ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-4: Stochastic Gradient Descent

Jia (Kevin) Liu
Assistant Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Spring 2022

Outline

In this lecture:

- Noisy unbiased gradient
- Stochastic gradient method
- Convergence results

Unbiased Stochastic Gradient

- Random vector $\tilde{\mathbf{g}} \in \mathbb{R}^{n}$ is a unbiased stochastic gradient if it can be written as $\tilde{\mathbf{g}}=\mathbf{g}+\mathbf{n}$, where \mathbf{g} is the true gradient and $\mathbb{E}[\mathbf{n}]=\mathbf{0}$
- \mathbf{n} can be interpreted as error in computing \mathbf{g}, measurement noise, Monte Carlo sampling errors, etc.
- If $f(\cdot)$ is non-smooth, $\tilde{\mathbf{g}}$ is a noisy unbiased subgradient at \mathbf{x} if

$$
f(\mathbf{z}) \geq f(\mathbf{x})+(\mathbb{E}[\tilde{\mathbf{g}} \mid \mathbf{x}])^{\top}(\mathbf{z}-\mathbf{x}), \quad \forall \mathbf{z}
$$

holds almost surely.

Stochastic Gradient Descent Method

- Consider $\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$. Following standard GD, we should do:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbb{E}\left[\tilde{\mathbf{g}}_{k} \mid \mathbf{x}_{k}\right]
$$

- However, $\mathbb{E}\left[\tilde{\mathbf{g}}_{k} \mid \mathbf{x}_{k}\right]$ is difficult to compute: Unknown distribution, too costly to sample at each iteration k, etc.
- Idea: Simply use a noisy unbiased subgradient to replace $\mathbb{E}\left[\tilde{\mathbf{g}}_{k} \mid \mathbf{x}_{k}\right]$
- The stochastic subgradient method works as follows:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \tilde{\mathbf{g}}_{k}
$$

- \mathbf{x}_{k} is the k-th iterate
- $\tilde{\mathbf{g}}_{k}$ is any noisy gradient of at \mathbf{x}_{k}, i.e., $\mathbb{E}\left[\tilde{\mathbf{g}}_{k} \mid \mathbf{x}_{k}\right]=\nabla f\left(\mathbf{x}_{k}\right)$
- s_{k} is the step size
- Let $f_{\text {best }}^{(k)} \triangleq \min _{i=1, \ldots, k}\left\{f\left(\mathbf{x}_{i}\right)\right\}$ and $\left\|\nabla f_{\text {best }}^{(k)}\right\| \triangleq \min _{i=1, \ldots, k}\left\{\left\|\nabla f\left(\mathbf{x}_{i}\right)\right\|\right\}$

Historical Perspective

- Also referred to as stochastic approximation in the literature, first introduced by [Robbins, Monro '51] and [Keifer, Wolfowitz '52]
- The original work [Robbins, Monro '51] is motivated by finding a root of a continuous function:

$$
\begin{aligned}
& \text { vector-valued } \\
& \int_{f(\mathbf{x})}=\mathbb{E}[F(\mathbf{x}, \theta)]=0 \text {, }
\end{aligned}
$$

where $F(\cdot, \cdot)$ is unknown and depends on a random variable θ. But the experimenter can take random samples (noisy measurements) of $F(\mathbf{x}, \theta)$

Herbert Robbins

Sutton Monro

Historical Perspective

- Robbins-Monro: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+s_{k} Y\left(\mathbf{x}_{k}, \theta\right)$, where:
- $\mathbb{E}\left[Y(\mathbf{x}, \theta) \mid \mathbf{x}=\mathbf{x}_{k}\right]=f\left(\mathbf{x}_{k}\right)$ is an unbiased estimator of $f\left(\mathbf{x}_{k}\right)$
- Robbins-Monro originally showed convergence in L^{2} and in probability
- Blum later prove convergence is actually w.p.1. (almost surely)
- Key idea: Diminishing step-size provides implicit averaging of the observations
- Robbins-Monro's scheme can also be used in stochastic optimization of the form $f\left(\mathbf{x}^{*}\right)=\min _{\mathbf{x}} \mathbb{E}[F(\mathbf{x}, \theta)]$ (equivalent to solving $\nabla f\left(\mathbf{x}^{*}\right)=0$)
- Stochastic approximation, or more generally, stochastic gradient has found applications in many areas
- Adaptive signal processing
- Dynamic network control and optimization
- Statistical machine learning
- Workhorse algorithm for training deep neural networks

Convergence of R.V.

1. Convergence in distr. (Weak convergence). A seq. of (real-valued) riv. $\left\{X_{n}\right\}$ converges in distr. to X. if $\lim _{n \rightarrow \infty} F_{n}\left(X_{n}\right)=F(X)$, when F_{n} and F are of of X_{n} and X, resp. Denoted as: $X_{n} \xrightarrow{D} X$.
2. Convegencence in prob. to r.v.:
$\left\{x_{n}\right\}$ converges in prob. to a rev. X if $\forall \varepsilon>0$, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|x_{n}-X\right|>\varepsilon\right\}=0$. Denoted as: $X_{n} \xrightarrow{p} X$.
3. Almost sure convergence (p tu-wise convergence in real analysis). $\left\{x_{n}\right\}$ converges ans. (a.e. or w.p. 1 or strongly) to X if $\operatorname{Pr}\left\{\lim _{n \rightarrow \infty} X_{n}=X\right\}=1 . \quad$ Denoted as $X_{n} \xrightarrow{\text { ass. }} X$.
4. Convergence in expectation: Given $r \geq 1$. $\left\{x_{n}\right\}$ converges in r-th mean to r.V. X of r-th abooshate moments $\mathbb{E}\left\{\left|x_{n}\right|^{r}\right\}$ and $\mathbb{E}\left\{|x|^{r}\right\}$ exist, and $\lim _{n \rightarrow \infty} \mathbb{E}\left\{\left|x_{n}-x\right|^{r}\right\}=0$. Denoted as $X_{n} \xrightarrow{L^{r}} X$.

* $r=1: X_{n}$ converges in mean to X.
* $r=2: \cdots$ mean square to X.
$<$ strompert
$\xrightarrow{\text { a.s. }} \Rightarrow \xrightarrow{P} \Rightarrow \xrightarrow{D}$
L^{5}

Markov oneq:
x : non-neg. r.v. For some $a>s$

$$
\operatorname{Pr}(X \geqslant a) \leq \frac{\mathbb{E}(X)}{a}
$$

* For r.v. $z_{1}, \ldots z_{n}$ that are indep. with mean 0 .

$$
\mathbb{E}\left[\left\|z_{1}+\cdots+z_{n}\right\|^{2}\right] \leqslant \mathbb{E}\left[\left\|z_{1}\right\|^{2}+\cdots+\left\|z_{n}\right\|^{2}\right]
$$

* _ _ - _ - not necc. indep., we have

$$
\mathbb{E}\left[\left\|z_{1}+\cdots+z_{n}\right\|^{2}\right] \leq n \mathbb{E}\left[\left\|z_{1}\right\|^{2}+\cdots+\cdots z_{n} \|^{2}\right]
$$

Assumptions and Step Size Rules

- $f^{*}=\inf _{x} f\left(\mathrm{x}_{k}\right)>-\infty$, with $f\left(\mathbf{x}^{*}\right)=f^{*}$
- $\mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{k}\right\|_{2}^{2}\right] \leq G^{2}$, for all k
- $\mathbb{E}\left[\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|_{2}^{2}\right] \leq R^{2}$

Commonly used step-size strategies:

- Constant step-size: $s_{k}=s, \forall k$
- Step-size is square summable, but not summable

$$
s_{k}>0, \forall k, \quad \sum_{k=1}^{\infty} s_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} s_{k}=\infty
$$

Note: This is stronger than needed, but just to simplify proof

Convergence of SGD (Convex)

- Convergence in expectation:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[f_{\text {best }}^{(k)}\right]=f^{*}
$$

- Convergence in probability: for any $\epsilon>0$,

$$
\lim _{k \rightarrow \infty} \operatorname{Pr}\left\{\left|f_{\text {best }}^{(k)}-f^{*}\right|>\epsilon\right\}=0
$$

- Almost sure convergence

$$
\operatorname{Pr}\left\{\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}=f^{*}\right\}=1
$$

- See [Kushner, Yin '97] for a complete treatment on convergence analysis

Thm: If $\mathbb{E}\left\{\left\|\tilde{g}_{k}\right\|\right\} \leq G, \forall k \mathbb{E}\left\{\left\|\underline{x}_{1}-\underline{x}^{*}\right\|\right\} \leq R$, and step-sines $\left\{s_{k}\right\}_{k=1}^{\infty}$ satisity: $s_{k}>0, \forall k, \sum_{k=1}^{\infty} s_{k}^{2}=B<\infty, \sum_{k=1}^{\infty} s_{k} \rightarrow \infty$, then: $\lim _{h \rightarrow \infty} \mathbb{E}\left\{f_{\text {best }}^{(k)}\right\}=f^{*}$ and $\lim _{k \rightarrow \infty} \operatorname{Pr}\left\{\left|f_{b x t}^{(k)}-f^{*}\right|>\varepsilon\right\}=0, \forall \varepsilon>0$.
Proof. Consider the conditional expected square Edidean dist:

$$
\begin{align*}
& \mathbb{E}\left\{\left\|\underline{x}_{k+1}-\underline{x}^{*}\right\|_{2}^{2} \mid \underline{x}_{k}\right\}=\mathbb{E}\left\{\left\|\underline{x}_{k}-s_{k} \tilde{g}_{k}-x^{*}\right\|^{2} \mid \underline{x}_{k}\right\} \\
& =\mathbb{E}\left\{\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2}+s_{k}^{2}\left\|\tilde{g}_{k}\right\|^{2}-2 s_{k} \tilde{g}_{k}^{\top}\left(\underline{x}_{k}-\underline{x}^{*}\right) \mid \underline{x}_{k}\right\} . \\
& =\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2}+s_{k}^{2} \mathbb{E}\left[\left\|\tilde{g}_{k}\right\|^{2} \mid \underline{x}_{k}\right]-2 s_{k} \mathbb{E}\left\{\tilde{g}_{k} \mid \underline{x}_{k}\right\}^{\top}\left(\underline{x}_{k}-\underline{x}^{*}\right) \tag{1}\\
& \\
& \mathbb{E}\left\{\tilde{g}_{k} \mid \underline{x}_{k}\right\}=\nabla \operatorname{lo}\left(\underline{x}_{k}\right)
\end{align*}
$$

By convexity: $f\left(\underline{x}^{*}\right) \geq f\left(\underline{x}_{k}\right)+\mathbb{E}\left\{\tilde{\tilde{q}}_{k} \mid \underline{x}_{k}\right\}^{\top}\left(\underline{x}^{*}-\underline{x}_{k}\right)$

$$
\Rightarrow-\mathbb{E}\left\{\tilde{g}_{k} \mid \underline{x}_{k}\right\}^{\top}\left(\underline{x}_{k}-\underline{x}^{*}\right) \leqslant-\left(f\left(x_{k}\right)-f^{*}\right)
$$

Therefore: $\quad(1) \leqslant\left\|\underline{x}_{k}-x^{*}\right\|^{2}+s_{k}^{2} \mathbb{E}\left[\left\|\hat{g}_{k}\right\|^{2} \mid \underline{x}_{k}\right]-2 s_{k}\left(f\left(x_{k}\right)-f^{*}\right)$.
Note: x_{k+1} only dep. x_{k} and conc indep. of x_{k-1}, \ldots, x_{1}

$$
\mathbb{E}\left[\left\|\underline{x}_{k+1}-\underline{x}^{*}\right\|^{2}\left|\underline{x}_{k}\right|=\mathbb{E}\left[\left\|\left|x_{k+1}-\underline{x}^{*} \|^{2}\right| \underline{x}_{k} \cdots \underline{x}_{1} \mid\right]\right.\right.
$$

Take expectation over joint distr. of $\left\{\underline{x}_{k}, \cdots, \underline{x}_{1}\right\}$, yields:

$$
\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2}\right]-2 s_{k}\left[\mathbb{E}\left[f\left(x_{k}\right)-f^{*}\right]\right]+s_{k}^{2} \mathbb{E}\left[\left\|\tilde{q}_{k}\right\|^{2}\right]
$$

Apply the process recursisidy, noting $\mathbb{I}\left\{\left\|\tilde{q}_{\mu}\right\|_{2}^{2}\right\} \leq G^{2}$:

$$
\begin{aligned}
& \left.\mathbb{E}\left[\left\|x_{k+1}-x^{*}\right\|^{2}\right] \leq \mathbb{E}\left[\left\|x_{1}-x^{*}\right\|^{2}\right]-2 \sum_{i=1}^{k} s_{i} \frac{\left(\mathbb{E}\left[f\left(x_{i}\right)\right]-f^{*}\right.}{\geqslant \min _{i=1,-k} \mathbb{E}\left[f\left(x_{i}\right)\right]}\right)+G^{2} \sum_{k=1}^{\infty} s_{k}^{2} \\
\Rightarrow & \min _{i=1, \cdots, k}\left\{\mathbb{E}\left[f\left(x_{i}\right)\right]-f^{*}\right\} \leq \frac{R^{2}+G^{2} B}{2 \sum_{i=1}^{k} s_{i} \alpha_{\infty}} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

Clain: The $f_{n} g(y) \triangleq \min _{i=1, \cdots, k}\left\{y_{i}\right\}$ in concave. $\forall y \in \mathbb{R}^{k}$ (Hw).
Thus, by Jensen's ineq:
i.e., convereence in \mathbb{F} is done.

Convergence in Expectation and Probability (Convex)

Proof Sketch:

- Key quantity: Expected squared Euclidean distance to the optimal set. Let x^{*} be any minimzer of f. We can show that

$$
\mathbb{E}\left[\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|_{2}^{2} \mid \mathbf{x}_{k}\right] \leq\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|_{2}^{2}-2 s_{k}\left(f\left(\mathbf{x}_{k}\right)-f^{*}\right)+s_{k}^{2} \mathbb{E}\left[\left\|\tilde{\mathbf{g}}_{k}\right\|_{2}^{2} \mid \mathbf{x}_{k}\right]
$$

- which can further lead to

$$
\min _{i=1, \ldots, k}\left\{\mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right]-f^{*}\right\} \leq \frac{R^{2}+G^{2}\|s\|^{2}}{2 \sum_{i=1}^{k} s_{i}}
$$

- The result $\min _{i=1, \ldots, k} \mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right] \rightarrow f^{*}$ simply follows from the divergent step-size series rule

Convergence in Expectation and Probability (Convex)

- Jensen's inequality and concavity of minimum yields

$$
\mathbb{E}\left[f_{\text {best }}^{(k)}\right]=\mathbb{E}\left[\min _{i=1, \ldots, k} f\left(\mathbf{x}_{i}\right)\right] \leq \min _{i=1, \ldots, k} \mathbb{E}\left[f\left(\mathbf{x}_{i}\right)\right]
$$

Therefore, $\mathbb{E}\left[f_{\text {best }}^{(k)}\right] \rightarrow f^{*}$ (convergence in expectation)

- Convergence in expectation also implies convergence in probability: By Markov's inequality, for any $\epsilon>0$,

$$
\operatorname{Pr}\left\{f_{\text {best }}^{(k)}-f^{*} \geq \epsilon\right\} \leq \frac{\mathbb{E}\left[f_{\text {best }}^{(k)}-f^{*}\right]}{\epsilon}
$$

i.e., RHS goes to 0 , which proves convergence in probability.

Convergence Rate (Convex) ${ }^{k}<^{0(1)} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \rightarrow \infty$

$$
\begin{aligned}
& \text { 正 }\left\{\min _{i=1, \cdots, k} f\left(\underline{x}_{i}\right)-f^{*}\right\} \leqslant \frac{R^{2}+6^{2} \sum_{i=1}^{n} s_{i}^{2}}{2 \sum_{i=1}^{n} s_{i} \leftrightarrow \text { Wv }} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\cdots \\
& H_{n}=\sum_{k=1}^{n} \frac{1}{k} \text { Euler-Mascheroni }>1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\cdots \\
& \gamma+\log n<H_{n}<\gamma+\log (n+1) \text { out }
\end{aligned}
$$

- Classical diminishing step-sizes $s_{k}=\alpha / k$ for some $\alpha>0$:
$\sum_{k=1}^{t} s_{k}=O(\log (t))$ and $\sum_{k} s_{k}^{2}=O(1)$. So convergence rate is $O(1 / \log (t))$
$\Theta(\omega \mathrm{\omega g}(\mathrm{t})) \quad 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4}+\cdots=\frac{\pi^{2}}{6} \quad$ Basel problem. (3BMae|Brown).
- Diminishing step-sizes $s_{k}=\alpha / \sqrt{k}$ for some $\alpha>0: \sum_{k} s_{k}=O(\sqrt{t})$ and $\sum_{k} s_{k}^{2}=O(\log (t))$. So convergence rate is $O(\log (t) / \sqrt{t})=\tilde{O}(1 / \sqrt{t})$
- Constant step-sizes $s_{k}=\alpha$ for some $\alpha>0: \sum_{k} s_{k}=k \alpha$ and $\sum_{k} s_{k}^{2}=k \alpha^{2}$. So convergence rate is $O(1 / t)+O(\alpha)$ integral test: $\sum f(n) \sim \int f(x) d x$

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{1}{k+1} \leq \int_{1}^{n} \frac{1}{x} d x \leq \sum_{k=1}^{n} \frac{1}{k} \\
\quad \log _{n}(n) \rightarrow \infty \text { as } n \rightarrow \infty .
\end{gathered}
$$

Convergence Rate (Strongly Convex)

Theorem 1 (Optimality Gap)

If $f(\cdot)$ is μ-strongly convex, then the SGD method with a constant step-size $s_{k}=s<2 / \mu$ satisfies:

$$
\mathbb{E}\left[\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2}\right] \leq(1-2 s \mu)^{k}\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}+\frac{s \sigma^{2}}{2 \mu}
$$

Remark:

- If $\sigma^{2}=0$ (GD), constant step-size $s \Rightarrow$ linear convergence to \mathbf{x}^{*}.
- If $\sigma^{2}>0, \mathrm{SGD}$ with constant step-size $s \Rightarrow$ linear convergence to $\frac{s \sigma^{2}}{2 \mu}$-neighborhood of x^{*}

Proof
Strong Convexity:

$$
\begin{aligned}
& f(y) \geqslant f(\underline{x})+\nabla f(\underline{x})^{\top}(y-\underline{x})+\frac{\mu}{2}\|y-\underline{x}\|^{2} \\
& f(\underline{x}) \geqslant f(y)+\nabla f(y)^{\top}(\underline{x}-y)+\frac{\mu}{2}\|y-\underline{x}\|^{2}
\end{aligned}
$$

Add together $\Rightarrow[\nabla f(y)-\nabla f(\underline{x})]^{\top}(y-\underline{x}) \geq \mu\|y-\underline{x}\|^{2}$.
Recall: $\mathbb{E}\left[\left\|\underline{x}_{k+1}-\underline{x}^{*}\right\|^{2} \mid \underline{x}_{k}\right]=\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2}+s_{k}^{2} \mathbb{E}\left[\left\|g_{k}\right\|^{2} \mid \underline{x}_{k}\right]$

$$
\begin{aligned}
& -2 s_{k} \mathbb{E}\left[g_{k} \mid \underline{x}_{k}\right]^{\top}\left(\underline{x}_{k}-\underline{x}^{*}\right) \\
& \leqslant 2 s_{k} \mu \mathbb{E}\left[\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2} \mid \underline{x}_{k}\right]
\end{aligned}
$$

Taking full expectation:

$$
\leq v^{2}
$$

$$
\begin{align*}
\mathbb{E}\left[\left\|x_{k+1}-\underline{x}^{*}\right\|^{2}\right] & \leq \mathbb{E}\left[\left\|x_{k}-\underline{x}^{*}\right\|^{2}\right]+s_{k}^{2} \mathbb{E}\left[\left\|q_{k}\right\|^{2}\right]-2 s_{k} \mu \mathbb{E}\left[\left\|x_{k}-\underline{x}^{*}\right\|^{2}\right] \\
& =\left(1-2 q_{k} \mu\right) \mathbb{E}\left[\left\|x_{k}-\underline{x}^{*}\right\|^{2}\right]+s_{k}^{2} \sigma^{2} \tag{1}
\end{align*}
$$

Applying (1) recursively from $k-1$ down to 1, letting $s_{k}=s<\frac{2}{\mu}$, $\forall k$, using the bounding of geometric series:

$$
\mathbb{E}\left[\left\|\underline{x}_{k}-\underline{x}^{*}\right\|^{2}\right] \leqslant(1-2 \mu s)^{k}\left\|\underline{x}_{0}-\underline{x}^{*}\right\|+\frac{s \sigma^{2}}{2 \mu} .
$$

1^{0} if $\sigma^{2}=0$., linear convergence of GD (to $\left.x^{*}\right)$.
2° of $\sigma^{2}>0, \ldots \ldots$ of $S G D$ to a $\frac{s \sigma^{2}}{2 \mu}$-neighborhood.

Convergence Rate (Nonconvex) - Finite Sum

$$
f_{i}(\underline{\underline{w}}):=\left(y_{i}-\underline{w}_{L} \sigma\left(\underline{\underline{w}}_{c-1} \sigma\left(\ldots \sigma\left(\underline{\underline{w}}_{2} \sigma\left(\underline{\underline{w}}_{1} \underline{x}_{i}\right)\right) \ldots\right)\right)^{2} .\right.
$$

$\left(\underline{x}_{i}, y_{i}\right)$

- Consider the following finite-sum minimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})=\min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{N} \sum_{i=1}^{{ }^{N}} \frac{f_{i}(\mathbf{x})}{\text { Of samples }}
$$

where N is typically large, e.g., empirical risk minimization (ERM) in ML

- Consider using SGD to solve this problem under the following assumptions:
- $f(\cdot)$ is nonconvex and bounded from below g : one sample at a time
- ∇f is differentiable with L-Lipschitz continuous gradients (L-smooth)
- $\mathbb{E}\left[\left\|\nabla f_{i}(\mathbf{x})\right\|^{2}\right] \leq \sigma^{2}$ for some σ^{2} and all \mathbf{x} (bounded gradient, can be relaxed)

$$
\text { relaxed to: } \mathbb{E}\left[\left\|\nabla f_{i}\left(x_{k}\right)-\nabla f\left(x_{k}\right)\right\|^{2}\right] \leqslant \sigma^{2}
$$

Convergence Rate (Nonconvex) - Finite Sum

Theorem 2 (Stationarity Gap)

If the finite-sum problem $f(\cdot)$ is nonconvex, differentiable, and L-smooth, then the SGD method with step-sizes $\left\{s_{k}\right\}$ satisfies

$$
\min _{k=0,1, \ldots, t-1} \mathbb{E}_{1-1}\left\{\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right\} \leq \frac{f\left(\mathbf{x}_{0}\right)-f^{*}}{\sum_{k=0}^{t-1} s_{k}}+\frac{L \sigma^{2}}{2} \frac{\sum_{k=0}^{t-1} s_{k}^{2}}{\sum_{k=0}^{t-1} s_{k}} .
$$

Remark:

- If $\sigma^{2}=0$, then a constant step-size yields an $O(1 / t)$ rate.
- Classical diminishing step-sizes $s_{k}=\alpha / k$ for some $\alpha>0$: $\sum_{k} s_{k}=O(\log (t))$ and $\sum_{k} s_{k}^{2}=O(1)$. So convergence rate is $O(1 / \log (t))$
- Diminishing step-sizes $s_{k}=\alpha / \sqrt{k}$ for some $\alpha>0: \sum_{k} s_{k}=O(\sqrt{t})$ and $\sum_{k} s_{k}^{2}=O(\log (t))$. So convergence rate is $O(\log (t) / \sqrt{t})=\tilde{O}(1 / \sqrt{t})$
- Constant step-sizes $s_{k}=\alpha$ for some $\alpha>0: \sum_{k} s_{k}=k \alpha$ and $\sum_{k} s_{k}^{2}=k \alpha^{2}$. So convergence rate is $O(1 / t)+O(\alpha)$

Theorem 2 (Stationarity Gap)
If the finite-sum problem $f(\cdot)$ is nonconvex, differentiable, and L-smooth, then the SGD method with step-sizes $\left\{s_{k}\right\}$ satisfies

$$
\min _{k=0,1, \ldots, t-1} \mathbb{F}\left\{\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{2}^{2}\right\} \leq \frac{f\left(\mathbf{x}_{0}\right)-f^{*}}{\sum_{k=0}^{t-1} s_{k}}+\frac{L \sigma^{2}}{2} \frac{\sum_{k=0}^{t-1} s_{k}^{2}}{\sum_{k=0}^{t-1} s_{k}} .
$$

Damar.
Proof: Randomly select if from $\{1,2, \cdots, N\}$.

$$
\underline{x}_{k+1}=\underline{x}_{k}-s_{k} \nabla f_{i_{k}}\left(\underline{x}_{k}\right)
$$

With $\operatorname{Pr}\left(i_{k}=i\right)=\frac{1}{N}$ (uniformly sample at random), then. $S G$ is unbiased estimation of grad.

$$
\mathbb{E}\left[\nabla f_{i_{k}}\left(\underline{x}_{k}\right)\right]=\sum_{i=1}^{N} \operatorname{Pr}\left(i_{k}=i\right) \nabla f_{i_{k}}\left(\underline{x}_{k}\right)=\sum_{i=1}^{N} \frac{1}{N} f_{i_{k}}\left(\underline{x}_{k}\right)=\nabla f\left(\underline{x}_{k}\right) .
$$

Recall the descent lemma:

$$
f\left(\underline{x}_{k+1}\right) \leqslant f\left(\underline{x}_{k}\right)+\nabla f\left(\underline{x}_{k}\right)^{\top}\left(\underline{x}_{k+1}-\underline{x}_{k}\right)+\frac{L}{2}\left\|\underline{x}_{k+1}-\underline{x}_{k}\right\|^{2} .
$$

Plug in SGD iteration: $\underline{x}_{k+1}-\underline{x}_{k}=-s_{k} \nabla f_{i_{k}}\left(x_{k}\right)$.

$$
f\left(\underline{x}_{k+1}\right) \leqslant f\left(\underline{x}_{k}\right)-s_{k} \nabla f\left(\underline{x}_{k}\right)^{\top} \nabla f_{i_{k}}\left(\underline{x}_{k}\right)+\frac{L}{2} s_{k}^{2}\left\|\nabla f_{i_{k}}\left(\underline{x}_{k}\right)\right\|^{2} .
$$

Now, take expectation w.r.t. i_{k} assuming $\operatorname{Pr}_{r}\left(i_{k}=i\right)=\frac{1}{N}$.

$$
\begin{aligned}
\mathbb{E}\left[f\left(\underline{x}_{k+1}\right)\right] & \leq \mathbb{E}\left[f\left(\underline{x}_{k}\right)-s_{k} \nabla f\left(\underline{x}_{k}\right)^{\top} \nabla f_{i_{k}}\left(\underline{x}_{k}\right)+\frac{L s_{k}^{2}}{2}\left\|\nabla f_{i k_{k}}\left(\underline{x}_{k}\right)\right\|^{2}\right] \\
& =f\left(\underline{x}_{k}\right)-s_{k} \nabla f\left(\underline{x}_{k}\right)^{\top} \mathbb{E}\left[\nabla f_{i_{k}}\left(\underline{x}_{k}\right)\right]+\frac{L s_{k}^{2}}{2} \mathbb{E}\left[\left\|\nabla f_{i_{k}}\left(\underline{x}_{k}\right)\right\|^{2}\right] \\
& =f\left(\underline{x}_{k}\right)-s_{k}\left\|\nabla f\left(\underline{x}_{k}\right)\right\|^{2}+\frac{L s_{k}^{2}}{2} \mathbb{E}\left[\left\|\nabla f_{i_{k}}\left(\underline{x}_{k}\right)\right\|^{2}\right] \\
& \leq f\left(\underline{x}_{k}\right)-\underbrace{-s_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2}}_{\text {good }}+\frac{L s_{k}^{2}}{2} \sigma_{\text {bad }}^{2}
\end{aligned}
$$

As in GD, re-arrange to get grad norm on LHS:

$$
\begin{equation*}
s_{k}\left\|\nabla f\left(\underline{x}_{k}\right)\right\|^{2} \leq \mathbb{E}\left[f\left(\underline{x}_{k}\right)\right]-\mathbb{E}\left[f\left(\underline{x}_{k+1}\right)\right]+\frac{L s_{k}^{2}}{2} \gamma^{2} . \tag{l}
\end{equation*}
$$

Sum (1) from (to t, and use iterative expectation to get:

$$
\begin{aligned}
& \sum_{k=1}^{t} s_{k-1} \mathbb{E}\left[\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}\right]
\end{aligned} \underbrace{\sum_{k=1}^{\sum_{k=1}^{t}\left[\mathbb{E}\left[f\left(x_{k-1}\right)\right]-\mathbb{E}\left[f\left(x_{k}\right)\right]\right]}+\sum_{k=1}^{t} s_{k-1}^{2} \frac{L_{0}^{2}}{2}}_{\left.k \min _{k=0, \cdots, t-1} \mathbb{E}\| \| f\left(x_{k}\right) \|^{2}\right]} \text { telescoping. }
$$

Convergence Rate (Nonconvex) - Finite Sum+Time Oracle

Theorem 3 ([Ghadimi \& Lan '13])

Suppose $f(\cdot)$ is L-smooth and has σ-bounded gradients and it is known a priori that the SGD algorithm will be executed for T iterations. Let $s_{k}=c / \sqrt{T}$, where

$$
c=\sqrt{\frac{2\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{L \sigma^{2}}} .
$$

Then, the iterates of SGD satisfy

$$
\min _{0 \leq t \leq T-1} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \sqrt{\frac{2\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right) L}{T}} \sigma .
$$

Theorem 3 ([Ghadimi \& Lan '13])
Suppose $f(\cdot)$ is L-smooth and has σ-bounded gradients and it is known a prior that the SGD algorithm will be executed for T iterations. Let $s_{k}=c / \sqrt{T}$, where

$$
c=\sqrt{\frac{2\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{L \sigma^{2}}} .
$$

Then, the iterates of SGD satisfy

$$
\min _{0 \leq t \leq T-1} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{t}\right)\right\|^{2}\right] \leq \sqrt{\frac{2\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right) L}{T}} \sigma
$$

Proof.
We have shown:

$$
\begin{align*}
& \begin{aligned}
& \min _{k=0, \cdots, t-1} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right] \leq \frac{f\left(x_{0}\right)-g^{*}}{\sum_{k=0}^{T-1} s_{k}}+\frac{c}{\sqrt{T}} \Rightarrow \sum_{k=0}^{2} s_{k}=T \cdot \frac{c}{\sqrt{T}}=c \sqrt{T} \\
& \sum_{k=0}^{T-1} s_{k}^{2}=T \cdot \frac{c^{2}}{T}=c^{2} s_{k}^{2} \\
& \sum_{k=0}^{T-1} s_{k}
\end{aligned} \tag{1}\\
& (1) \Rightarrow \min _{k=0, \cdots, T-1} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|^{2}\right] \leq \frac{f\left(x_{0}\right)-f^{*}}{c \sqrt{T}}+\frac{L 0^{2}}{2} \frac{c^{*}}{\Phi T} \\
& = \\
& =\frac{1}{\sqrt{T}}\left(\frac{f\left(x_{0}\right)-f^{*}}{c}+\frac{L \sigma^{2} c}{2}\right) . \tag{2}
\end{align*}
$$

Young's Ire: $a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$, for $\frac{1}{p}+\frac{1}{q}=1$. (prick \sqrt{a}, \sqrt{p} as " a " $\& x^{\prime} b$ ", $2 \sqrt{a b} \leqslant a t b$. w/ equality holding for $a=b$.

Minimizing const in $(2) \Rightarrow c=\sqrt{\frac{2\left(f\left(x_{0}\right)-f^{*}\right)}{L \sigma^{2}}}$
The stated rest immediately follows after plugging C in (2).

Recall UB:

$$
\begin{aligned}
\frac{1}{\sqrt{T}}\left(\frac{\text { f(x)} \left.)-f^{*}\right)}{c}+\frac{L \sigma^{2} c}{2}\right) & =\frac{2 \Delta f+L \sigma^{2} c^{2}}{2 c \sim O(1)} \\
& \approx O(\sqrt{L})
\end{aligned}
$$

as long as $L=o(\sqrt{\tau})$

Convergence Rate (Nonconvex) - General Expectation Minimization with Batching

- Consider the following general expectation minimization problem

$$
f(\mathbf{x})=\mathbb{E}_{\xi}[f(\mathbf{x}, \xi)]
$$

where ξ is a random vaiable with distribution \mathcal{D}.

- Consider using SGD to solve this problem under the following assumptions:
- $f(\cdot)$ is nonconvex and bounded from below
- ∇f is differentiable with L-Lipschitz continuous gradients (L-smooth)
- $\mathbb{E}_{\xi}[f(\mathbf{x}, \xi)]=\nabla f(\mathbf{x})$ and $\mathbb{E}_{\xi}\left[\|f(\mathbf{x}, \xi)-\nabla f(\mathbf{x})\|_{2}^{2}\right] \leq \sigma^{2}$
- A common approach in SGD: Rather than choosing one training sample randomly at a time, use a larger random mini-batch of samples \mathcal{B}_{k}, with $\left|\mathcal{B}_{k}\right|=B_{k}$. Then, $\mathbf{g}_{k}=\frac{1}{B_{k}} \sum_{i=1}^{B_{k}} \nabla f\left(\mathbf{x}, \xi_{i}\right)$. SGD becomes:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbf{g}_{k}=\mathbf{x}_{k}-\frac{s_{k}}{B_{k}} \sum_{i=1}^{B_{k}} \nabla f\left(\mathbf{x}, \xi_{i}\right)
$$

where $\xi_{1}, \ldots, \xi_{B_{k}}$ are i.i.d. sampled from \mathcal{D}

Convergence Rate (Nonconvex) - General Expectation Minimization with Batching

Theorem 4 (Stationarity Gap)

In the expectation minimization problem, supposed that $f(\cdot)$ is nonconvex, differentiable, and L-smooth. For any given $\epsilon>0$, then the SGD method with mini-batch size $B_{k}=B=\max \left\{1, \frac{2 \sigma^{2}}{\epsilon^{2}}\right\}, \forall k$, and step-sizes $s_{k} \leq \frac{1}{2 L}, \forall k$, satisfies

$$
\begin{equation*}
\mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}\right)\right\|_{2}^{2}\right] \leq \frac{4 L\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{t}+\frac{\epsilon^{2}}{2}, \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{x}}_{t}$ is chosen uniformly at random from $\mathbf{x}_{0}, \ldots, \mathbf{x}_{t-1}$.Thus, Eq. (1) implies that taking $t=\left\lceil\frac{8 L\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{\epsilon^{2}}\right\rceil$ yields $\mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}\right)\right\|_{2}^{2}\right] \leq \epsilon^{2}$.

Sample Complexity Bound:

$$
\sum_{k=0}^{t-1} B_{k}=\frac{2 \sigma^{2}}{\epsilon^{2}} t=\left\lceil\frac{16 L\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right) \sigma^{2}}{\epsilon^{4}}\right\rceil=O\left(\epsilon^{-4}\right)
$$

- Optimal up to constant factors (see [Arjevani et al. 2019] for lower bound)

Theorem 4 (Stationarity Gap)
In the expectation minimization problem, supposed that $f(\cdot)$ is nonconvex, differentiable, and L-smooth. For any given $\epsilon>0$, then the SGD method with mini-batch size $B_{k}=B=\max \left\{1, \frac{2 \sigma^{2}}{\epsilon^{2}}\right\}, \forall k$, and step-sizes $s_{k} \leq \frac{1}{2 L}, \forall k$, satisfies

$$
\begin{equation*}
\mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}\right)\right\|_{2}^{2}\right] \leq \frac{4 L\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{t}+\frac{\epsilon^{2}}{2}, \tag{1}
\end{equation*}
$$

where $\hat{\mathbf{x}}_{t}$ is chosen uniformly at random from $\mathbf{x}_{0}, \ldots, \mathbf{x}_{t-1}$. Thus, Eq. (1) implies that taking $t=\left\lceil\frac{8 L\left(f\left(\mathbf{x}_{0}\right)-f^{*}\right)}{\epsilon^{2}}\right\rceil$ yields $\mathbb{E}\left[\left\|\nabla f\left(\hat{\mathbf{x}}_{t}\right)\right\|_{2}^{2}\right] \leq \epsilon^{2}$.

Proof: (1) WTS: when $B_{k}=B=\max \left\{1, \frac{2 \sigma^{2}}{\varepsilon^{2}}\right\}$., we have:

$$
\mathbb{E}\left[\|g(\underline{x})-\nabla f(\underline{x})\|_{2}^{2} \mid \underline{x}\right] \leqslant \frac{\varepsilon^{2}}{2} .
$$

From def, $\quad f(x)=\frac{1}{B} \sum_{i=1}^{B} \nabla f_{i}\left(\underline{x}, \xi_{i}\right)$, where $\xi_{1}, \ldots, \xi_{\beta}$ are ri.i.d. sampled from D. Thus:

$$
\begin{aligned}
& \mathbb{E}_{\xi}[f(\underline{x}, \xi)]=\nabla f(\underline{x}) . \\
& \mathbb{E}\left[\|q(\underline{x})-\nabla f(x)\|^{2} \mid \underline{x}\right]=\mathbb{E}\left[\left.\left\|\frac{1}{B} \sum_{i=1}^{B} \nabla f_{i}\left(\underline{x}, \xi_{i}\right)-\nabla f(\underline{x})\right\|^{2} \right\rvert\, \underline{x}\right] \\
& =\frac{1}{B^{2}} \sum_{i=1}^{B} \mathbb{E}_{\xi_{i}}\left[\left.\frac{\left\|\nabla f\left(x, \xi_{i}\right)-\nabla f(\underline{x})\right\|^{2}}{\leqslant \sigma^{2}} \right\rvert\, \underline{x}\right] \leqslant \frac{\sigma^{2}}{B} \leqslant \frac{\varepsilon^{2}}{2} \\
& \text { for } B=\max \left\{1, \frac{2 \sigma^{2}}{\varepsilon^{2}}\right\} .
\end{aligned}
$$

(2). Consider descent lemma:

$$
\begin{equation*}
f\left(\underline{x}_{k+1}\right) \leq f\left(\underline{x}_{k}\right)+\nabla f\left(\underline{x}_{k}\right)^{\top}\left(\underline{x}_{k+1}-\underline{x}_{k}\right)+\frac{L}{2}\left\|\underline{x}_{k+1}-\underline{x}_{k}\right\|^{2} . \tag{1}
\end{equation*}
$$

Use Fenchel - Young's Ineq:

$$
\underline{a}^{\top} \underline{b} \leq \frac{1}{2 \alpha}\|\underline{a}\|^{2}+\frac{\alpha}{2}\|\underline{b}\|^{2}
$$

Let X be some real tope. space, and X^{*} be its dual space.

$$
\langle\cdot, \cdot\rangle=X^{*} \times X \rightarrow \mathbb{R}
$$

Convex Conjugate: For a fr: $X \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$. its convex conjugate is the $f^{\prime}: f^{*}: X^{*} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$, where value at $\underline{x}^{*} \in X^{*}$ is defined as:

$$
\begin{aligned}
& f^{*}\left(\underline{x}^{*}\right) \triangleq \sup \left\{\left\langle\underline{x}^{*}, \underline{x}\right\rangle-f(\underline{x}): \underline{x} \in X\right\} \\
& \left(\text { or } f^{*}\left(\underline{x}^{*}\right) \triangleq-\inf \left\{f(x)-\left\langle x^{*}, \underline{x}\right\rangle: x \in X\right\}\right. \\
\Rightarrow & \underline{x} \in X, p \in X^{*},\langle p, \underline{x}\rangle \leqslant f(x)+f^{*}(p)
\end{aligned}
$$

Let $f(\cdot)=\| \|_{2}, \quad f^{*}(\cdot)=\|\cdot\|_{2}$

- add es subtract

$$
(1)^{g} \Rightarrow f\left(x_{k+1}\right) \leqslant f\left(x_{k}\right)+q_{k}^{\top}\left(\underline{x}_{k+1}-\underline{x}_{k}\right)+\left(\nabla f\left(x_{k}\right)-g_{k}\right)^{\top}\left(\underline{x}_{k \pi}-\underline{x}_{k}\right)+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2}
$$

bo Feach-Youg with

$$
\begin{align*}
\alpha=\frac{1}{\varepsilon_{k}} & f\left(x_{k}\right)-s_{k}\left\|g_{k}\right\|^{2}+s_{k}\left\|f\left(x_{k}\right)-q_{k}\right\|^{2}+\left(\frac{1}{4 s_{k}}+\frac{L}{2}\right)\left\|x_{k t 1}-x_{k}\right\|^{2} . \\
& =f\left(x_{k}\right)-s_{k}\left[1-\left(\frac{1}{4}+\frac{L s_{k}}{2}\right)\right]\left\|g_{k}\right\|^{2}+s_{k} \|\left(f_{j}\left(x_{k}\right)-g_{k} \|^{2} .\right. \tag{2}
\end{align*}
$$

since $S_{k} \leqslant \frac{1}{2 L} \Rightarrow L_{\sigma_{k}} \leqslant \frac{1}{2} \Rightarrow \frac{L S_{k}}{2} \leqslant \frac{1}{4} \Rightarrow \frac{1}{4}+\frac{L S_{k}}{2} \leqslant \frac{1}{2}$.

$$
\Rightarrow-\left(\frac{1}{4}+\frac{S_{k}}{2}\right) \geqslant-\frac{1}{2} \Rightarrow-\left(1-\left(\frac{1}{4}+\frac{S_{k}}{2}\right)\right) \frac{c}{2}
$$

This, (2) $\Rightarrow f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{s_{k}}{2}\left\|g_{k}\right\|^{2}+s_{k}\left\|\nabla f\left(x_{k}\right)-g_{k}\right\|^{2}$.
(3): Take cone. expectation on both sides;

$$
\mathbb{E}\left[f\left(\underline{x}_{k+1}\right) \mid \underline{x}_{k}\right] \leqslant f\left(\underline{x}_{k}\right)-\frac{s_{k}}{2} \mathbb{E}\left[\left\|g_{k}\right\|^{2} \mid \underline{x}_{k}\right]+s_{k} \mathbb{E}\left[\left\|g_{k}-x_{f}\left(x_{k}\right)\right\|^{2} \mid \underline{x}_{k}\right]
$$

add \& subtract
$\nabla f\left(x_{k}\right)$.

$$
+s_{k} \mathbb{E}\left[\left.\left\|q_{F} \quad x f\left(x_{k}\right)\right\|^{2}\right|_{k}\right]
$$

$$
\begin{equation*}
=f\left(\underline{x}_{k}\right)=\underbrace{\frac{s_{k}}{2}\left\|x f\left(x_{k}\right)\right\|^{2}}_{\text {pod }}+\frac{\frac{s_{k}}{2} \mathbb{E}\left[\left\|q_{k}-又 f\left(x_{k}\right)\right\|^{2} \mid \underline{x}_{k}\right]}{\text { bad, but ctrlible }} \text {. by batching, } \tag{4}
\end{equation*}
$$

Take full expectation on both sides, choosing $s_{k}=\frac{1}{2} L$, and summing (4) for $k=0, \ldots, t-1$, we have:

$$
\begin{aligned}
\left(\frac{1}{t} \sum_{k=0}^{t-1} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]\right. & \leqslant \frac{4 L}{t} \sum_{k=0}^{t-1}\left(\mathbb{E}\left[f\left(x_{k}\right)\right]-\mathbb{E}\left[f\left(x_{k+1}\right)\right]\right)+\frac{\varepsilon^{2}}{2} . \\
& =\frac{4 L}{t}\left[f\left(x_{0}\right)-f^{*}\right)+\frac{\varepsilon^{2}}{2} .
\end{aligned}
$$

Finally, choose output $\hat{\underline{x}}$ uniformly at random from $\left\{\underline{x}_{0} \cdots \underline{x}_{t-1}\right\}$. we have the stated result.

Mini-Batching SGD as Gradient Descent with Error

- SGD with mini-batcch:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\frac{s_{k}}{B_{k}} \sum_{i=1}^{B_{k}} \nabla f\left(\mathbf{x}, \xi_{i}\right)
$$

- This can be viewed as a "gradient descent with error"

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k}\left(\nabla f\left(\mathbf{x}_{k}\right)+\mathbf{e}_{k}\right)
$$

, where \mathbf{e}_{k} is the difference between approximation and true gradient

- By setting $s_{k}=1 / L$, it follows from descent lemma that

$$
f\left(\mathbf{x}_{k+1}\right) \leq f\left(\mathbf{x}_{k}\right)-\underbrace{\frac{1}{2 L}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}}_{\text {good }}+\underbrace{\frac{1}{2 L}\left\|\mathbf{e}_{k}\right\|^{2}}_{\text {bad }}
$$

Mini-Batching SGD as Gradient Descent with Error

- SGD progress bound with $s_{k}=1 / L$ and error is:

$$
f\left(\mathbf{x}_{k+1}\right) \leq f\left(\mathbf{x}_{k}\right)-\underbrace{\frac{1}{2 L}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}}_{\text {good }}+\underbrace{\frac{1}{2 L}\left\|\mathbf{e}_{k}\right\|^{2}}_{\text {bad }}
$$

- Relationship between "error-free" rate and "with error" rate:
- If "error-free" rate is $O(1 / k)$, you maintain this rate if $\left\|\mathbf{e}_{k}\right\|^{2}=O(1 / k)$
- If "error-free" rate is $O\left(\rho^{k}\right)$, you maintain this rate if $\left\|\mathbf{e}_{k}\right\|^{2}=O\left(\rho^{k}\right)$
- If error goes to zero more slowly, error vanishing rate is the "bottleneck"
- So, need to know how batch-size B_{k} affects $\left\|\mathbf{e}_{k}\right\|^{2}$

Mini-Batching SGD as Gradient Descent with Error

- Sample with replacement:

$$
\mathbb{E}\left[\left\|\mathbf{e}_{k}\right\|^{2}\right]=\frac{1}{B_{k}} \sigma^{2},
$$

where σ^{2} is the variance of the stochastic gradient norm (i.e., doubling the batch-size cuts the error in half)

- Sample without replacement (from a dataset of size N):

$$
\mathbb{E}\left[\left\|\mathbf{e}_{k}\right\|^{2}\right]=\frac{N-B_{k}}{N-1} \frac{1}{B_{k}} \sigma^{2},
$$

i.e., driving error to zero as batch size approaches N

- Growing batch-size:
- For $O\left(\rho^{k}\right)$ linear convergence: need $B_{k+1}=B_{k} / \rho$
- For $O(1 / k)$ sublinear convergence: need $B_{k+1}=B_{k}+$ const.

Mini-Batching SGD as Gradient Descent with Error

- SGD with mini-batcch:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\frac{s_{k}}{B_{k}} \sum_{i=1}^{B_{k}} \nabla f\left(\mathbf{x}, \xi_{i}\right)
$$

- For a fixed B_{k} : sublinear convergence rate
- Fixed step-size: sublinear convergence to an error ball around a stationary point
- Diminishing step-size: sublienar convergence to a stationary point
- Can grow B_{k} to achieve faster rate:
- Early iterations: cheap SG iterations
- Later iterations: Use larger batch-sizes (no need to play with step-sizes)

Next Class

Variance-Reduced First-Order Methods

