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Outline

Today:
o Convex sets
@ Convex functions
o Key properties

@ Operations preserving convexity
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Recap the Very First Lecture

Mathematical optimization problem:

Minimize fo(x)
subject to  f;(x) <0, i=1,....,m

o x=[z1,...,zn]" € RY: decision variables
e fo: RN — R: objective function

o fi:RY 5 R,i=1,...,m: constraint fucntions

Solution or optimal point x* has the smallest value of fy among all vectors that
satisfy the constraints

Watershed between Problem Hardness: Convexity
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Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima

Formally: Let D be the feasible domain defined by the constraints. If x € D
satisfies the following local condition: 3 d > 0 such that for all y € D satisfying
Ix — yll2 < d, we have fy(x) < fo(y). = fo(x) < fo(y) for ally € D.

A crucial fact that would significantly reduce
the complexity in optimization!

Convex

Nonconvex
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Convex Sets

Convex set: A set D € R"” such that

Vx,y€D = ux+(l-pyeD, YVO<pu<l

Geometrically, line segment joining any two points in D lies in entirely in D

Convex combination: A linear combination p1x3 + - -+ + ppxy for
X1,...,Xp € R®, with u; >0,7=1,...,k and Zle,ui =1.

Convex hull: A set defined by all convex combinations of elements in a set D.
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Examples of Convex Sets

1) Norm balls: Radius r ball in I, norm B, = {x € R : ||x||, < r}

(el %0, <1,
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Examples of Convex Sets

2) Hyperplane and haflspaces
o Hyperplane: Set of the form {x|a”x = b} with a # 0

a an-(
vechor -
Zo
T
Tz =b
o Halfspace: Set of the form {x|a’x < b} with a # 0
a
T
N >0b
otz <b
@ a is called “normal vector”
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Examples of Convex ie’gcs i< g

3) Polyhedron: {x: Ax </b} whre A € R™*" < is component-wise inequality

az

Note:
. _ 2
o {x: Ax <b,Cx d} is also a polyhedron (Why?)

@ Polyhedron is an intersection of finite number of halfspaces and hyperplanes
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Examples of Convex Sets

Cones: CCR"suchthatxe K=txek, V>0

Convex Cones: A cone that is convex, i.e.,
X1,X0 €K = Xy + pexe €K, Vui,pue >0

el
P patiorly,

T
T2
0
Conic Combination: For x1,...,x; € R”, a linear combination p1xy + - -+ + prpXg
with p; > 0,4 =1,...,k. Conic hull collects all conic combinations
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(ce erape
Examples of Convex Sets e e
1
@ Norm Cones: {(x,t) € R : ||x|| <t} for some norm || - || (the norm cone

for I3 norm is referred to as second-order cone)

@ Normal Cone: Given any set C and at a boundary point x € C, we define

Ne(x)={g:g (y—x) <0, VyeC}
L)

= ¢! ___,__—“2'(1% )SD
“ (uat.,,uv.ulv 7

3 e[Z,T) |

P f»‘c/‘ RN

%’ This is always a convex
~. cone, regardless of C
do

Mﬂ"’"\‘ Loy
T matties A% 20,

- =

e Positive Semidefnite Cone: ST £ {X € S* : X = 0}, where X > 0 represents
X is positive semidefinite and S™ is the set of n x n symmetric matrices. £k x

r-‘c?— 1 olewnts X B, € S, ET(FZ(L*CI'IAEAZ“ "‘f"g?-f)’&""’/'&v
z9 =D
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Key Properties of Convex Sets

@ Separating hyperplane theorem: Two disjoint convex sets have a separating
hyperplane between them

@ More precisely, if C and D are non-empty convex sets with C N D = &, then
there exists a and b such that:

CC{x:a'x<b}, DC{x:a'x>Db},
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Key Properties of Convex Sets

@ Supporting hyperplane theorem: A boundary point of a convex set has a
supporting hyperplane passing through it
Q

@ More precisely, if C is a non-empty convex set and xg € JC, there exists a
vector a such that:

C={x:a'(x—x) <0}

JKL (ECE@OSU) ECE 8101: Lecture 2-2

12/25



Operations That Preserve Convexity of Sets

@ Intersection: The intersection of convex sets is convex

e Scaling and Translation: If C is convex, then aC +b £ {ax+b:x €C} is
also convex for any a and b.

soaling s ladim.
o Affine image and preimage: If f(x) = Ax + b and C is convex, then
fe)£{f(x):xeC}
is also convex. If D is convex, then
f7HD) £ {x: f(x) € D}

is also convex
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Convex Functions

o Convex function: f(-) : R™ — R is convex if dom(f) € R™ is convex and

flux+ 1= p)y) <pf(x)+ 1 —pw)fly)

for all 1 € [0,1] and for all x,y € dom(f).

In words, f lies below the line segment thit joins any f(x) and f(y).
» ()Y

@ Concave function: f concave <— —f cor{\‘;ex
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Key Properties of Convex Functions

@ Epigraph characterization: A function f is convex if and only if its epigraph

ep(f) = {(x, 1) € dom(f) x R : f(x) <

is a convex set

@ Convex sublevel set: If f is convex, then its sublevel set

{x € dom(f): f(x) < p}

is convex for all u € R (but the converse is not true)

@ Jensen's inequality: If f is convex, then
— e

m"ﬁ‘)

— <
Sluxy + (1= p)x2) < pf(x L(’ arweK<x2)"I‘ 5
for all x1,x2 € dom(f) and 0 < <1 p
) - >
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Other Important Characterizations of Convex Functions

o First-order characterization: If f is differentiable, then f is convex if and only
if dom(f) is convex, and

f
)2 169+ UG5 ) y\w,w

for all x,y € dom(f). e \__i_—-\-——-—ﬁl
o Implying an important consequence: V f(x) = 0 = x minimizes f

¥
Jy>fe

@ Second-order characterization: If f is twice differentiable, then f is convex if
and only if dom(f) is convex, and H(x) = V2 f(x) = 0 for all x € dom(f)

Y o
2" i ‘
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Important Convexity Notions

e Strictly convex: f(ux+ (1 —p)y) < pf(x)+ (1 —p)f(y), ie., fis convex
and has greater curvature than a linear function

e Strongly convex with parameter m: f(x) — 2[|x||* is convex, i.e., f is at
least as curvy as a m-parameterized quadratic function

(HW): shor. fiyyzeat e (9-1) + g3

o Note: strongly convex = strictly convex = convex, (converse is not true)

- . . Jeomf
@ Similar notions for concave functions

o| :7—
fo=t-%C flea=xtomoze

1’(1): - m
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Important Examples of Convex/Concave Functions

@ Univariate functions:

azr

» Exponential functions: €*® is convex for all a € R
» Power functions: z® is convex if a € (—o0, 0] U[1,00) and concave if a € [0, 1]
» Logarithmic functions: log(x) is concave for > 0

o Affine function: a’x + b is both concave and convex

o Quadratic function: $x"Qx +b'x + ¢ is convex if Q = 0 (positive
semidefinite)

o Least _square loss function: 'HX/_% is always cogvex (smce ATA =0)
)"C‘réi) D R-48% < pw
o Norm: ||x|| is always convex for any norm,
> I, norm: x|, = (301, a:i)P for p > 1, ||x|loc = maxi—1,....n{|x:|}
» Matrix operator (spectral) norm || X||op = 01(X)
Matrix trace (nuclear) norm || X[l = >.i_; 0 (X), where
o1(X) > -+ > 0,(X) > 0 are the singular values of X
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More Examples of Convex/Concave Functions

@ Indicator function: If C is convex, then its indicator function
oo | 00
0 xeC
Ie(x) =
) {Oo e |

L

n
00 "}K

@ Support function: For any set C (convex or not), its support function

is convex

e ~ e —

—maxx y
M wrwm - g
o o ge "‘“"”f M'g-q—uf/»)x;y <’LW"|5L ijﬂ)Mng_

e Max function: f(x —max{xl,.. , T} is convex = {Aﬂ (3){-0‘»’4)[1‘(1»)
T
Min 1’/1 is Concan
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Operations That Preserve Convexity of Functions

o Nonnegative linear combinations: f1,..., f; being convex implies
p1f1+ -+ pnfm is convex for any gy, ..., fhy >0

@ Pointwise maximization: If f; is convex for any index i € Z, then

. ¥ igyzmen o
4 L@ eC 3 F(x) = max fi(x) z

€L .

is convex. Note that the index set Z can be infinite Z %,

@ Partial minimization: If g(x,y) is convex in x,y and C is convex, then

f(x) = ryneigg(x, y)

el
is convex (the basis for ADMM, coordinatefdescent, )
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Examples of Composite Operations to Prove Convexity

Example 1: Let C be an arbitrary set. Show that maximum distance to C under an
arbitrary norm || - ||, i.e., f(x) = maxycc ||x — y|| is convex.

Proof.

@ Note that fy(x) = |[x — y|| is convex in x for any fixed y.
@ By pointwise maximization rule, f is convex. O

Example 2: Let C be a convex set. Show that minimum distance to C under an
arbitrary norm | - ||, i.e., f(x) = minyec ||x — y|| is also convex.

Proof.

@ Note that f(x,y) = [[x — y| is convex in both x and y.
@ C is convex by assumption.

@ By partial minimization rule, f is convex. O
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More Operations That Preserve Convexity of Functions

@ Affine composition: f is convex = g(x) = f(Ax + b) is convex

@ General composition: Suppose f = hog, where g : R" - R, h: R — R,
f:R™ = R. Then:
~2 » fis convex if h is convex & nondecreasing, g is convex
> fis convex if h is convex & nonincreasing, g is concave
» fis concave if h is concave & nondecreasing, g is concave
» fis concave if h is concave & nonincreasing, g is convex

How to remember these? Think of the chain rule when n =1

f"(@) = h"(g(x))g' () + 1" (9(x))g" (x) So.
20 20 >2 Zo
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Generalization

@ Vector-valued composition: Suppose that
f(x) = h(g(x)) = h(g1(x),. .., gr(x))

Whereg:R"—HRk, h:RF 5 R, f:R™ - R. Then:

f is convex if h is convex & nondecreasingfin each argument,
f is convex if h is convex & nonincreasing\iq each argument,
f is concave if h is concave & nondecreasing)in each argument
f is concave if h is concave & nonincreasing in_each argumen

is convex

is concave

g is concave
g is convex

vy vy VvVYYy
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Example of Composite Operations to Prove Convexity

Log-sum-exp function: Show that g(x) = log(Zf:1 exp(a] x + b;)) is convex,
where a;,b;, i = 1,..., k are fixed parameters (often called “soft max” in ML
literature since it smoothly approximates max;—1__x(a;, x + b;). Lon. ap- prasene

Proof. e

o Note that it suffices to prove f(x) = log(}.1 ; exp(z;)) is convex (Why?)
@ According to second-order characterization, compute the Hessian to obtain:

V2f(x) = Diag{z} —zz"

where (z); = e* /(37 €™). This matrix is diagonally dominant = PSD. [ |

NV :
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Next Class

Gradient Descent
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