpha} \triangleq \alpha(X-Y)+\mathbb{E}[Y], \text { for some } \alpha \in(0,1]
$$

- Observations:
- $\mathbb{E}\left[\theta_{\alpha}\right]=\alpha \mathbb{E}[X]+(1-\alpha) \mathbb{E}[Y]$, i.e., a convex combination of $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- Standard VR: $\alpha=1$ and hence $\mathbb{E}\left[\theta_{\alpha}\right]=\mathbb{E}[X]$
- Variance of $\theta_{\alpha}: \operatorname{Var}\left(\theta_{\alpha}\right)=\alpha^{2}[\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)]$
- If $\operatorname{Cov}(X, Y)$ is large, variance of θ_{α} is reduced compared to X
- Letting α from 0 to $1, \operatorname{Var}(X) \uparrow$ to max value while decreasing bias to zero bras-Sariance trade-ofl.
- SAG, SVRG, and SAGA can be derived from this VR viewpoint:
- SAG: Let $X=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$ and $Y=\mathbf{v}_{k}^{i_{k}}, \alpha=1 / N$ (biased)
- SAGA: Let $X=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$ and $Y=\mathbf{v}_{k}^{i_{k}}, \alpha=1$ (unbiased)
- SVRG: Let $X=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)$ and $Y=\nabla f_{i_{k}}(\tilde{\mathbf{x}})$ (unbiased), $\alpha=1$.
- Variance of SAG is $1 / N^{2}$ times of that of SAGA

Comparisons between SAG, SVRG, and SAGA

- Update rules:
(SAG)

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s\left[\frac{1}{N}\left(\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\mathbf{v}_{k}^{i_{k}}\right)+\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}\right]
$$

(SAGA)

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s\left[\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\mathbf{v}_{k}^{i_{k}}+\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{k}^{i}\right]
$$

(SVRG)

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s\left[\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(\tilde{\mathbf{x}})\right]
$$

- SVRG: $\tilde{\mathbf{x}}$ is not updated very step (only updated in the start of outer loops)
- SAG \& SAGA: Update $\mathbf{v}_{k}^{i_{k}}$ each time index i_{k} is picked
- SVRG vs. SAGA:
- SVRG: Low memory cost, slower convergence (same convergence rate order)
- SAGA: High memory cost, faster convergence
- SAGA can be viewed as a midpoint between SAG and SVRG

Stochastic Recursive Gradient Algorithm (SARAH)

- Sample complexity of GD, SGD, SVRG, and SAGA for ϵ-stationarity:
- GD and SGD require $O\left(N \epsilon^{-2}\right)$ and $O\left(\epsilon^{-4}\right)$, respectively ${ }^{1}$
- $B=1$: Both SVRG and SARAH guarantee only $O\left(N \epsilon^{-2}\right)$, same as GD
- $B=N^{\frac{2}{3}}$: Both SVRG and SAGA achieve $O\left(N^{\frac{2}{3}} \epsilon^{-2}\right), N^{\frac{1}{3}}$ times better than GD in terms of dependence on N
- However, the sample complexity lower bound is $\Omega\left(\sqrt{N} \epsilon^{-2}\right)$
- There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang et al. 2018] and PAGE [Li et al. 2020])
- These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
- Sample complexity for convex and strongly convex problems: $O\left(N+1 / \epsilon^{2}\right)$ and $O((N+\kappa) \log (1 / \epsilon))$, respectively ($\kappa=L / \mu$, a single outer loop)
- Sample complexity for nonconvex problems: $O\left(N+L^{2} / \epsilon^{+4}\right)$ (step size $s=O(1 / L \sqrt{T})$, non-batching, a single outer loop)

[^0]
Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

- Pick learning rate $s>0$ and inner loop size m
- for $s=0,1,2, \ldots, S-1$
- $\mathrm{x}_{0}^{s+1}=\tilde{\mathbf{x}}^{s}$
- $\mathbf{v}_{0}^{s+1}=\frac{1}{N^{s+1}} \sum_{i=1}^{N} \nabla f_{i}\left(\mathbf{x}_{0}^{s+1}\right)$
- $\mathbf{x}_{1}^{s+1}=\mathbf{x}_{0}^{s+1}-s \mathbf{v}_{0}^{s+1}$
\mapsto for $k=1,2, \ldots, m-1$
* Uniformly pick a batch $I_{k} \subset\{1,2, \ldots, N\}$ at random (with replacement), with batch size $\left|I_{k}\right|=B$
\star Let $\mathbf{v}_{k}^{s+1}=\frac{1}{B} \sum_{i \in I_{k}}\left[\nabla f_{i_{k}}\left(\mathbf{x}_{k}^{s+1}\right)-\nabla f_{i_{k}}\left(\mathbf{x}_{k-1}^{s+1}\right)\right]+\mathbf{v}_{k-1}^{s+1}$
$\star \mathbf{x}_{k+1}^{s+1}=\mathbf{x}_{k}^{s+1}-s \mathbf{v}_{k}^{s+1}$
- $\tilde{\mathbf{x}}^{s+1}=\mathbf{x}_{k}^{s+1}$ with k chosen uniformly at random from $\{0,1, \ldots, m\}$
- Output: Chose \mathbf{x}_{a} uniformly at random from $\left\{\left\{\mathbf{x}_{k}^{s+1}\right\}_{k=0}^{m-1}\right\}_{s=0}^{S-1}$

Comparison to SVRG (ignoring outer loop index s):

- SVRG: $\mathbf{v}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\nabla f_{i_{k}}\left(\mathbf{x}_{0}\right)+\mathbf{v}_{0}$ (unbiased)
- SARAH: $\mathbf{v}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}_{k}\right)-\nabla f_{i_{k}}\left(\mathbf{x}_{k-1}\right)+\mathbf{v}_{k-1}$ (biased)

SPIDER/SpiderBoost

- SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound and the first sample complexity order-optimal algorithm
- SPIDER stands for "stochastic path-integrated differential estimator"
- Lower bound is for small data regime $N=O\left(L^{2}\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right) \epsilon^{-4}\right)$
- Sample complexity: $\boldsymbol{\Omega}\left(\sqrt{N} \epsilon^{-2}\right)$
- However, requires very small step-size $O(\epsilon / L)$, poor convergence in practice
- Original proof of SPIDER is technically too complex and hence hard to generalize the method to composite optimization problems
- SpiderBoost [Wang et al. 2018] [Wang et al. NeurlPS'19]:
- Same algorithm, same sample complexity, but relax the step-size to $O(1 / L)$
- Simpler proof and can be generalized to composite optimization problems
- Also works well with heavy-ball momentum

SPIDER/SpiderBoost

The SPIDER/SpiderBoost Algorithm

- Pick learning rate $s=1 / 2 L$, epoch length δ, starting point \mathbf{x}_{0}, batch size B, number of iteration T
- for $k=0,1,2, \ldots, T-1$
if $k \bmod m=0$ then
Compute full gradient $\mathbf{v}_{k}=\nabla f\left(\mathbf{x}_{k}\right)$
else
Uniformly randomly pick $I_{k} \subset\{1, \ldots, N\}$ (with replacement) with $\left|I_{k}\right|=B$. Compute

$$
\mathbf{v}_{k}=\frac{1}{B} \sum_{i \in I_{k}}\left[\nabla f_{i}\left(\mathbf{x}_{k}\right)-\nabla f_{i}\left(\mathbf{x}_{k-1}\right)\right]+\mathbf{v}_{k-1}
$$

end if
Let $\mathbf{x}_{k+1}=\mathbf{x}_{k}-s \mathbf{v}_{k}$
end for
Output: \mathbf{x}_{ξ}, where ξ is picked uniformly at random from $\{0, \ldots, T-1\}$

Probabilistic Gradient Estimator (PAGE)

- SPIDER/SpiderBoost: Sample complexity LB is for small data regime
- PAGE [Li et al. ICML'21]: Proved the same lower bound $\Omega\left(\sqrt{N} \epsilon^{-2}\right)$ without any assumption on data set size N and provided a new order-optimal method
- A variant of SPIDER with random length of inner loop, making the algorithm easier to analyze

Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

- Pick \mathbf{x}_{0}, step-size s, mini-batch sizes B and $B^{\prime}<B$, probabilities $\left\{p_{k}\right\}_{k \geq 0} \in(0,1]$, number of iterations T
- Let $\mathbf{g}_{0}=\frac{1}{B} \sum_{i \in I} \nabla f_{i}\left(\mathbf{x}_{0}\right)$, where I is a random mini-batch with $|I|=B$
- for $k=0,1,2, \ldots, T-1$

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\mathbf{x}_{k}-s \mathbf{g}_{k}, \\
& \mathbf{g}_{k+1}= \begin{cases}\frac{1}{B} \sum_{i \in I_{k}} \nabla f_{i}\left(\mathbf{x}_{k+1}\right), & \text { w.p. } p_{k} \\
\mathbf{g}_{k}+\frac{1}{B^{\prime}} \sum_{i \in I_{k}^{\prime}}\left[\nabla f_{i}\left(\mathbf{x}_{k+1}\right)-\nabla f_{i}\left(\mathbf{x}_{k}\right)\right], & \text { w.p. } 1-p_{k}\end{cases}
\end{aligned}
$$

where $\left|I_{k}\right|=B$ and $\left|I_{k}^{\prime}\right|=B^{\prime}$
choose $S \leq \frac{1}{L\left(1+\sqrt{B} / B^{\prime}\right)}, B=N$. end for

- Output: $\hat{\mathbf{x}}_{T}$ chosen uniformly from $\left\{\mathbf{x}_{k}\right\}_{k=1}^{T} \quad B^{\prime} \leqslant \sqrt{B}, \rho_{k}=\frac{B^{\prime}}{B^{\prime}+\boldsymbol{B}}$, then

$$
\begin{aligned}
& \leq N+\frac{8 \Delta \Delta L N}{\varepsilon^{2}} \\
& =O\left(N+\sqrt{N} \varepsilon^{2}\right) .
\end{aligned}
$$

Summary of Sample Complexity Results for VR Methods

Method	References	Sample Complexity
Lower Bound	[Fang et al. NeurIPS'18]	$L \Delta_{0} \min \left\{\sigma \epsilon^{-3}, \sqrt{N} \epsilon^{-2}\right\}$
GD		$N L \Delta_{0} \epsilon^{-2}$
SGD (bnd. var.)	[Ghadimi \& Lan, SIAM-JO'13]	$L \Delta_{0} \max \left\{\epsilon^{-2}, \sigma^{2} \epsilon^{-4}\right\}$
SGD (ubd. var.)	[Khaled \& Richtarik, '20]	$\frac{L^{2} \Delta_{0}}{\epsilon^{4}} \max \left\{\Delta_{0}, \Delta_{*}\right\}$
SVRG $(B=1)$	[Reddi et al. NeurIPS'16]	$N L \Delta_{0} \epsilon^{-2}$
SVRG $\left(B=\left\lceil N^{\frac{2}{3}}\right\rceil\right)$	[Reddi et al. NeurIPS'16]	$N^{\frac{2}{3}} L \Delta_{0} \epsilon^{-2}$
SAGA $(B=1)$	[Reddi et al. NeurIPS'16]	$N L \Delta_{0} \epsilon^{-2}$
SAGA $\left(B=\left\lceil N^{\frac{2}{3}}\right\rceil\right)$	[Reddi et al. NeurIPS'16]	$N^{\frac{2}{3}} L \Delta_{0} \epsilon^{-2}$
SpiderBoost	[Wang et al. NeurIPS'19]	$N^{\frac{1}{2}} L \Delta_{0} \epsilon^{-2}$
SPIDER	[Fang et al. NeurIPS'18]	$L \Delta_{0} \min \left\{\sigma \epsilon^{-3}, \sqrt{N} \epsilon^{-2}\right\}$
PAGE	[Li et al. ICML'21]	$L \Delta_{0} \min \left\{\sigma \epsilon^{-3}, \sqrt{N} \epsilon^{-2}\right\}$

- Notation: $\Delta_{0}=f\left(\mathbf{x}_{0}\right)-f^{*}, \Delta_{*}=\frac{1}{N} \sum_{i=1}^{N}\left(f^{*}-f_{i}^{*}\right), \sigma^{2}$ is a uniform bound for the variance of stochastic gradient, B is batch size
- All results are for finite-sum with L-smooth summands. Sample complexity means the overall number of stochastic first-order oracle calls to find an ϵ-stationary point

Caveat of Variance-Reduced Methods

- In deep neural networks training, VR methods work typically worse than SGD or SGD+Momentum [Defazio \& Bottou, NeurIPS'19]
- Bad behavior of VR methods with several widely used deep learning tricks (e.g., batch normalization, data augmentation and dropout)

Next Class

First-Order Methods with Adaptive Learning Rates

[^0]: ${ }^{1}$ For simplicity, we ignore all other parameters except N and ϵ here.

