ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 1: Course Info \& Introduction

Jia (Kevin) Liu
Assistant Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Spring 2022

Course Info (1)

- Instructor: Jia (Kevin) Liu, Assistant Professor
- Office: 420 Dreese Labs
- Email: liu@ece.osu.edu
- Time: TTh 11:10AM - 12:30PM
- Location: Journatism-Bldg 375

Knowlton Hall 190

- Office Hour: Wed 5-6pm or by appointment
- Online Synchronous Zoom Session:
 https://osu.zoom.us/j/95738261623? pwd=cWozUmhVbW9pTVpkVHB50Gc4dGJldz09
- Websites: Carmen: announcements, grade management, course materials) Schedule: https://kevinliu-osu.github.io/teaching/ECE8101_S22/
- Prerequisite:
- Working knowledge of Linear Algebra and Probability
- Exposure to optimization and machine learning is a plus but not required

Course Info (2)

Grading Policy:

- Class Participation (10\%): Top Hat (please install on your phone/tablet)
- Paper Reading Assignment (60\%)
- Assigned after each major topic set (approximately)
- May involve open-ended questions
- Must be typeset using ETEX in NeurlPS format
- Final Project (30\%)
- Finished by a team of 2. Project proposal due soon after spring break
- Project report due in the final exam week. Follow NeurIPS format (Could become a publication of yours! "Automatic A" if determined publishable by instructor © ${ }^{()}$)
- 10-minute in-class presentation at the end of the semester. Final report due by the beginning of final exam week Apr. 27.
- Potential ideas of project topics (should contain something new \& useful):
- Nontrivial extension of the results introduced in class
- Novel applications in your own research area
- New theoretical analysis/insights of an existing/new algorithm
- It is important that you justify its novelty!

Course Info (3)

Course Materials:

- No required textbook
- Lecture notes are developed based on:
- Important \& trending papers in the field
- [BV] S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004 (available online)
- [NW] J. Nocedal and S. Wright, "Numerical Optimization," Ed. 2, Springer,
- [BSS] M. Bazarra, H.D. Sherali, and C.M. Shetty, "Nonlinear Programming: Theory and Algorithms," John Wiley \& Sons, 2006
- [Nesterov] Y. Nesterov, "Introductory Lectures on Convex Optimization: A Basic Course," Springer, 20042006

Tentative Topics

- Stochastic Nonconvex Optimization
- Fundamental of SGD; variance-reduced algorithms (SVRG, SAGA, SPIDER); accelerated algorithms (STORM, Hybrid)
- Federated and Decentralized Optimization
- Decentralized (stochastic) gradient descent, FedAvg, and variants
- Zeroth-order Optimization
- One-point and two-point gradient estimator; zeroth-order SGD; zeroth-order variance-reduced optimization methods ...
- Stationary and Saddle Points
- Saddle points; convergence to saddle points ...
- Geometry of Nonconvex Optimization
- Landscape of learning models, PL conditions, NTK ...
- Other Emerging Nonconvex Optimization Problems
- Minimax problems, bilevel problems, meta learning ...

Special Notes

- Advanced, research-oriented
- There will be paper reading assignments and a term project
- Goal: Prepare \& train students for theoretical research
- But will (briefly) mention relevant applications in ML:
- Deep Learning
- Big data analytics
- ...
- Caveat: Focus on theory \& proofs, rather than "coding/programming"
- No "one book fits all" \Rightarrow Many readings required
- Will try to cover a wide range of major topics
- Background materials will be introduced but at very fast pace
- So, mathematical maturity is essential!

How to Best Prepare for the Lectures?

Read, read, read!

- Especially if you're unfamiliar with the background (e.g., linear algebra, probability, ...)
- Will quickly go over some related background in class
- Appendices in [BV] and [BSS] provide lots of math background
- You are welcome to ask questions in office hours
- But careful self-studies may still be needed

Mathematical Optimization

Mathematical optimization problem:

$$
\begin{array}{ll}
\text { Minimize } & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $\mathbf{x}=\left[x_{1}, \ldots, x_{N}\right]^{\top} \in \mathbb{R}^{N}$: decision variables
- $f_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}, i=1, \ldots, m$: constraint fucntions

Solution or optimal point \mathbf{x}^{*} has the smallest value of f_{0} among all vectors that satisfy the constraints

Brief History of Optimization

Theory:

- Early foundations laid by many all-time great mathematicians (e.g., Newton, Gauss, Lagrange, Euler, Fermat, ...)
- Convex analysis 1900-1970 (Duality by von Neumann, KKT conditions...) Algorithms
- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method [Khachiyan 1979], 1st polynomial-time alg. for LP
- 1980s \& 90s: polynomial-time interior-point methods for convex optimization [Karmarkar 1984, Nesterov \& Nemirovski 1994]
- since 2000s: many methods for large-scale convex optimization

Applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, networking and communications, circuit design,...)
- since 2000s: machine learning

Solving Optimization Problems

- General optimization problems
- Very difficult to solve (NP-hard in general)
- Often involve trade-offs: long computation time, may not find an optimal solution (approximation may be acceptable in practice)
- Exceptions: Problems with special structures
- Linear programming problems
- Convex optimization problems
- Some non-convex optimization problems with strong-duality
- Watershed between Problem Hardness: Convexity
- This course focuses on nonconvex problems arising from ML context

Applying Optimization Tools in Machine Learning

- Linear Regression
- Variable Selection \& Compressed Sensing
- Support Vector Machine
- Logistic Regression (+ Regularization)
- Matrix Completion
- Deep Neural Network Training
- Reinforcement Learning

- Distributed/Federated/Decentralized Learning

[^0]
Example 1: Linear Regression (Convex)

Minimize $_{\beta} \quad\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}$

- Given data samples: $\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, m\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}$, $\forall i$
- Find a linear estimator: $y=\boldsymbol{\beta}^{\top} \mathbf{x}$, so that "error" is small in some sense
- Let $\mathbf{X} \triangleq\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]^{\top} \in \mathbb{R}^{m \times n}, \mathbf{y} \triangleq\left[y_{1}, \ldots, y_{m}\right]^{\top} \in \mathbb{R}^{m}$
- Linear algebra for $\|\cdot\|_{2}: \boldsymbol{\beta}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ (analytical solution)
- Computation time proportional to $n^{2} m$ (less if structured)
- Stochastic gradient if m, n are large

Example 2: Support Vector Machine (Convex)

- Given data samples: $\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, m\right\}$
- $\mathbf{x}_{i} \in \mathbb{R}^{n}$ called "feature vectors", $\forall i$
- $y_{i} \in\{-1,+1\}$ are "labels"
- Linear classifier: $f(\mathbf{x})=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$:
- $\mathbf{w} \in \mathbb{R}^{n}$: weight vector for features
- $b \in \mathbb{R}$: Some "bias" of $\left.y_{i}=1, \underline{w}^{\top} \underline{x}_{i}+b \geqslant 1\right\}$

$$
y_{i}=-1, \quad w^{\top} \underline{x}_{i}+b \leq-1 . \int
$$

- Goal: To find a pair (\mathbf{w}, b) to minimize a weighted sum such that
- Minimize classification error on training samples
- Robust to random noise in the training samples $y_{i}\left(\underline{\omega}^{\top} \underline{x}_{1}+b\right) \geqslant 1$.
$\underset{\mathbf{w}, b, \boldsymbol{\epsilon}}{\operatorname{Minimize}} \quad \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m} \epsilon_{i}$
subject to $\quad y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\epsilon_{i}, \quad \epsilon_{i} \geq 0, \quad i=1, \ldots, m$

Optimization Algorithms for SVM

- Coordinate Descent [Platt, 1999; Chang and Lin, 2011]
- Stochastic gradient [Bottou and LeCun, 2004; Shalev-Shwartz et al., 2007]
- Higher-order methods (interior-point) [Ferris and Munson, 2002; Fine and Scheinberg, 2001]; (on reduced space) [Joachims, 1999]
- Shrink Algorithms [Duchi and Singer, 2009; Xiao, 2010]
- Stochastic gradient + shrink + higher-order [Lee and Wright, 2012]

Nonconvex Optimization Problems in ML

- Lower complexity bound for solving general nonconvex problems
- Consider, w.l.o.g., $\min _{\mathbf{x} \in[0,1]^{d}} f(\mathbf{x})$
- f is nonconvex and L-Lipschitz-continuous, with global optimal $f^{*}>-\infty$
- To find an ϵ-approximate solution $\hat{\mathbf{x}}$ (i.e., $f(\hat{\mathbf{x}})-f^{*} \leq \epsilon$), number of iterations required: $\Omega\left(L^{d} \epsilon^{-d}\right)$ (exponential)

Nonconvex Optimization Problems in ML

- Lower complexity bound for solving general nonconvex problems
- Consider, w.l.o.g., $\min _{\mathbf{x} \in[0,1]^{d}} f(\mathbf{x})$
- f is nonconvex and L-Lipschitz-continuous, with global optimal $f^{*}>-\infty$
- To find an ϵ-approximate solution $\hat{\mathbf{x}}$ (i.e., $f(\hat{\mathbf{x}})-f^{*} \leq \epsilon$), number of iterations required: $\Omega\left(L^{d} \epsilon^{-d}\right)$ (exponential)
- Several ways to relax this challenging goal:
- Finding hidden convexity or reformulate into an equivalent convex problem
* Need to exploit special problem structure as much as possible
* However, solution approaches cannot be generalized
- Change the goal to finding a stationary point or a local extremum
* Often possible to obtain FO methods with polynomial dependence of the complexity on the dimension of the problem and desired accuracy
- Identify a class of problems:
* General enough to characterize a wide range of applications (in ML)
« Allow one to obtain global performance guarantees of an algorithm
\star E.g., Polyak-Lojasiewicz condition (linear convergence), α-weakly-quasi-convexity (sublinear convergence), etc.

Nonconvex Optimization Problems in ML

- Lower complexity bound for solving general nonconvex problems
- Consider, w.l.o.g., $\min _{\mathbf{x} \in[0,1]^{d}} f(\mathbf{x})$
- f is nonconvex and L-Lipschitz-continuous, with global optimal $f^{*}>-\infty$
- To find an ϵ-approximate solution $\hat{\mathbf{x}}$ (i.e., $f(\hat{\mathbf{x}})-f^{*} \leq \epsilon$), number of iterations required: $\Omega\left(L^{d} \epsilon^{-d}\right)$ (exponential)
- Several ways to relax this challenging goal:
- Finding hidden convexity or reformulate into an equivalent convex problem
* Need to exploit special problem structure as much as possible
* However, solution approaches cannot be generalized
- Change the goal to finding a stationary point or a local extremum
\star Often possible to obtain FO methods with polynomial dependence of the complexity on the dimension of the problem and desired accuracy
- Identify a class of problems:
* General enough to characterize a wide range of applications (in ML)
\star Allow one to obtain global performance guarantees of an algorithm
\star E.g., Polyak-Lojasiewicz condition (linear convergence), α-weakly-quasi-convexity (sublinear convergence), etc.
- But what if gradients are hard to obtain?
* E.g., reinforcement learning, blackbox adversarial attacks on DNN?
* Zeroth-order or derivative-free methods

Tractable Nonconvex Optimization Problems in ML

- Problems with hidden convexity or analytic solutions
- Eigen-problems (e.g., PCA, multi-dimensional scaling, ...)
- Non-convex proximal operators (e.g., Hard-thresholding, Potts minimization)
- Some discrete problems (binary graph segmentation, discrete Potts minimization, nearly optimal K-means)
- Infinite-dimensional problems (smoothing splines, locally adaptive regression splines, reproducing kernel Hilbert spaces)
- Non-negative matrix factorization (NMF)
- Compressive sensing with ℓ_{1} regularization
- Problems with (global) convergence results
- Phase retrieval problem
- Low-rank matrix completion
- Deep learning
- Problems with certain properties of symmetry
- Rotational symmetry, discrete symmetry, etc.

Example 3: Compressive Sensing (Nonconvex)

Interested in solving undetermined systems of linear equations:

- Estimate $\mathbf{x} \in \mathbb{R}^{n}$ from linear measurements $\mathbf{b}=\mathbf{A x} \in \mathbb{R}^{m}$, where $m \ll n$.
- Seems to be hopelessly ill-posed, since more unknowns than equations...
- Or does it?

A Little History of Compressive Sensing (CS)

- Name coined by David Donoho
- Pioneered by Donoho and Candès, Tao and Romberg in 2004

Compressed sensing

DL Donoho - Information Theory, IEEE Transactions on, 2006 - ieeexplore.ieee.org Abstract-Suppose is an unknown vector in(a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure ... Cited by Related articles All 31 versions Cite Save More 30,039
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
EJ Candès, J Romberg, T Tao - Information Theory, IEEE ..., 2006 - ieeexplore.ieee.org Abstract-This paper considers the model problem of recon-structing an object from incomplete frequency samples. Consider a discrete-time signal and a randomly chosen set of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier ...
Cited by ooed Related articles All 38 versions Cite Save

$$
17,652 .
$$

Sensing and Signal Recovery

Conventional paradigm of data acquisition: Acquire then compress

Q: Why compression works?
A: Quite often, there's only marginal loss in "quality" between the raw data and its compression form.
Q: But still, why marginal loss?

Sparse Representation

- Sparsity: Many real world data admit sparse representation. The signal $\mathbf{s} \in \mathbb{C}^{n}$ is sparse in a basis $\boldsymbol{\Phi} \in \mathbb{C}^{n \times n}$ if

$$
\mathbf{s}=\boldsymbol{\Phi} \mathbf{x} \quad \text { and } \quad \mathbf{x} \in \mathbb{R}^{n} \text { only has very few non-zero elements }
$$

- For example, images are sparse in the wavelet domain

- The \# of large coefficients in the wavelet domain is small \Rightarrow compression

Compressed Sensing: Compression on the Fly!

Q: Could we directly compress data and then reconstruct?

$$
K<M \ll N
$$

- Goal: To learn (recover) x's value through some given (noisy) samples y_{i} ?
- Mathematically, this gives rise to an underdetermined system of equations, where the signal of interests is sparse

Sparse Recovery

In optimization, CS can be written in the form of:

$$
\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{Minimize}} \phi_{\gamma}(\mathbf{x}) \triangleq \underbrace{f(\mathbf{y}, \boldsymbol{\Phi} ; \mathbf{x})}_{\text {error }}+\underset{\text { req. }}{\gamma\|\mathbf{x}\|_{1}}
$$

In machine learning context, questions of interests include:

- How to design the measurement/sampling matrix $\boldsymbol{\Phi}$?
- What are the efficient algorithms to search for \mathbf{x} ?
- Are they stable under noisy inputs?
- How many measurements/samples are necessary/sufficient (i.e., size of \mathbf{y})?

Insight: Turns out $m=\Omega(\log (n))$ random samples will suffice

Some Optimization Algorithms for Compressed Sensing

- Shrink algorithms (for l_{1} term) [Wright et al., 2009]
- Accelerated gradient [Beck and Teboulle, 2009b]
- ADMM [Zhang et al., 2010]
- Higher-order: Reduced inexact Newton [Wen et al., 2010]; Interior-point [Fountoulakis and Gondzio, 2013]

Example 4: Matrix Completion (Nonconvex)

In 2006, Netflix offered $\$ 1$ million prize to improve movie rating prediction

- How to estimate the missing ratings?

```
movies
```


- About a million users, and 25,000 movies, with sparsely sampled ratings
- In essence, a low-rank matrix completion problem

Low-Rank Matrix Completion

- Completion Problem: Consider $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}$ to represent Netflix data, we may model it through factorization:

- In other words, the rank r of \mathbf{M} is much smaller than its dimension $r \ll \min \left\{n_{1}, n_{2}\right\}$

Low-Rank Matrix Completion

In optimization, the low-rank matrix completion problem can be written as:

$$
\begin{array}{ll}
\underset{\mathbf{X}}{\text { Minimize }} & \operatorname{rank}(\mathbf{X}) \quad\|\underline{X}\|_{\boldsymbol{*}}: \text { nudear norm. } \\
\text { subject to } & (\mathbf{X})_{i j}=(\mathbf{M})_{i j}, \quad \forall i, j \in \text { observed entries }
\end{array}
$$

In machine learning context, questions of interests include:

- What are the efficient algorithms to search for \mathbf{X} ?
- Are they stable under noisy inputs and outliers?
- How many samples are necessary/sufficient (i.e., size of $\left.(\mathbf{M})_{i, j}\right)$?

Insight: Turns out $m=\Omega\left(r \max \left\{n_{1}, n_{2}\right\} \log ^{2}\left(\max \left\{n_{1}, n_{2}\right\}\right)\right)$ samples will suffice

Some Optimization Algorithms for Matrix Completion

- (Block) Coordinate Descent [Wen et al., 2012]
- Shrink [Cai et al., 2010a; Lee et al., 2010]
- Stochastic Gradient [Lee et al., 2010]

Example 5: Phase Retrieval (Nonconvex)

- A classical topic from at least 1980 s:
- Recovery of a function given magnitude of its Fourier transform
- Applications: optimal imaging, electron microscopy, crystallography, etc.
- Recover an $\mathbf{x}^{*} \in \mathbb{C}^{d}$ from a phase-less measurements:

$$
y_{k}=\left|\left\langle\mathbf{a}_{k}, \mathbf{x}\right\rangle\right|^{2}, \quad k=1, \ldots, M
$$

where \mathbf{a}_{k} denotes some measurement vectors. The phase-retrieval problem can be formulated as an empirical risk minimization (ERM): problem

$$
\min _{\mathbf{x}} \sum_{k=1}^{M}\left(y_{k}-\left|\left\langle\mathbf{a}_{k}, \mathbf{x}\right\rangle\right|^{2}\right)^{2}
$$

- Phase retrieval is nonconvex and unclear how to find a global minimum
- Provable convergence result: [Candes et al. '15], [Yang et al. '19], [Wu and Rebeschini, '20], [Tan and Vershynin, '16], [Chen et al. '19]
wirtinger Flow. Alg.

Example 6: Deep Learning (Nonconvex)

- Example: Train an L-layer fully-connected NN for supervised learning:

$$
\min _{\mathbf{W}}\left\{F(\mathbf{W}) \triangleq \frac{1}{m} \sum_{i=1}^{m} \ell\left(\mathbf{y}_{i}, f\left(\mathbf{x}_{i}, \mathbf{W}\right)\right)\right\},
$$

- $\mathbf{W}=\left\{\mathbf{W}_{1}, \ldots, \mathbf{W}_{L}\right\}$, with $\mathbf{W}_{i} \in \mathbb{R}^{n_{i} \times n_{i-1}}$, are weights of $N N$ model
- $\left\{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)_{i=1}^{m}\right\}, \mathbf{x}_{i} \in \mathbb{R}^{n_{0}}$, are training samples
- $\ell(\cdot, \cdot)$ is a loss function (e.g., quadratic or logistic loss)
- NN model can be written as:

$$
f\left(\mathbf{x}_{i}, \mathbf{W}\right)=\mathbf{W}_{L} \sigma\left(\mathbf{W}_{L-1} \sigma\left(\ldots, \sigma\left(\mathbf{W}_{2} \sigma\left(\mathbf{W}_{1} \mathbf{x}_{i}\right)\right) \ldots\right)\right),
$$

where $\sigma(\cdot)$ is scalar-valued and called activation function.

Example 6: Deep Learning (Nonconvex)

- Landscape of deep neural networks
- Loss surfaces of ResNet-56 with/without skip connections [Li et al. '18]

- Training NN is NP-complete in general [Blum and Rivest, '89], but:
- All local minima are global for 1-layer NN: [Soltanolkotabi et al. '18], [Haeffele and Vidal, '17], [Feizi et al. '17]
- GD/SGD converge to global min for linear networks [Arora et al. '18], [Ji and Telgarsky, '19], [Shin, '19], wide over-parameterized networks [Allen-Zhu et al., '19], and pyramid networks [Nguyen and Mondelli, '19]

Next Class...

We will start from some related math background.

[^0]: - ...

