ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-5: Variance-Reduced First-Order Methods

Jia (Kevin) Liu

Assistant Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Spring 2022

1/11

Outline

In this lecture:

- Key Idea of Variance-Reduced Methods
- SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE
- Convergence results

2/11

Recap: Stochastic Gradient Descent

- SGD Convergence Performace
 - ► Constant step-size: SGD converges quickly to an approximation
 - ***** Step-size s and batch size B, converges to a $\frac{s\sigma^2}{B}$ -error ball
 - ▶ Decreasing step-size: SGD converges slowly to exact solution
- Two "control knobs" to improve SGD convergence performance
 - Decrease (gradually) step-sizes:
 - * Improves convergence accuracy
 - **★** Make convergence too slow
 - Increase batch-sizes:
 - ★ Leads to faster rate of iterations
 - Makes setting step-sizes easier
 - * But increases the iteration cost
- Question: Could we achieve fast convergence rate with small batch-size?

- Growing batch-size B_k eventually requires O(N) samples per iteration
- Question: Can we achieve one sample per iteration and same iteration complexity as deterministic first-order methods?
- Answer: Yes, the first method was the stochastic average gradient (SAG) method [Le Roux et al. 2012]
- To understand SAG, it's insightful to view GD as performing the following iteration in solving the finite-sum problem:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^{N} \mathbf{v}_k^i$$

where in each step we set $\mathbf{v}_k^i = \nabla f_i(\mathbf{x}_k)$ for all i

- SAG method: Only set $\mathbf{v}_k^{i_k} = \nabla f_{i_k}(\mathbf{x}_k)$ for randomly chosen i_k
 - ightharpoonup All other $\mathbf{v}_k^{i_k}$ are kept at their previous values (a lazy update approach)

• One can think of SAG as having a memory:

$$\nabla f(\mathbf{z}_{k}) = \begin{bmatrix} & & \mathbf{v}^{1} & & & \\ & & \mathbf{v}^{2} & & & \\ & & \vdots & & \\ & & \mathbf{v}^{N} & & & \end{bmatrix},$$

where \mathbf{v}^i is the gradient $\nabla f_i(\mathbf{x}_{k'})$ from the last k' where i is selected

- In each iteration:
 - lacktriangle Randomly choose one of the ${f v}^i$ and update it to the current gradient
 - lacktriangle Take a step in the direction of the average of these ${f v}^i$

- Basic SAG algorithm (maintains $\mathbf{g} = \sum_{i=1}^{N} \mathbf{v}^{i}$):
 - ▶ Set $\mathbf{g} = \mathbf{0}$ and gradient approximation $\mathbf{v}^i = \mathbf{0}$ for i = 1, ..., N.
 - ▶ while (1):
 - **1** Sample i from $\{1, 2, \ldots, N\}$
 - ② Compute $\nabla f_i(\mathbf{x})$
 - $\mathbf{3} \mathbf{g} = \mathbf{g} \mathbf{v}^i + \nabla f_i(\mathbf{x})$
 - $\mathbf{v}^i = \nabla f_i(\mathbf{x})$
 - $\mathbf{0} \ \mathbf{x}^+ = \mathbf{x} \frac{\dot{s}}{N} \mathbf{g}$
- Iteration cost is O(d) (one sample)
- Memory complexity is O(Nd)
 - ► Could be less if the model is sparse
 - ▶ Could reduce to O(N) for linear models $f_i(\mathbf{x}) = h(\mathbf{x}^\top \boldsymbol{\xi}^i)$:

$$\nabla f_i(\mathbf{x}) = \underbrace{h'(\mathbf{x}^\top \boldsymbol{\xi}^i)}_{\text{scalar}} \underbrace{\mathbf{x}^i}_{\text{data}}$$

 But for neural networks, would still need to store all activations (typically impractical)

• The SAG algorithm:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^N \mathbf{v}_k^i,$$

where in each iteration, $\mathbf{v}_k^{i_k} = \nabla f_{i_k}(\mathbf{x}_k)$ for a randomly chosen i_k

- Unlike batching in SGD, use a "gradient" for every sample
 - But the gradient might be out of date due to lazy update
- ullet Intuition: ${f v}_k^i o
 abla f_i({f x}^*)$ at the same rate that ${f x}_k o {f x}^*$
 - lacktriangle so the variance $\|\mathbf{e}_k\|^2$ ("bad term") converges linearly to 0

Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each ∇f_i is L-Lipschitz continuous and f is strongly convex, with $s_k=1/16L$, SAG satisfies:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] = O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)\right)$$

- Sample Complexity: Number of ∇f_i evaluations to reach accuracy ϵ :
 - ▶ Stochastic: $O(\frac{L}{\mu}(1/\epsilon))$
 - Gradient: $O(n\frac{\dot{L}}{\mu}\log(1/\epsilon))$
 - Nesterov: $O(n\sqrt{\frac{L}{\mu}}\log(1/\epsilon))$
 - ▶ SAG: $O(\max\{n, \frac{L}{\mu}\} \log(1/\epsilon))$

• Note: L values are different between algorithms

Stochastic Variance-Reduced Gradient (SVRG)

Idea: Get rid of memory by periodically computing full gradient [Johnson&Zhang,'13]

• for $s = 0, 1, 2, \dots, S - 1$

- Start with some $\tilde{\mathbf{x}}^0 = \mathbf{x}_m^0 = \mathbf{x}_0$, where m is a parameter. Let $S = \lceil T/m \rceil$
- $\mathbf{x}_0^{s+1} = \mathbf{x}_m^s$ $\mathbf{\nabla} f(\tilde{\mathbf{x}}^s) = \frac{1}{N} \sum_{i=1}^N \nabla f_i(\tilde{\mathbf{x}}^s)$ for $k = 0, 1, 2, \dots, m-1$ $\star \text{ Uniformly pick a batch } I_k \subset \{1, 2, \dots, N\} \text{ at random (with replacement), with batch size } |I_k| = B$ $\star \text{ Let } \mathbf{v}_k^{s+1} = \frac{1}{B} \sum_{i=1}^B [\nabla f_{i_k}(\mathbf{x}_k^{s+1}) \nabla f_{i_k}(\tilde{\mathbf{x}}^s)] + \nabla f(\tilde{\mathbf{x}}^s)$ $\star \mathbf{x}_{k+1}^{\text{SH}} = \mathbf{x}_k^s s_k \mathbf{v}_k^{s+1}$ $\tilde{\mathbf{x}}^{s+1} = \mathbf{x}_k^{s+1} = \mathbf{x}_k^{s+1}$
- \bullet Output: Chose \mathbf{x}_a uniformly at random from $\{\{\mathbf{x}_k^{s+1}\}_{k=0}^{m-1}\}_{s=0}^{S-1}$

Convex settings: Convergence properties similar to SAG for suitable ${\it q}$

- Unbiased: $\mathbb{E}[\nabla f(\mathbf{x}_{k}^{\mathsf{st}})] = \nabla f(\mathbf{x}_{k}^{\mathsf{st}})$ $\mathbb{E}[\mathbf{y}_{k}^{\mathsf{st}}] = \nabla f(\mathbf{x}_{k}^{\mathsf{st}})$
- Theoretically \P depends on L, μ , and N ($\P = N$ works well empirically)
- O(d) storage complexity (2B+1 gradients per iteration on average)
- ullet Last step $ilde{\mathbf{x}}^{s+1}$ in outer loop can be randomly chosen from inner loop iterates

Convergence Rate of SVRG (Nonconvex)

- Consider finite-sum problem $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$, where both $f(\cdot)$ and $f_i(\cdot)$ are nonconvex, differentiable, and L-smooth.
- Define a sequence $\{\Gamma_k\}$ with $\Gamma_k \triangleq s_k \frac{c_{k+1}s_k}{\beta_k} s_k^2L 2c_{k+1}s_k^2$, where parameters c_{k+1} and β_k are TBD shortly.

Theorem 2 ([Reddi et al. '16])

Let $c_m=0$, $s_k=s>0$, $\beta_k=\beta>0$, and $c_k=c_{k+1}(1+s\beta+2s^2L^2/B)+s^2L^3/B$ such that $\Gamma_k>0$ for $k=0,\ldots,m-1$. Let $\gamma=\min_k\Gamma_k$. Also, let T be a multiple of m. Then, the output \mathbf{x}_a of SVRG satisfies:

$$\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \le \frac{f(\mathbf{x}_a) - f^*}{T\gamma}. = 0$$

Theorem 2 ([Reddi et al. '16])

Let $c_m=0$, $s_k=s>0$, $\beta_k=\beta>0$, and $c_k=c_{k+1}(1+s\beta+2s^2L^2/B)+s^2L^3/B$ such that $\Gamma_k>0$ for $k=0,\ldots,m-1$. Let $\gamma=\min_k\Gamma_k$. Also, let T be a multiple of m. Then, the output \mathbf{x}_a of SVRG satisfies:

 $\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \leq \frac{f(\mathbf{x}_a) - f^*}{T\gamma}. = 0$

Proof Lemma . Define a Lyapunov fn : Rk = [f(xk!) + Gk ||xk!- x=||2] For Ck, Ckt, Bk > 0, suppose we have the following: G= GET (1+5kBk+ 25kl2) + 5kl3, k=0,--, m-1 Let sk, fk, ck be chosen s.t. Pk>0, Then {Zk} sptisties: $\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{k}^{s+1}\right)\right\|^{2}\right] \leq \frac{R_{k}^{s+1} - R_{k+1}^{s+1}}{\Gamma_{k}}.$ Proof of Lemma : Since + is L-smooth, we have from descent $\mathbb{E}\left[f(\underline{x}_{k+1}^{s+1})\right] \leq \mathbb{E}\left[f(\underline{x}_{k}^{s+1}) + ef(\underline{x}_{k}^{s+1})^{T}(\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1}) + \frac{1}{2}\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1}\|^{2}\right] \qquad (1)$ Using SVRG, update and also the unbiasedness: $\mathbb{E}\left[v_{k}^{s+1}\right] = \nabla f(\underline{x}_{k}^{s+1})$ $\mathbb{E}\left[v_{k}^{s+1}\right] = \nabla f(\underline{$

Consider the Lyapunov for: $R_{k}^{s+1} = \mathbb{E}\left[f(z_{k}^{s+1}) + c_{k} \|z_{k}^{s+1} - \overline{z}^{s}\|^{2}\right]$ Next, we will analyze |-step| Lyapunov drift: $R_{k+1}^{s+1} - R_{k}^{s+1}$

To do so, we first and
$$\mathbb{E}\left[\|\mathbf{z}_{k}^{(t)} - \mathbf{z}^{(t)}\|^{2}\right]$$

$$\mathbb{E}\left[\|\mathbf{z}_{k+1}^{(t)} - \mathbf{z}^{(t)}\|^{2} + \|\mathbf{z}_{k}^{(t)} - \mathbf{z}^{(t)}\|^{2} + 2\left\langle \mathbf{z}_{k+1}^{(t)} - \mathbf{z}_{k}^{(t)} + 2\left\langle \mathbf{z}_{k}^{(t)} - \mathbf{z}_{k}^{(t)} - 2\left\langle \mathbf{z}_{k$$

$$\begin{aligned}
& \mathbb{E}\left[\left\|\nabla f(\mathbf{x}_{0})\right\|^{2}\right] \leq \frac{LN^{\kappa}(f(\mathbf{x}_{0})-f^{\kappa})}{TV} \leq \varepsilon^{2} \\
& \Rightarrow \text{ Sample complexity } \begin{cases}
& O\left(N+\left(N^{-\frac{\kappa}{2}}/\varepsilon^{2}\right)\right), & \text{if } \alpha \leq \frac{2}{3} \\
& O\left(N+N^{2}/\varepsilon^{2}\right), & \text{if } \alpha \leq \frac{2}{3}
\end{aligned}$$

$$\begin{aligned}
& H & \lambda = \frac{2}{3}, & \Rightarrow O\left(N+N^{\frac{2}{3}}\Delta_{0} \leq^{-2}\right), & (GD, N \in^{2}) \\
& f(\mathbf{x}_{0})-f^{\kappa}
\end{aligned}$$

SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

- ullet Initialize ${f x}_0$; Create a table, containing gradients and ${f v}_0^i =
 abla f_i({f x}_0)$
- In iterations $k = 0, 1, 2, \ldots$:
 - ① Pick a random $i_k \in \{1,\ldots,N\}$ uniformly at random and compute $\nabla f_{i_k}(\mathbf{x}_k)$.
 - ② Update \mathbf{x}_{k+1} as follows:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right)$$

① Update table entry $\mathbf{v}_{k+1}^{i_{k+1}} = \nabla f_i(\mathbf{x}_k)$. Set all other $\mathbf{v}_{k+1}^i = \mathbf{v}_k^i$, $i \neq i_k$, i.e., other table entries remain the same

SAGA (SAG Again?)

- SAGA basically matches convergence rates of SAG (for both convex and strongly convex cases), but the proof is simpler (due to unbiasedness)
- Another strength of SAGA is that it can extend to composite problems:

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) + h(\mathbf{x}),$$

where each $f_i(\cdot)$ is L-smooth, and h is convex and non-smooth, but has a known proximal operator

$$\mathbf{x}_{k+1} = \operatorname{prox}_{h, s_k} \left\{ \mathbf{x}_k - s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right) \right\}.$$

But it is unknown whether SAG is convergent or not under proximal operator

SAGA Variance Reduction

• Stochastic gradient in SAGA:

$$\underbrace{\nabla f_{i_k}(\mathbf{x}_k)}_{X} - \underbrace{\left(\mathbf{v}_k^{i_k} - \frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_k^{i}\right)}_{Y}$$

- Note: $\mathbb{E}[X] = \nabla f(\mathbf{x}_k)$ and $\mathbb{E}[Y] = 0 \Rightarrow$ we have an unbiased estimator
- Note: $X-Y\to 0$ as $k\to \infty$, since \mathbf{x}_k and \mathbf{x}_{k-1} converges to some $\bar{\mathbf{x}}$, the difference between the first two terms converges to zero. The last term converges to gradient at stationarity, i.e., also zero
- ullet Thus, the overall ℓ_2 norm estimator (i.e., variance) decays to zero

Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate $\mathbb{E}[X]$

- ullet Suppose we can compute $\mathbb{E}[Y]$ for a r.v. Y that is highly correlated with X
- Consider the estimator $\theta_{\mathbf{k}}$ as an approximation to $\mathbb{E}[X]$:

$$\theta_{\alpha} \triangleq \alpha(X - Y) + \mathbb{E}[Y], \text{ for some } \alpha \in [0, 1]$$

- Observations:
 - $ightharpoonup \mathbb{E}[heta_{lpha}] = lpha \mathbb{E}[X] + (1-lpha)\mathbb{E}[Y]$, i.e., a convex combination of $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
 - ▶ Standard VR: $\alpha = 1$ and hence $\mathbb{E}[\theta_{\alpha}] = \mathbb{E}[X]$
 - ▶ Variance of θ_{α} : $Var(\theta_{\alpha}) = \alpha^{2}[Var(X) + Var(Y) 2Cov(X, Y)]$
 - ▶ If Cov(X,Y) is large, variance of θ_{α} is reduced compared to X
 - Letting α from 0 to 1, $Var(X) \uparrow$ to max value while decreasing bias to zero
- SAG, SVRG, and SAGA can be derived from this VR viewpoint:
 - ▶ SAG: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \mathbf{v}_k^{i_k}$, $\alpha = 1/N$ (biased)
 - ▶ SAGA: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \mathbf{v}_k^{i_k}$, $\alpha = 1$ (unbiased)
 - SVRG: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \nabla f_{i_k}(\tilde{\mathbf{x}})$ (unbiased), $\alpha = 1$
 - ▶ Variance of SAG is $1/N^2$ times of that of SAGA

Comparisons between SAG, SVRG, and SAGA

• Update rules:

$$\begin{aligned} & (\mathsf{SAG}) \qquad \mathbf{x}_{k+1} = \mathbf{x}_k - s \left[\frac{1}{N} (\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k}) + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right] \\ & (\mathsf{SAGA}) \qquad \mathbf{x}_{k+1} = \mathbf{x}_k - s \left[\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right] \\ & (\mathsf{SVRG}) \qquad \mathbf{x}_{k+1} = \mathbf{x}_k - s \left[\nabla f_{i_k}(\mathbf{x}_k) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \frac{1}{N} \sum_{i=1}^N \nabla f_i(\tilde{\mathbf{x}}) \right] \end{aligned}$$

- ullet SVRG: $ilde{\mathbf{x}}$ is not updated very step (only updated in the start of outer loops)
- ullet SAG & SAGA: Update ${f v}_k^{i_k}$ each time index i_k is picked
- SVRG vs. SAGA:
 - ► SVRG: Low memory cost, slower convergence (same convergence rate order)
 - SAGA: High memory cost, faster convergence
- SAGA can be viewed as a midpoint between SAG and SVRG

JKL (ECE@OSU) ECE 8101: Lecture 2-5 15/25

Stochastic Recursive Gradient Algorithm (SARAH) GP: 午 ≤ ₺ ⇒ O(₺ ₺) SGP: 등 ≤ ₺ ⇒ O(₺ ₺)

- Sample complexity of GD, SGD, SVRG, and SAGA for ϵ -stationarity:
 - ▶ GD and SGD require $O(N\epsilon^{-2})$ and $O(\epsilon^{-4})$, respectively¹
 - ▶ B=1: Both SVRG and SARAH guarantee only $O(N\epsilon^{-2})$, same as GD
 - ▶ $B=N^{\frac{2}{3}}$: Both SVRG and SAGA achieve $O(N^{\frac{2}{3}}\epsilon^{-2})$, $N^{\frac{1}{3}}$ times better than GD in terms of dependence on N
- \bullet However, the sample complexity lower bound is $\Omega(\sqrt{N}\epsilon^{-2})$
 - ► There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang et al. 2018] and PAGE [Li et al. 2020])
- These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
 - ► Sample complexity for convex and strongly convex problems: $O(N+1/\epsilon^2)$ and $O((N+\kappa)\log(1/\epsilon))$, respectively ($\kappa=L/\mu$, a single outer loop)
 - Sample complexity for nonconvex problems: $O(N+L^2/\epsilon^{\frac{1}{4}4})$ (step size $s=O(1/L\sqrt{T})$, non-batching, a single outer loop)

JKL (ECE@OSU) ECE 8101: Lecture 2-5 16/25

¹For simplicity, we ignore all other parameters except N and ϵ here.

Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

ullet Pick learning rate s>0 and inner loop size m

```
for s=0,1,2,\ldots,S-1  \begin{array}{c} \mathbf{x}_0^{s+1}=\tilde{\mathbf{x}}^s \\ \mathbf{v}_0^{s+1}=\frac{1}{N}\sum_{i=1}^N\nabla f_i(\mathbf{x}_0^{s+1}) \\ \mathbf{x}_1^{s+1}=\mathbf{x}_0^{s+1}-s\mathbf{v}_0^{s+1} \\ \mathbf{v} \end{array}  for k=1,2,\ldots,m-1  \begin{array}{c} \star \text{ Uniformly pick a batch } I_k\subset\{1,2,\ldots,N\} \text{ at random (with replacement), with batch size } |I_k|=B \\  \begin{array}{c} \star \text{ Let } \mathbf{v}_k^{s+1}=\frac{1}{B}\sum_{i\in I_k}[\nabla f_{i_k}(\mathbf{x}_k^{s+1})-\nabla f_{i_k}(\mathbf{x}_{k-1}^{s+1})]+\mathbf{v}_{k-1}^{s+1} \\  \\ \star \mathbf{x}_{k+1}^{s+1}=\mathbf{x}_k^{s+1}-s\mathbf{v}_k^{s+1} \\ \end{array}   \begin{array}{c} \star \mathbf{x}_k^{s+1}=\mathbf{x}_k^{s+1}-s\mathbf{v}_k^{s+1} \\ \end{array}
```

 \bullet Output: Chose \mathbf{x}_a uniformly at random from $\{\{\mathbf{x}_k^{s+1}\}_{k=0}^{m-1}\}_{s=0}^{S-1}$

Comparison to SVRG (ignoring outer loop index s):

- SVRG: $\mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \nabla f_{i_k}(\mathbf{x}_0) + \mathbf{v}_0$ (unbiased)
- SARAH: $\mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \nabla f_{i_k}(\mathbf{x}_{k-1}) + \mathbf{v}_{k-1}$ (biased)

SPIDER/SpiderBoost

- SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound and the first sample complexity order-optimal algorithm
 - ► SPIDER stands for "stochastic path-integrated differential estimator"
 - Lower bound is for small data regime $N = O(L^2(f(\mathbf{x}_0) f^*)\epsilon^{-4})$
 - Sample complexity: $\Omega(\sqrt{N}\epsilon^{-2})$
 - ▶ However, requires very small step-size $O(\epsilon/L)$, poor convergence in practice
 - Original proof of SPIDER is technically too complex and hence hard to generalize the method to composite optimization problems
- SpiderBoost [Wang et al. 2018] [Wang et al. NeurIPS'19]:
 - lacktriangle Same algorithm, same sample complexity, but relax the step-size to O(1/L)
 - Simpler proof and can be generalized to composite optimization problems
 - Also works well with heavy-ball momentum

SPIDER/SpiderBoost

The SPIDER/SpiderBoost Algorithm

- Pick learning rate s=1/2L, epoch length (x_0) , starting point (x_0) , batch size (x_0) , number of iteration (x_0)
- for $k=0,1,2,\dots,T-1$ if $k \mod m=0$ then Compute full gradient $\mathbf{v}_k=\nabla f(\mathbf{x}_k)$

else

Uniformly randomly pick $I_k\subset\{1,\ldots,N\}$ (with replacement) with $|I_k|=B$. Compute

$$\mathbf{v}_k = \frac{1}{B} \sum_{i \in I_k} [\nabla f_i(\mathbf{x}_k) - \nabla f_i(\mathbf{x}_{k-1})] + \mathbf{v}_{k-1}$$

end if

Let
$$\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{v}_k$$

end for

Output: \mathbf{x}_{ξ} , where ξ is picked uniformly at random from $\{0,\ldots,T-1\}$

Probabilistic Gradient Estimator (PAGE)

- SPIDER/SpiderBoost: Sample complexity LB is for small data regime
- PAGE [Li et al. ICML'21]: Proved the same lower bound $\Omega(\sqrt{N}\epsilon^{-2})$ without any assumption on data set size N and provided a new order-optimal method
 - A variant of SPIDER with random length of inner loop, making the algorithm easier to analyze

Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

- Pick x_0 , step-size s, mini-batch sizes B and B' < B, probabilities $\{p_k\}_{k>0} \in (0,1]$, number of iterations T
- Let $\mathbf{g}_0 = \frac{1}{B} \sum_{i \in I} \nabla f_i(\mathbf{x}_0)$, where I is a random mini-batch with |I| = B
- for $k = 0, 1, 2, \dots, T-1$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{g}_k,$$

$$\mathbf{g}_{k+1} = \begin{cases} \frac{1}{B} \sum_{i \in I_k} \nabla f_i(\mathbf{x}_{k+1}), & \text{w.p. } p_k, \\ \mathbf{g}_k + \frac{1}{B'} \sum_{i \in I_k'} [\nabla f_i(\mathbf{x}_{k+1}) - \nabla f_i(\mathbf{x}_k)], & \text{w.p. } 1 - p_k, \end{cases}$$

$$\mathbf{e} \ |I_k| = B \ \text{and} \ |I_k'| = B' \qquad \text{choose} \qquad \mathbf{S} \leq \underbrace{\begin{array}{c} \mathbf{I} \\ \mathbf{I} \in \mathbf{F} \\$$

where $|I_k| = B$ and $|I'_k| = B'$ end for

choose
$$S \leq \frac{1}{L(1+\sqrt{B/B'})}$$
, $B=N$.

21/25

• Output: $\hat{\mathbf{x}}_T$ chosen uniformly from $\{\mathbf{x}_k\}_{k=1}^T$ $\mathbf{B}' \in \mathbf{B}$, $\mathbf{F}_k = \mathbf{B}'$, then

$$\leq N + \frac{8\Delta o L N}{\epsilon^2}$$
 sample complexity $O(\frac{2\Delta o L}{\epsilon^2}(1+\sqrt{\frac{B}{B}}))$

Summary of Sample Complexity Results for VR Methods

Method	References	Sample Complexity
Lower Bound	[Fang et al. NeurIPS'18]	$L\Delta_0 \min\{\sigma\epsilon^{-3}, \sqrt{N}\epsilon^{-2}\}$
GD		$NL\Delta_0\epsilon^{-2}$
SGD (bnd. var.)	[Ghadimi & Lan, SIAM-JO'13]	$L\Delta_0 \max\{\epsilon^{-2}, \sigma^2 \epsilon^{-4}\}$
SGD (ubd. var.)	[Khaled & Richtarik, '20]	$\frac{L^2\Delta_0}{\epsilon^4}\max\{\Delta_0,\Delta_*\}$
SVRG $(B=1)$	[Reddi et al. NeurlPS'16]	$NL\Delta_0\epsilon^{-2}$
SVRG $(B = \lceil N^{\frac{2}{3}} \rceil)$	[Reddi et al. NeurIPS'16]	$N^{\frac{2}{3}}L\Delta_0\epsilon^{-2}$
SAGA $(B=1)$	[Reddi et al. NeurlPS'16]	$NL\Delta_0\epsilon^{-2}$
SAGA $(B = \lceil N^{\frac{2}{3}} \rceil)$	[Reddi et al. NeurlPS'16]	$N^{\frac{2}{3}}L\Delta_0\epsilon^{-2}$
SpiderBoost	[Wang et al. NeurIPS'19]	$N^{\frac{1}{2}}L\Delta_0\epsilon^{-2}$
SPIDER	[Fang et al. NeurIPS'18]	$L\Delta_0 \min\{\sigma\epsilon^{-3}, \sqrt{N}\epsilon^{-2}\}$
PAGE	[Li et al. ICML'21]	$L\Delta_0 \min\{\sigma\epsilon^{-3}, \sqrt{N}\epsilon^{-2}\}$

- Notation: $\Delta_0 = f(\mathbf{x}_0) f^*$, $\Delta_* = \frac{1}{N} \sum_{i=1}^N (f^* f_i^*)$, σ^2 is a uniform bound for the variance of stochastic gradient, B is batch size
- ullet All results are for finite-sum with L-smooth summands. Sample complexity means the overall number of stochastic first-order oracle calls to find an ϵ -stationary point

Caveat of Variance-Reduced Methods

- In deep neural networks training, VR methods work typically worse than SGD or SGD+Momentum [Defazio & Bottou, NeurIPS'19]
 - Bad behavior of VR methods with several widely used deep learning tricks (e.g., batch normalization, data augmentation and dropout)

Next Class

First-Order Methods with Adaptive Learning Rates