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Outline

In this lecture:

Motivations and Formulation of Multi-Objective Optimization (MOO)

MOO Algorithms

Convergence Results
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Multi-Objective Optimization: Motivation

Recommender Systems Fine-tuning Foundation Models

Federated Learning Contrastive Learning

Many learning paradigms/systems are multi-task, hence multi-objective
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Trade-o↵s in MOO

Trade-o↵s in Real-world Problems: Many real-world problems involve optimizing
multiple (potential conflicting) objectives.

Data: multi-modal learning

Tasks: multi-task learning

Metrics: fairness-robustness-e�ciency
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MOO Formulation and Methods

Formulation: MOO aims at optimizing multiple objectives simultaneously,
which can be mathematically cast as:

min
x2D

F(x) := [f1(x), · · · , fS(x)],

where x 2 D ✓ Rd is the model parameter, and fs : Rd ! R, s 2 [S].

MOO Methods

– Gradient-Free Methods

F Evolutionary MOO algorithms [Zhang & Li, ’07; Deb et al., ’02]

F Bayesian MOO algorithms [Balakaria et al., ’20; Laumanns et al., ’02]

– Gradient-Based Methods

F Multi-gradient descent algorithm (MGDA) with full gradients [Mukai, ’80;
Fliege & Svaiter ’00; Desideri ’12]

F Stochastic multi-gradient descent algorithms (SMGDA) with stochastic
gradients [Liu & Vicente, ’21; Zhou et al., ’22; Fernando et al., ’23]
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Notions of Optimality in MOO

Single-objective optimization (scalar-valued): x dominates y if f(x) < f(y)
! Goal: Find an optimal solution x⇤ such that f(x⇤)  f(x), 8x 2 D

Multi-objective optimization (vector-valued): Not partially ordered
I Which one is better: [0, 1, 1] vs [1, 0, 1] vs [0, 0, 0].

Which is the dominant one?

1 vs. 2

1 vs. 5

1 vs. 4

Lexicographical order in some special MOO problems: the order depends on
the order of the first element in an alphabet that di↵ers)
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Notions of Optimality in MOO

Definition 1 (Dominance)

x dominates y i↵ fs(x)  fs(y), 8s 2 [S] and fs(x) < fs(y), 9s 2 [S].

Definition 2 (Pareto Optimality)

A solution x⇤ is Pareto optimal if it is not dominated by any other solution.

Definition 3 (Weak Pareto Optimality)

A solution x⇤ is weakly Pareto optimal if there does not exist x such that
fs(x) < fs(x⇤), 8s 2 [S], i.e., impossible to improve all objectives simultaneously.

Definition 4 (Pareto Stationarity)

A solution x is said to be Pareto stationary if there is no common descent
direction d 2 Rd such that rfs(x)>d < 0, 8s 2 [S].
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Pareto Front

Pareto front (or boundary): The set of all Pareto-optimal solutions X ⇤

f1(x) = 1� e�
Pd

i=1(xi� 1p
d
)2

f2(x) = 1� e�
Pd

i=1(xi+ 1p
d
)2

d = 2,�4  x1, x2  4

Nadir objective vector: znadir = [supx2X⇤ f1(x), . . . , supx2X⇤ fS(x)]>

Ideal objective vector: zideal = [infx2X⇤ f1(x), . . . , infx2X⇤ fS(x)]>
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Philosophical Classes for Solving MOO Problems

Consider the availability of a decision maker (DM) in an MOO problem domain

No-preference methods: No DM is expected to be available and no
preference information is assumed to be known

I Example 1: Method of global criterion: min kf(x)� zidealk s.t. x 2 D
I Example 2: Multi-gradient descent algorithm (MGDA)

A priori methods: Preference information is first asked from DM, and then a
solution best satisfying the preferences is found

A posteriori methods: A representative set of Pareto-optimal solutions is first
found, then DM much choose one of them

Interactive methods: DM is allowed to search for the most preferred solution
iteratively. In each iteration, DM is shown Pareto-optimal solution(s) and
DM describes how the solution(s) could be improved. Information given by
DM is used to generate new Pareto-optimal solution in the next iteration.

Hybrid methods: A mixture of some of the above
I Example: Weighted-Chebyshev MGDA [Momma, Dong, & Liu, ICML’22]
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A priori Methods

Utility Function Methods
I Assume a utility function u(·) is available to DM

Lexicographic Methods
I Assume objectives can be ranked in the order of “importance”

Scalarization Methods
I Reformulate MOO as a single-objective optimization (SOO) problem, such

that optimal SOO solutions are Pareto-optimal in the original MOO problem

I Often requires that every Pareto-optimal solution of the MOO problem can be
achieved by some parameter setting of the SOO problem (Pareto front
exploration) – useful in a posterior methods
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Scalarization Methods: Linear Scarlization (LS)

Basic Idea: Scalarize a vector-valued objective into a scalar-valued objective by
linearly combining each objective with a user-supplied weights.

MOO:
minimize

x
f(x) = (f1(x), f2(x), ..., fm(x))

LS:

minimize
x

f(x) =
mX

i=1

wifi(x)

I wi > 0: A priori weight for the i-th objective (e.g., chosen in proportion to the
relative importance of the objective)
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Scalarization Methods: Linear Scarlization (LS)

Pros: Simple objective structure, preserve nice properties (e.g., convexity,
smoothness, etc.)

Cons: 1) May be di�cult to choose weights in practice; 2) Cannot explore
Pareto front in the case with non-convex objectives (only finds the convex
hull of the objective set)
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Scalarization Methods: ✏-Constraint Scalarization (EC)

Basic Idea: Keep one objective and treat the rest of the objectives as constraints

MOO:
minimize

x
f(x) = (f1(x), f2(x), ..., fm(x))

EC:
minimize

x
fj(x)

subject to fi(x)  ✏i, 8i 6= j

I ✏i > 0: A desired upper bound of the i-th objective

Pros: Allow the use of powerful constrained optimization algorithms

Cons: Incorrect choices of ✏ may lead to infeasibility; hard for PF exploration
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Scalarization Methods: Weighted Chebyshev (WC)

Basic Idea: Minimize the (weighted) `1 norm of the vector-valued objective.

MOO:
minimize

x
f(x) = (f1(x), f2(x), ..., fm(x))

WC:
minimize

x
maximize

i2[m]
wi(fi(x)� ui),

I wi 2 [0, 1]: A priori weight for the i-th objective (e.g., chosen in proportion to
the relative importance of the objective)

Pros: 1) Any Pareto-optimal solution can be found by solving a WC problem
for some w; 2) Any w-WC solution corresponds to a weakly Pareto optimal
solution of the original MOO problem regardless of its convexity (necessary
and su�cient for Pareto front exploration!)

Cons: More complex objective (min-max) and could induce non-smoothness
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Algorithm Design for Non-convex MOO

Pareto Stationarity: A solution x is said to be Pareto stationary if there is
no common descent direction d 2 Rd such that rfs(x)>d < 0, 8s 2 [S].

I Pareto-stationary solution allows ties. Hence, if found, it is a necessary
condition for weak Pareto optimality

I Similar to using stationary solution in place of optimal solution in non-convex
single-objective optimization, one can use Pareto stationarity as a relaxed
criterion in solving non-convex MOO problems

I Convergence Metric for Pareto Stationarity: krf(x)�⇤k2, where �⇤ is the
minimal of min� krf(x)�k2, which motivates the multi-gradient descent
algorithm (MGDA) – a non-preference MOO method
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MGDA

Multi-Gradient Descent Algorithm (MGDA): Search a common descent direction
[Mukai, ’80, Fliege & Svaiter ’00, Desideri ’12].

1 Find an optimal weight �⇤ of gradients rF(x) , {rfs(x), 8s 2 [S]} by
solving

�⇤(x) = argmin
�2C

krF(x)�k2.

2 A common descent direction can be chosen as: d = �rF(x)�.

3 Performs the iterative update rule:

x x+ ⌘d = x� ⌘rF(x)�

until a Pareto-stationary point is reached, where ⌘ is a learning rate.
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MGDA Derivation :

Step 1 : Determine. the worst descent amount given moving dir
live
, Et , Att are given ,

and d= Ettet) .

step 2 : Find the optimal moving direction tominimize worst

descent dir

Recall descent : f(tel -f) = - 55 (5: 30)

min min - J

Ett oo fit) -f, (t) =- - E

iI
frEtt) -fit) = -Om -@

1
Step 1 :

Consider inner problem.

min-o

5,0

st
. file-free -30

i
Im(ettl-fEt) < -5 - Xm30

Lagrangian : --Ex (ft-f-o
Dual problem : max (ModiCfEt-fEt-O]

=max(m() (fit-
Note : the inner problem is minimized whenEx.



So
,
the dual problem becomes :

Fo-Taybr

mu[E-fim
"standard simplex" .

&Rizo: 1) =-E Cl
.

Step 2 : Find the optimal moving dir , to minimize worst desert
:

min-regularization
Take der. writ. & set it to 2000 :

XEt + +m -x+) = 0.
solve for - It = et-yEl ** [2) .

Plugging2 into a) yields :

*
=min IEE.

#



Convergence of MGDA (Non-Convex)

In the MGDA method, perform the following “backtracking” line search:
I Choose � 2 (0, 1). In iteration k, compute a step-size sk 2 (0, 1] as the

maximum value in the following set:

Sk :=

⇢
s =

1
2j

����j 2 N0, f(xk + sdk)  f(xk) + �srf(xk)dk

�

Assume fi(·) is Li-smooth and let Lmax := max{L1, . . . , Lm}.

Let tmin := min{(1� �)/(2Lmax), 1}

Theorem 5 ([Fliege, Vaz, & Vicente, ’19])

Suppose at least one of the objectives f1, . . . , fm is bounded from below. Let
fmin
i be the lower bound of fi(·). Let Fmin := min8i fmin

i and
Fmax
0 = max8i fmax

i (x0). The sequence {xk} generated by the MGDA method
with backtracking satisfies

min
0lk�1

kdlk
2


Fmax
0 � Fmin

Mk
= O(1/k)
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SMGDA

Stochastic Multi-Gradient Descent Algorithm (SMGDA): Use stochastic gradients
rfs(x, ⇠) as approximations of true gradient rfs(x) [Liu and Vicente, ’21].

1 Solve for �⇤ of stochastic gradients rF(x) , {rfs(x, ⇠s), 8s 2 [S]}:

�⇤(x) = argmin
�2C

krF(x)�k2.

2 A estimated common descent direction can be chosen as: d = �rF(x)�.

3 Performs the iterative update rule:

x x+ ⌘d = x� ⌘rF(x)�

until a Pareto-stationary point is reached, where ⌘ is a learning rate.
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Our General Federated MOO Framework

A FMOO systems with M clients and S objectives collectively:

min
x

Diag(FA>),

F ,

2

64
f1,1 · · · f1,M
...

. . .
...

fS,1 · · · fS,M

3

75

S⇥M

, A ,

2

64
a1,1 · · · a1,M
...

. . .
...

aS,1 · · · aS,M

3

75

S⇥M

I Matrix F groups all potential objectives fs,i(x) for each task s at each client i

I A 2 {0, 1}S⇥M is a binary objective indicator matrix, with each element
as,i = 1 if task s is of client i’s interest and as,i = 0 otherwise.

I For each task s 2 [S], the global objective function fs(x) is the average of
local objectives over all related clients, i.e., fs(x) , 1

|Rs|
P

i2Rs
fs,i(x), where

Rs = {i : as,i = 1, i 2 [M ]}.
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Di↵erent Cases of This FMOO Framework

If each client has only one distinct objective, i.e., A = IM , S = M

– Each objective fs(x), s 2 [S] is optimized only by client s

– Corresponds to the conventional multi-task learning and federated learning

If all clients share the same S objectives, i.e., A is an all-one matrix

– FMOL reduces to solving a MOO problem collaboratively with decentralized
data in a federated fashion

– E.g., jointly optimize fairness, privacy, and accuracy, ...

If each client has a di↵erent subset of objectives (i.e., objective
heterogeneity), FMLO allows distinct preferences at each client

– The most general case, where FMLO allows distinct preferences at each client.

– E.g., each customer group in a recommender system has di↵erent
combinations of shopping preferences, such as product price, brand, delivery
speed, etc.
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FMOO Algorithms: FMGDA and FSMGDA

Federated (Stochastic) Multi-Gradient Descent Alg. [Yang et al., NeurIPS’23]

At Each Client i:

1 Synchronize local models xt,0
s,i = xt, 8s 2 Si. Then perform local updates: for all

s 2 Si, for k = 1, . . . ,K:

(FMGDA): xt,k
s,i = xt,k�1

s,i � ⌘Lrfs,i(x
t,k�1
s,i ),

(FSMGDA): xt,k
s,i = xt,k�1

s,i � ⌘Lrfs,i(x
t,k�1
s,i , ⇠t,ki ).

2 Return accumulated updates {�t
s,i, s 2 Si} to server:

(FMGDA): �t
s,i =

P
k2[K] rfs,i(x

t,k
s,i ), or (FSMGDA):

�t
s,i =

P
k2[K] rfs,i(x

t,k
s,i , ⇠

t,k
i ).

At the Server:

1 Compute �t
s = 1

|Rs|
P

i2Rs
�t

s,i, 8s 2 [S], where Rs = {i : as,i = 1, i 2 [M ]}.

2 Compute �⇤
t 2 [0, 1]S by solving min�t�0 k

P
s2[S] �

t
s�

t
sk2, s.t.

P
s2[S] �

t
s = 1.

3 Let dt =
P

s2[S] �
t,⇤
s �t

s and let xt+1 = xt � ⌘tdt, with a global learning rate ⌘t.
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Convergence Results: FMGDA [Yang et al., NeurIPS’23]

Theorem 7 (FMGDA for Non-Convex Case)

L-Lipschitz smoothness:
krfs(x)�rfs(y)k  Lkx� yk, 8x,y 2 Rd, s 2 [S]

Bounded Gradient: krfs,i(x)k2  G2, 8s 2 [S], i 2 [M ]

Choosing ⌘t = ⌘  3
2(1+L) , the sequence {xt} output by FMGDA satisfies:

mint2[T ] kd̄tk
2


16(f0
s�fmin

s )
T⌘ + �, where � , 16⌘2

LK2L2G2(1+S2)
⌘ .

Corollary 1 (Convergence Rate of FMGDA)

Let ⌘t = ⌘, 8t, and let ⌘L = O(1/
p
T ), FMGDA achieves a Pareto-stationary

convergence rate of (1/T )
P

t2[T ] kd̄tk
2 = O(1/T ).

JKL (ECE@OSU) ECE 8101: Lecture 5-1 23



Convergence Results: FSMGDA [Yang et al., NeurIPS’23]

Theorem 8 (FSMGDA for Non-Convex Case)

(↵,�)-Smooth: 9↵,� > 0 s.t.
E[krf(x, ⇠)�rf(y, ⇠0

)k2]  ↵kx� yk2 + ��2

Unbiased Stochastic Gradient: E[rfs,i(x, ⇠)] = rfs,i(x), 8s 2 [S], i 2 [M ]

Bounded Stochastic Gradient: E[krfs,i(x, ⇠)k2]  D2, 8s 2 [S], i 2 [M ]

Let ⌘t = ⌘  3
2(1+L) , the sequence {xt} output by FSMGDA satisfies:

mint2[T ] E
��d̄t

��2  2S(f0
s�fmin

s )
⌘T + �, where

� = L⌘S2D2 + S(↵⌘2LK
2D2 + ��2).

Corollary 2 (Convergence Rate of FSMGDA)

Let ⌘t = ⌘ = O(1/
p
T ), 8t and ⌘L = O

�
1/T 1/4

�
, and if � = O(⌘), FSMGDA

achieves a Pareto-stationarity convergence rate of mint2[T ] Ekd̄tk
2 = O(1/

p
T ).
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Numerical Results: Two-Task Case

Training loss convergence in terms of communication rounds with di↵erent
batch-sizes under non-i.i.d. data partition in MultiMNIST.

Task Left Task Right

JKL (ECE@OSU) ECE 8101: Lecture 5-1 25



Numerical Results: Two-Task Case

The impacts of local update number K on training loss convergence in terms
of communication rounds.

Task Left Task Right
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Numerical Results: Eight-Task Case

Normalized loss with the River Flow datasets.

Impact of local step number K. Impact of batch sizes.
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Numerical Results: 40-Task Case

Experiments on CelebA dataset with 40 binary facial classification problems

Impact of batch sizes (non-i.i.d. case). Impact of batch sizes (i.i.d. case).
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Next Class

Project Presentations
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