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Outline

In this lecture:
@ Motivations and Formulation of Multi-Objective Optimization (MOO)
e MOO Algorithms

@ Convergence Results
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Multi-Objective Optimization: Motivation
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Many learning paradigms/systems are multi-task, hence multi-objective J
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Trade-offs in MOO

Trade-offs in Real-world Problems: Many real-world problems involve optimizing
multiple (potential conflicting) objectives.

@ Data: multi-modal learning
@ Tasks: multi-task learning

@ Metrics: fairness-robustness-efficiency
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MOO Formulation and Methods

@ Formulation: MOO aims at optimizing multiple objectives simultaneously,
which can be mathematically cast as:

L%I%F(X) = [fl(x)a e ,fS(X)L

where x € D C R? is the model parameter, and f, : R — R, s € [S].

e MOO Methods

— Gradient-Free Methods
* Evolutionary MOO algorithms [Zhang & Li, '07; Deb et al., '02]
* Bayesian MOO algorithms [Balakaria et al., '20; Laumanns et al., '02]

— Gradient-Based Methods

* Multi-gradient descent algorithm (MGDA) with full gradients [Mukai, '80;
Fliege & Svaiter '00; Desideri '12]

* Stochastic multi-gradient descent algorithms (SMGDA) with stochastic
gradients [Liu & Vicente, '21; Zhou et al., '22; Fernando et al., '23]

JKL (ECE@OSU) ECE 8101: Lecture 5-1



Notions of Optimality in MOO

@ Single-objective optimization (scalar-valued): x dominates y if f(x) < f(y)
— Goal: Find an optimal solution x* such that f(x*) < f(x), Vx € D

@ Multi-objective optimization (vector-valued): Not partially ordered
» Which one is better: [0,1,1] vs [1,0,1] vs [0, 0, 0].

5

(minimize) 2

Which is the dominant one?
@ 1lvs. 2

@ 1lvs. b

@ 1lvs 4

[, (mayimize)

@ Lexicographical order in some special MOO problems: the order depends on
the order of the first element in an alphabet that differs)
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Notions of Optimality in MOO

Definition 1 (Dominance)
x dominates y iff f5(x) < fs(y),Vs € [S] and fs(x) < fs(y),3s € [S].

Definition 2 (Pareto Optimality)

A solution x* is Pareto optimal if it is not dominated by any other solution.

Definition 3 (Weak Pareto Optimality)

A solution x* is weakly Pareto optimal if there does not exist x such that
fs(x) < fs(x*), Vs € [S], i.e., impossible to improve all objectives simultaneously.
v

Definition 4 (Pareto Stationarity)

A solution x is said to be Pareto stationary if there is no common descent
direction d € R? such that V. (x )Id <0,Vs € [9].

S YIQV'-I}“?D
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Pareto Front

@ Pareto front (or boundary): The
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Philosophical Classes for Solving MOO Problems

Consider the availability of a decision maker (DM) in an MOO problem domain
@ No-preference methods: No DM is expected to be available and no
preference information is assumed to be known

» Example 1: Method of global criterion: min ||f(x) — 2| s.t. x € D
» Example 2: Multi-gradient descent algorithm (MGDA)

@ A priori methods: Preference information is first asked from DM, and then a
solution best satisfying the preferences is found

@ A posteriori methods: A representative set of Pareto-optimal solutions is first
found, then DM much choose one of them

@ Interactive methods: DM is allowed to search for the most preferred solution
iteratively. In each iteration, DM is shown Pareto-optimal solution(s) and
DM describes how the solution(s) could be improved. Information given by
DM is used to generate new Pareto-optimal solution in the next iteration.

@ Hybrid methods: A mixture of some of the above
» Example: Weighted-Chebyshev MGDA [Momma, Dong, & Liu, ICML'22]
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A priori Methods

o Utility Function Methods
> Assume a utility function u(-) is available to DM
W) > UG 4 £y
o Lexicographic Methods
» Assume objectives can be ranked in the order of “importance”

@ Scalarization Methods

» Reformulate MOO as a single-objective optimization (SOO) problem, such
that optimal SOO solutions are Pareto-optimal in the original MOO problem

> Often requires that every Pareto-optimal solution of the MOO problem can be
achieved by some parameter setting of the SOO problem (Pareto front
exploration) — useful in a posterior methods

=
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Scalarization Methods: Linear Scarlization (LS)

Basic Idea: Scalarize a vector-valued objective into a scalar-valued objective by
linearly combining each objective with a user-supplied weights.

e MOO:
mini’znize f(X) = (fl(x)7f2(x)7 mafm(x))

o LS m
minixmize flx) = szfz(x)
i=1

> w; > 0: A priori weight for the i-th objective (e.g., chosen in proportion to the
relative importance of the objective)
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Scalarization Methods: Linear Scarlization (LS)

@ Pros: Simple objective structure, preserve nice properties (e.g., convexity,
smoothness, etc.)

e Cons: 1) May be difficult to choose weights in practice; 2) Cannot explore
Pareto front in the case with non-convex objectives (only finds the convex
hull of the objective set)

(2]

°
o

Objective 2 Value (f2(x))
°
Y

o
~

0.0

0.0 0.2 0.4 0.6 08 1.0
Objective 1 Value (f1(x))
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Scalarization Methods: e-Constraint Scalarization (EC)

Basic Idea: Keep one objective and treat the rest of the objectives as constraints

e MOO:
mini)znize f(X) = (fl(x)va(X)v '--7fm(x))

e EC:
minimize  f;(x)

subject to  fi(x) <€;,Vi#j

> ¢; > 0: A desired upper bound of the i-th objective

@ Pros: Allow the use of powerful constrained optimization algorithms

@ Cons: Incorrect choices of € may lead to infeasibility; hard for PF exploration
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Scalarization Methods: Weighted Chebyshev (WC)
Tcl:m,bv)s(f\&"

Basic Idea: Minimize the (weighted) ¢, norm of the vector-valued objective.

e MOO: L W,
mlnl)[mze f(X) = (fl(X),f2(X)7 o fm(x ”7(,( /Kl’
e WC: L o ‘
minimize m"g)e(l[m]lze w;(fi(x) — wy),
» w; € [0,1]: A priori weight for the i-th objective (e.g., chosen in proportion to

the relative importance of the objective)

@ Pros: 1) Any Pareto-optimal solution can be found by solving a WC problem
for some w; 2) Any w-WC solution corresponds to a weakly Pareto optimal
solution of the original MOO problem regardless of its convexity (necessary
and sufficient for Pareto front exploration!) Y we: (oY

wi
"

N . - 1 o)
e Cons: More complex objective (min-max) and could induce non-smoothness
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Algorithm Design for Non-convex MOO

o Pareto Stationarity: A solution x is said to be Pareto stationary if there is
no common descent direction d € R? such that V£,(x)"d < 0,Vs € [S].

> Pareto-stationary solution allows ties. Hence, if found, it is a necessary
condition for weak Pareto optimality

» Similar to using stationary solution in place of optimal solution in non-convex
single-objective optimization, one can use Pareto stationarity as a relaxed
criterion in solving non-convex MOO problems

» Convergence Metric for Pareto Stationarity: ||Vf(x)A*||?, where A* is the
minimal of miny || Vf(x)A||?, which motivates the multi-gradient descent
algorithm (MGDA) — a non-preference MOO method

JKL (ECE@OSU) ECE 8101: Lecture 5-1



MGDA

Multi-Gradient Descent Algorithm (MGDA): Search a common descent direction
[Mukai, '80, Fliege & Svaiter '00, Desideri '12].

© Find an optimal weight A* of gradients VF(x) £ {V f(x), Vs € [S]} by
solving

A*(x) = argmin | VF(x) A,
AeC

@ A common descent direction can be chosen as: d = —VF(X)):T

© Performs the iterative update rule:
x +x+nd =x—nVF(x)A

until a Pareto-stationary point is reached, where 7 is a learning rate.
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Convergence of MGDA (Non-Convex)

@ In the MGDA method, perform the following “backtracking” line search:

» Choose 3 € (0,1). In iteration k, compute a step-size si € (0, 1] as the
maximum value in the following set:

1
s font

e Assume f;(+) is L;-smooth and let Ly := max{Ly,..., Ly }.
o Let tmin := min{(1 — B)/(2Lmax), 1}

jE No,f(xk + Sdk) < f(Xk) + ,BSVf(Xk)dk}

Theorem 5 ([Fliege, Vaz, & Vicente, '19])

Suppose at least one of the objectives f1,..., fm is bounded from below. Let
frin pe the lower bound of fi(-). Let F™ := miny; f™" and

Er®* = maxy; f**(xq). The sequence {xy} generated by the MGDA method
with backtracking satisfies

Fmax _ Fmin
min _||d||? < >+

— Came 0% QD,
0<I<k—1 ME OL)
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SMGDA

Stochastic Multi-Gradient Descent Algorithm (SMGDA): Use stochastic gradients
V fs(x,£) as approximations of true gradient V fs(x) [Liu and Vicente, '21].

06%)

© Solve for A* of stochastic gradients VF (x) £ {V f.(x,¢,),Vs € [9]}:

A*(x) = argmin | VF(x) A, Convey &
AeC M‘) comitx
@ A estimated common descent direction can be chosen as: d = —VF(X)X).L

© Performs the iterative update rule:
x +x+nd=x—nVF(x)A

until a Pareto-stationary point is reached, where 7 is a learning rate.
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Our General Federated MOO Framework

@ A FMOO systems with M clients and S objectives collectively:
min Diag(FAT),
X
f1,1 f1,M a1l o ar,Mm

FA
fsa o fem] g asi o as,M] gy

?

» Matrix F groups all potential objectives f ;(x) for each task s at each client ¢

» A € {0,1}5*M is a binary objective indicator matrix, with each element
as,s = 1 if task s is of client 4's interest and as; = 0 otherwise.

» For each task s € [S], the global objective function f.(x) is the average of
local objectives over all related clients, i.e., fs(x) £ ﬁ > icr, fs.i(x), where
Rs ={i:as; =1,1 € [M]}.
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Different Cases of This FMOO Framework

o If each client has only one distinct objective, i.e., A =1y, S=M

— Each objective fs(x),s € [S] is optimized only by client s
— Corresponds to the conventional multi-task learning and federated learning

o If all clients share the same S objectives, i.e., A is an all-one matrix
— FMOL reduces to solving a MOO problem collaboratively with decentralized

data in a federated fashion
— E.g., jointly optimize fairness, privacy, and accuracy, ...

o If each client has a different subset of objectives (i.e., objective
heterogeneity), FMLO allows distinct preferences at each client

— The most general case, where FMLO allows distinct preferences at each client.

— E.g., each customer group in a recommender system has different
combinations of shopping preferences, such as product price, brand, delivery

speed, etc.
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FMOO Algorithms: FMGDA and FSMGDA

Federated (Stochastic) Multi-Gradient Descent Alg. [Yang et al., NeurlPS'23]

At Each Client i: Moo — 'chlAw)
@ Synchronize local models xi:? = x4,Vs € S;. Then perform local updates: for all

se S, fork=1,...,K:

(FMGDA): xi’f — bkl ULst,i(Xt’k_l),

(FSMGDA): x07 = x0y ™" =V o (x0y 1 60").
@ Return accumulated updates {A! ;, s € S;} to server:
(FMGDA): AL; = 37, 1k V/si(x45), or (FSMGDA):

AL = Yhex Vfea(x5 670).

At the Server:
Q Compute AL = (55 3,5, AL, Vs € [S], where Ry = {i: as; = 1,4 € [M]}.
@ Compute A; € [0, 1]° by solving minx,>o || > eels] AAEL?, st Y eels) AL =1.

Q Letd: =3 g AE* AL and let x¢11 = x¢ — n¢dy, with a global learning rate 7.
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Convergence Results: FMGDA [Yang et al., NeurlPS'23]

Theorem 7 (FMGDA for Non-Convex Case)

@ L-Lipschitz smoothness:
IV fs(x) = V@) < Llix = yll, vx,y € R, s € [S]

e Bounded Gradient: ||V fs;(x)||? < G2,Vs € [S],i € [M]

o Choosingny =n < ﬁ the sequence {x:} output by FMGDA satisfies:

. = 16(f0 — fmin 16n2 K2L2G? (1452
minye () d |2 < (fsTnfS ) + 6, where § & 19mL ; (1+5%)

Corollary 1 (Convergence Rate of FMGDA)

Let ny =m, Vt, and let np, = O(l/x/_T) FMGDA achieves a Pareto-stationary
convergence rate of (1/T) 3", d:||> = O(1/T).
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Convergence Results: FSMGDA [Yang et al., NeurlPS'23]

Theorem 8 (FSMGDA for Non-Convex Case)
e («,)-Smooth: Ja, B > 0 s.t.
E[|Vf(x,8) = Vf(y,&)I?] < allx -y + Bo?
@ Unbiased Stochastic Gradient: E[V f, ;(x,£)] = V fs,:(x),Vs € [S],i € [M]
@ Bounded Stochastic Gradient: E[||V fs..(x,€)|%] < D?,Vs € [9],i € [M]

o Letn=n< ﬁ the sequence {x;} output by FSMGDA satisfies:
2S(fe—fm)
nT

min;e 7] E ||(_it|}2 < + 8, where
§ = ILnS?D? + S(an2 K2D? + Ba?).

Corollary 2 (Convergence Rate of FSMGDA)

Let ny =n = O(1/VT), Vt and n;, = O (1/T**), and if B = O(n), FSMGDA
achieves a Pareto-stationarity convergence rate of min,e(q E||d¢||2 = O(1/VT).
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Numerical Results: Two-Task Case

@ Training loss convergence in terms of communication rounds with different
batch-sizes under non-i.i.d. data partition in MultiMNIST.

task L

task R

i -—- Batch size=16 1 -—— Batch size =16

l\l | --+-- Batch size =64 ' --=-- Batch size =32

ki II“t" —— Batch size =128 i —— Batch size =128

i ."Iﬁ } Batch size = 256 | ','jl ?. Batch size = 256
P, 102 Wi 2 ,\ PRSP, @102 i
o Vi Mo ,\f‘/\ 1\ o
i} .‘u;‘\" i /«I\«I\I I ]

0 20 40 60 80 100 0 20 40 60 80 100

Communication rounds Communication rounds

Task Left Task Right
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Numerical Results: Two-Task Case

@ The impacts of local update number K on training loss convergence in terms
of communication rounds.

task R

":' -m-- K=1

i -—- K=5
' —— K=10
B} : A I
10 i e k=50

2 a Al
S A ) S107? FER R A
"\ Me o Napy r o2 " &
CAT YNV I
H i =N -f\" 1 \’x'\.i”‘“\
0 20 40 60 80 100 0 20 40 60 80 100
Communication rounds Communication rounds
Task Left Task Right
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Numerical Results: Eight-Task Case

@ Normalized loss with the River Flow datasets.

Normalized Loss Normalized Loss
task 1 task 1

task 7

= Batch size=16
= Batch size=64
Batch size=128
= = Batch size=256

task 5 task 5

Impact of local step number K. Impact of batch sizes.
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Numerical Results: 40-Task Case

@ Experiments on CelebA dataset with 40 binary facial classification problems

—— batch size=16
34 = batchsize=64

— batch sizew128
== batch size=256

Impact of batch sizes (non-i.i.d. case). Impact of batch sizes (i.i.d. case).
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Next Class

Project Presentations
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