ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 5-2: Multi-Objective Optimization

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Motivations and Formulation of Multi-Objective Optimization (MOO)
- MOO Algorithms
- **Convergence Results**

Multi-Objective Optimization: Motivation

Many learning paradigms/systems are multi-task, hence multi-objective

Trade-offs in MOO

Trade-offs in Real-world Problems: Many real-world problems involve optimizing multiple (potential conflicting) objectives.

- Data: multi-modal learning
- Tasks: multi-task learning
- Metrics: fairness-robustness-efficiency

MOO Formulation and Methods

• Formulation: MOO aims at optimizing multiple objectives simultaneously, which can be mathematically cast as:

$$
\min_{\mathbf{x}\in\mathcal{D}}\mathbf{F}(\mathbf{x}):=[f_1(\mathbf{x}),\cdots,f_S(\mathbf{x})],
$$

where $\mathbf{x} \in \mathcal{D} \subseteq \mathbb{R}^d$ is the model parameter, and $f_s : \mathbb{R}^d \to \mathbb{R}, s \in [S].$

• MOO Methods

- Gradient-Free Methods
	- \star Evolutionary MOO algorithms [Zhang & Li, '07; Deb et al., '02]
	- \star Bayesian MOO algorithms [Balakaria et al., '20; Laumanns et al., '02]
- Gradient-Based Methods
	- \star Multi-gradient descent algorithm (MGDA) with full gradients [Mukai, '80; Fliege & Svaiter '00; Desideri '12]
	- \star Stochastic multi-gradient descent algorithms (SMGDA) with stochastic gradients [Liu & Vicente, '21; Zhou et al., '22; Fernando et al., '23]

Notions of Optimality in MOO

- Single-objective optimization (scalar-valued): x dominates y if $f(x) < f(y)$ \rightarrow Goal: Find an optimal solution x^{*} such that $f(x^*) \le f(x)$, $\forall x \in \mathcal{D}$
- Multi-objective optimization (vector-valued): Not partially ordered
	- \triangleright Which one is better: $[0, 1, 1]$ vs $[1, 0, 1]$ vs $[0, 0, 0]$.

Lexicographical order in some special MOO problems: the order depends on the order of the first element in an alphabet that differs)

Notions of Optimality in MOO

Definition 1 (Dominance)

x dominates y iff $f_s(\mathbf{x}) \le f_s(\mathbf{y}), \forall s \in [S]$ and $f_s(\mathbf{x}) < f_s(\mathbf{y}), \exists s \in [S]$.

Definition 2 (Pareto Optimality)

A solution x^* is Pareto optimal if it is not dominated by any other solution.

Definition 3 (Weak Pareto Optimality)

A solution \mathbf{x}^* is weakly Pareto optimal if the
 $f_s(\mathbf{x}) < f_s(\mathbf{x}^*)$, $\forall s \in [S]$, i.e., impossible to i

Definition 4 (Pareto Stationarity)

A solution \mathbf{x} is said to be Par A solution x^* is weakly Pareto optimal if there does not exist x such that $f_s(\mathbf{x}) < f_s(\mathbf{x}^*)$, $\forall s \in [S]$, i.e., impossible to improve all objectives simultaneously.

Definition 4 (Pareto Stationarity)

A solution x is said to be Pareto stationary if there is no common descent direction $\mathbf{d} \in \mathbb{R}^d$ such that $\nabla f_s(\mathbf{x})^\top \mathbf{d} < 0, \forall s \in [S].$ $\left(-\nabla f_{\alpha}(x)\right)^{i}$ d $>_{D}$

Pareto Front

• Pareto front (or boundary): The set of all Pareto-optimal solutions \mathcal{X}^*

$$
f_1(\mathbf{x}) = 1 - e^{-\sum_{i=1}^d (x_i - \frac{1}{\sqrt{d}})^2}
$$

$$
f_2(\mathbf{x}) = 1 - e^{-\sum_{i=1}^d (x_i + \frac{1}{\sqrt{d}})^2}
$$

$$
d = 2, -4 \le x_1, x_2 \le 4
$$

optimal decisions (red). (b) Objective feasible region (represented by green dots) and the Pareto front (red) for Example 1.2

Nadir objective vector: $\mathbf{z}^{\text{nadir}} = [\sup_{\mathbf{x} \in \mathcal{X}^*} f_1(\mathbf{x}), \dots, \sup_{\mathbf{x} \in \mathcal{X}^*} f_S(\mathbf{x})]^\top$ **Ideal objective vector:** $\mathbf{z}^{\text{ideal}} = [\inf_{\mathbf{x} \in \mathcal{X}^*} f_1(\mathbf{x}), \dots, \inf_{\mathbf{x} \in \mathcal{X}^*} f_S(\mathbf{x})]^\top$ (WB) (LB)

Philosophical Classes for Solving MOO Problems

Consider the availability of a decision maker (DM) in an MOO problem domain

- No-preference methods: No DM is expected to be available and no preference information is assumed to be known
	- Example 1: Method of global criterion: $\min ||f(\mathbf{x}) \mathbf{z}^{\text{ideal}}||$ s.t. $\mathbf{x} \in \mathcal{D}$
	- Example 2: Multi-gradient descent algorithm (MGDA)
- A priori methods: Preference information is first asked from DM, and then a solution best satisfying the preferences is found
- A posteriori methods: A representative set of Pareto-optimal solutions is first found, then DM much choose one of them
- Interactive methods: DM is allowed to search for the most preferred solution iteratively. In each iteration, DM is shown Pareto-optimal solution(s) and DM describes how the solution(s) could be improved. Information given by DM is used to generate new Pareto-optimal solution in the next iteration.
- Hybrid methods: A mixture of some of the above
	- Example: Weighted-Chebyshev MGDA [Momma, Dong, & Liu, ICML'22]

A priori Methods

- Utility Function Methods
	- Assume a utility function *u*(∙) is available to DM
باغ ≆ 4 (¢) v <mark>U(ع) ∞ الاغ (ع)</mark>

$$
\nu(\mathfrak{B})\geqslant\nu(\mathfrak{H})\ \ \mathfrak{h}\ \ \mathfrak{T}\geq\mathfrak{H}
$$

- **•** Lexicographic Methods
	- \triangleright Assume objectives can be ranked in the order of "importance"
- **Scalarization Methods**
	- \triangleright Reformulate MOO as a single-objective optimization (SOO) problem, such that optimal SOO solutions are Pareto-optimal in the original MOO problem
	- \triangleright Often requires that every Pareto-optimal solution of the MOO problem can be achieved by some parameter setting of the SOO problem (Pareto front exploration) – useful in a posterior methods

Scalarization Methods: Linear Scarlization (LS)

Basic Idea: Scalarize a vector-valued objective into a scalar-valued objective by linearly combining each objective with a user-supplied weights.

\n- MOO:
\n- minimize
$$
\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_m(\mathbf{x}))
$$
\n- LS:
\n- minimize $f(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x})$
\n

 \blacktriangleright $w_i \geq 0$: A priori weight for the *i*-th objective (e.g., chosen in proportion to the relative importance of the objective)

Scalarization Methods: Linear Scarlization (LS)

- Pros: Simple objective structure, preserve nice properties (e.g., convexity, smoothness, etc.)
- Cons: 1) May be difficult to choose weights in practice; 2) Cannot explore Pareto front in the case with non-convex objectives (only finds the convex hull of the objective set)

Scalarization Methods: ϵ -Constraint Scalarization (EC)

Basic Idea: Keep one objective and treat the rest of the objectives as constraints

MOO: minimize $f(\mathbf{x})=(f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_m(\mathbf{x}))$ \bullet EC: minimize $f_i(\mathbf{x})$ subject to $f_i(\mathbf{x}) \leq \epsilon_i, \forall i \neq j$

 $\blacktriangleright \epsilon_i > 0$: A desired upper bound of the *i*-th objective

- Pros: Allow the use of powerful constrained optimization algorithms
- \bullet Cons: Incorrect choices of ϵ may lead to infeasibility; hard for PF exploration

Scalarization Methods: Weighted Chebyshev (WC) Tchebyshe--

Basic Idea: Minimize the (weighted) ℓ_{∞} norm of the vector-valued objective.

calclarization Methods: Weighted Chebyshev (WC)

\n5: idea: Minimize the (weighted)
$$
\ell_{\infty}
$$
 norm of the vector-valued objective.

\n• MOO:

\n6: Minimize $f(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ $\|x\|_{\infty} = m\lambda \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \$

 $\blacktriangleright w_i \in [0,1]$: A priori weight for the *i*-th objective (e.g., chosen in proportion to the relative importance of the objective)

- Pros: 1) Any Pareto-optimal solution can be found by solving a WC problem for some w; 2) Any w-WC solution corresponds to a weakly Pareto optimal solution of the original MOO problem regardless of its convexity (necessary and sufficient for Pareto front exploration!) $w_i \in$ \lbrack
the rel
Pros: 1) A
for some we
solution of
- Cons: More complex objective (min-max) and could induce non-smoothness

Algorithm Design for Non-convex MOO

- Pareto Stationarity: A solution x is said to be Pareto stationary if there is no common descent direction $\mathbf{d} \in \mathbb{R}^d$ such that $\nabla f_s(\mathbf{x})^\top \mathbf{d} < 0, \forall s \in [S].$
	- Pareto-stationary solution allows ties. Hence, if found, it is a necessary condition for weak Pareto optimality
	- \triangleright Similar to using stationary solution in place of optimal solution in non-convex single-objective optimization, one can use Pareto stationarity as a relaxed criterion in solving non-convex MOO problems
	- ► Convergence Metric for Pareto Stationarity: $\|\nabla f(\mathbf{x})\boldsymbol{\lambda}^*\|^2$, where $\boldsymbol{\lambda}^*$ is the minimal of $\min_{\lambda} \|\nabla f(x)\lambda\|^2$, which motivates the multi-gradient descent algorithm (MGDA) – a non-preference MOO method

MGDA

Multi-Gradient Descent Algorithm (MGDA): Search a common descent direction [Mukai, '80, Fliege & Svaiter '00, Desideri '12].

1 Find an optimal weight λ^* of gradients ∇ **F**(**x**) \triangleq { ∇ *f*_{*s*}(**x**)*,* $\forall s \in [S]$ } by solving

$$
\lambda^*(\mathbf{x}) = \underset{\lambda \in C}{\operatorname{argmin}} \|\nabla \mathbf{F}(\mathbf{x})\lambda\|^2.
$$

- \bullet A common descent direction can be chosen as: $\mathbf{d} = -\nabla \mathbf{F}(\mathbf{x})\bm{\lambda}^{\star\star}$
- **3** Performs the iterative update rule:

$$
\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{d} = \mathbf{x} - \eta \nabla \mathbf{F}(\mathbf{x}) \boldsymbol{\lambda}
$$

until a Pareto-stationary point is reached, where η is a learning rate.

MGDA Derivation : pright perivation.
Step 1: Determine. the worst descent amount given moving dir d α . α , α , α , α , α , α mot given step 2: Find the optimal moving direction tominimize worst descent dir $Recall$ descent : $f(2t+1) - f(2t) = \delta_{\tilde{t}}$ (δ ; >o) min \overline{min} $-\overline{\delta}$ min $\begin{array}{|c|c|} \hline \text{min} & \text{min} & \text{v}_i \\ \hline \text{min} & \text{min} & -\delta \\ \hline \text{min} & \text{min} & -\delta \\ \hline \text{min} & \text{min} & -\frac{1}{2} \text{ (24)} = -\delta_i \leq -\delta \\ & & \vdots \\ \hline \end{array}$ $\overline{}$ f_m $(2t_{ttl}) - f_m(3t) = -\delta_m \le -\delta$ Step ¹ : Consider inner problem. $mn- \delta$
53d st. Consider more problem.
min -5
st. $f_1(\underline{\ast}_{bfl}) - f(\underline{\ast}_l) \leq -5 \leftarrow \mathbf{A}_l \geq 0$ $\lim_{t \to \infty}$ (2 t+1) - $f(z_t) \le -\delta$ $\leftarrow \lambda_m > 0$ Lagrangian : - δ - $\sum_{i=1}^{m} \lambda_i^*$ ($f(x_i) - f(x_{i+1}) - \delta$) $\frac{\partial^2 u}{\partial x^2}$ problem: max $\left[\begin{array}{c} m \infty \\ -\delta - \sum_{i=1}^{n} \lambda_i \left(\frac{1}{l_1} (x_i) - \frac{1}{l_2} (x_{i+1}) - \delta \right) \\ \frac{1}{l_1} & \frac{1}{l_2} \end{array}\right]$ = max $\left[\text{max}\left\{S(-1+\sum_{i=1}^{m}x_i)-\sum_{i=1}^{m}x_i(f_i(x_i)-f_i(x_{i+1}))\right]\right\}$ Note: the most problem is minimized when $\sum_{i=1}^m \lambda_i = 1$.

So , the dual problem becomes : $F0$ ^{-Taybr} "standard simplex" . $\frac{m}{\lambda}$, the sluad problem becomes: Fo-taght
min $\sum_{\lambda \in \Delta_1^m} \lambda_i [f(x_{t+1}) - f(x_t)]$ \approx non $\lambda^T F(z_t)$ ($z_{t+1} - z_t$)
 $\frac{\lambda \in \Delta_1^m}{\lambda}$ $\frac{\lambda}{\lambda}$ \approx non $\lambda^T F(z_t)$ ($z_{t+1} - z_t$) So, the slued problem becomes: Fo-tagh

min $\sum_{k \in \Delta} \lambda_i [f_i(\mathbf{x}_{t+1}) - f_i(\mathbf{x}_t)] \approx \max_{k \in \Delta} \frac{\lambda_i F(\mathbf{x}_{t+1} - \mathbf{x}_t)}{\sum_{k \in \Delta} \lambda_i}$

Standard sprepts.

Standard sprepts.

Standard sprepts.

Standard spreptical moving dir. to Step 2: Find the optimal moving dir, to minimize worst desert: $f(x_1>0:\sum_{i=1}^{m}x_i=1)$ = $\underline{x^*}^T(x_1)$ (2)
step 2: Find the spotmal moving dr. to minimize worst desert.
min $\underline{x^*}^T(x_t)^T(x-z_t) + \frac{1}{z_1}||x-z_t||^2$
 \overline{x} = $-\Delta p_{\text{max}}$ regularitation. Take der. writ. & set it to ²⁰⁰⁰ : w.r.t. z & set it t
 $x^* \mp (z_+)+\frac{1}{1} (z-z_+)=0$ solve for $x \neq x_{t+1} = x_t - y \text{[}z_t) x^*$ [2). Plugging 12) mbr (1) yields : $\widetilde{\gamma}^*$ $x \frac{1}{2}(x_t) + \frac{1}{1}(x - 2t) = 0$

or $x \Rightarrow x_{t+1} = x_t - 1$ $\frac{1}{2}(x_t) \frac{1}{2}$ (2)

(2) m/o (1) $\frac{1}{1}$ adds

= m/n $\left\| \frac{1}{2}(x_t) \frac{1}{2} \right\|$.

Convergence of MGDA (Non-Convex)

- In the MGDA method, perform the following "backtracking" line search:
	- \triangleright Choose $\beta \in (0, 1)$. In iteration *k*, compute a step-size $s_k \in (0, 1]$ as the maximum value in the following set:

$$
\mathcal{S}_k := \left\{ s = \frac{1}{2^j} \bigg| j \in \mathbb{N}_0, \mathbf{f}(\mathbf{x}_k + s\mathbf{d}_k) \leq \mathbf{f}(\mathbf{x}_k) + \beta s \nabla \mathbf{f}(\mathbf{x}_k) \mathbf{d}_k \right\}
$$

- Assume $f_i(\cdot)$ is L_i -smooth and let $L_{\text{max}} := \max\{L_1, \ldots, L_m\}$.
- Let $t_{\min} := \min\{(1 \beta)/(2L_{\max}), 1\}$

Theorem 5 ([Fliege, Vaz, & Vicente, '19])

Suppose at least one of the objectives f_1, \ldots, f_m *is bounded from below. Let* f_i^{\min} *be the lower bound of* $f_i(\cdot)$ *. Let* $F^{\min} := \min_{\forall i} f_i^{\min}$ and $F_0^{\max} = \max_{\forall i} f_i^{\max}(\mathbf{x}_0)$. The sequence $\{\mathbf{x}_k\}$ generated by the MGDA method *with backtracking satisfies*

$$
\min_{0\leq l\leq k-1}\|\mathbf{d}_l\|^2\leq \frac{F_0^{\max}-F^{\min}}{Mk}=\mathcal{O}(1/k)\quad \text{for all }k.
$$

SMGDA

Stochastic Multi-Gradient Descent Algorithm (SMGDA): Use stochastic gradients $\nabla f_s(\mathbf{x}, \xi)$ as approximations of true gradient $\nabla f_s(\mathbf{x})$ [Liu and Vicente, '21]. γ

0 Solve for λ^* of stochastic gradients $\nabla \mathbf{F}(\mathbf{x}) \triangleq {\nabla f_s(\mathbf{x}, \xi_s), \forall s \in [S]}$: $\mathfrak{o}(\overleftarrow{\mathfrak{g}})$

$$
\boldsymbol{\lambda}^*(\mathbf{x}) = \operatornamewithlimits{argmin}_{\boldsymbol{\lambda} \in C} \|\nabla \mathbf{F}(\mathbf{x})\boldsymbol{\lambda}\|^2.
$$

A estimated common descent direction can be chosen as: $d = -\nabla F(x)$. strongly cover

³ Performs the iterative update rule:

$$
\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{d} = \mathbf{x} - \eta \nabla \mathbf{F}(\mathbf{x}) \boldsymbol{\lambda}
$$

until a Pareto-stationary point is reached, where η is a learning rate.

connex &

Our General Federated MOO Framework

A FMOO systems with *M* clients and *S* objectives collectively:

$$
\mathbf{F} \triangleq \begin{bmatrix} f_{1,1} & \cdots & f_{1,M} \\ \vdots & \ddots & \vdots \\ f_{S,1} & \cdots & f_{S,M} \end{bmatrix}_{S \times M}, \quad \mathbf{A} \triangleq \begin{bmatrix} a_{1,1} & \cdots & a_{1,M} \\ \vdots & \ddots & \vdots \\ a_{S,1} & \cdots & a_{S,M} \end{bmatrix}_{S \times M}
$$

 \triangleright Matrix **F** groups all potential objectives $f_{s,i}(\mathbf{x})$ for each task *s* at each client *i*

- $A \in \{0,1\}^{S \times M}$ is a *binary* objective indicator matrix, with each element $a_{s,i} = 1$ if task *s* is of client *i*'s interest and $a_{s,i} = 0$ otherwise.
- For each task $s \in [S]$, the global objective function $f_s(\mathbf{x})$ is the average of $| \textbf{local objectives over all related clients, i.e., } f_s(\mathbf{x}) \triangleq \frac{1}{|R_s|} \sum_{i \in R_s} f_{s,i}(\mathbf{x})$, where $R_s = \{i : a_{s,i} = 1, i \in [M]\}.$

Different Cases of This FMOO Framework

- If each client has only one distinct objective, i.e., $\mathbf{A} = \mathbb{I}_M$, $S = M$
	- $-$ Each objective $f_s(\mathbf{x}), s \in [S]$ is optimized only by client *s*
	- Corresponds to the conventional multi-task learning and federated learning
- \bullet If all clients share the same *S* objectives, i.e., **A** is an all-one matrix
	- FMOL reduces to solving a MOO problem collaboratively with decentralized data in a federated fashion
	- E.g., jointly optimize fairness, privacy, and accuracy, ...
- If each client has a different subset of objectives (i.e., objective heterogeneity), FMLO allows distinct preferences at each client
	- The most general case, where FMLO allows distinct preferences at each client.
	- $-$ E.g., each customer group in a recommender system has different combinations of shopping preferences, such as product price, brand, delivery speed, etc.

FMOO Algorithms: FMGDA and FSMGDA

Federated (Stochastic) Multi-Gradient Descent Alg. [Yang et al., NeurIPS'23]

At Each Client *i*:

Moo-FedArg

1 Synchronize local models $\mathbf{x}_{s,i}^{t,0} = \mathbf{x}_t, \forall s \in S_i$. Then perform local updates: for all $s \in S_i$, for $k = 1, ..., K$:

(FMGDA):
$$
\mathbf{x}_{s,i}^{t,k} = \mathbf{x}_{s,i}^{t,k-1} - \eta_L \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k-1}),
$$

(FSMGDA): $\mathbf{x}_{s,i}^{t,k} = \mathbf{x}_{s,i}^{t,k-1} - \eta_L \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k-1}, \xi_i^{t,k}).$

2 Return accumulated updates $\{\Delta^t_{s,i}, s \in S_i\}$ to server: (FMGDA) : $\Delta_{s,i}^t = \sum_{k \in [K]} \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k})$, or (FSMGDA) : $\Delta_{s,i}^{t} = \sum_{k \in [K]} \nabla f_{s,i}(\mathbf{x}_{s,i}^{t,k}, \xi_i^{t,k}).$

At the Server:

• Compute
$$
\Delta_s^t = \frac{1}{|R_s|} \sum_{i \in R_s} \Delta_{s,i}^t, \forall s \in [S]
$$
, where $R_s = \{i : a_{s,i} = 1, i \in [M]\}$.

 \bullet Compute $\boldsymbol{\lambda}_t^* \in [0,1]^S$ by solving $\min_{\boldsymbol{\lambda}_t \geq \mathbf{0}} \|\sum_{s \in [S]} \lambda_s^t \Delta_s^t\|^2$, s.t. $\sum_{s \in [S]} \lambda_s^t = 1.$

 \bullet Let $\mathbf{d}_t = \sum_{s \in [S]} \lambda_s^{t,*} \Delta_s^t$ and let $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \mathbf{d}_t$, with a global learning rate $\eta_t.$

Convergence Results: FMGDA [Yang et al., NeurIPS'23]

Theorem 7 (FMGDA for Non-Convex Case) *L-Lipschitz smoothness:* $\|\nabla f_s(\mathbf{x}) - \nabla f_s(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d, s \in [S]$ • *Bounded Gradient:* $\|\nabla f_{s,i}(\mathbf{x})\|^2 \leq G^2, \forall s \in [S], i \in [M]$ Choosing $\eta_t = \eta \leq \frac{3}{2(1+L)}$, the sequence $\{x_t\}$ output by FMGDA satisfies: $\min_{t \in [T]} \|\bar{\mathbf{d}}_t\|^2 \le \frac{16(f_s^0 - f_s^{\min})}{T\eta} + \delta$, where $\delta \triangleq \frac{16\eta_L^2 K^2 L^2 G^2 (1+S^2)}{\eta}$.

Corollary 1 (Convergence Rate of FMGDA)

Let $\eta_t = \eta$, $\forall t$, and let $\eta_L = \mathcal{O}(1/\sqrt{T})$, FMGDA achieves a Pareto-stationary *convergence rate of* $(1/T) \sum_{t \in [T]} ||\bar{d}_t||^2 = \mathcal{O}(1/T)$ *.*

Convergence Results: FSMGDA [Yang et al., NeurIPS'23]

Theorem 8 (FSMGDA for Non-Convex Case)

- (α, β) -*Smooth:* $\exists \alpha, \beta > 0$ *s.t.* $\mathbb{E}[\|\nabla f(\mathbf{x}, \xi) - \nabla f(\mathbf{y}, \xi')\|^2] \leq \alpha \|\mathbf{x} - \mathbf{y}\|^2 + \beta \sigma^2$
- Unbiased Stochastic Gradient: $\mathbb{E}[\nabla f_{s,i}(\mathbf{x}, \xi)] = \nabla f_{s,i}(\mathbf{x}), \forall s \in [S], i \in [M]$
- *Bounded Stochastic Gradient:* $\mathbb{E}[\|\nabla f_{s,i}(\mathbf{x}, \xi)\|^2] \leq D^2, \forall s \in [S], i \in [M]$

• Let
$$
\eta_t = \eta \leq \frac{3}{2(1+L)}
$$
, the sequence $\{x_t\}$ output by *FSMGDA* satisfies: $\min_{t \in [T]} \mathbb{E} \left\| \bar{d}_t \right\|^2 \leq \frac{2S(f_s^0 - f_s^{\min})}{\eta T} + \delta$, where $\delta = L\eta S^2 D^2 + S(\alpha \eta_L^2 K^2 D^2 + \beta \sigma^2)$.

Corollary 2 (Convergence Rate of FSMGDA)

Let $\eta_t = \eta = \mathcal{O}(1/\sqrt{T})$, $\forall t$ and $\eta_L = \mathcal{O}(1/T^{1/4})$, and if $\beta = \mathcal{O}(\eta)$, FSMGDA *achieves a Pareto-stationarity convergence rate of* $\min_{t \in [T]} \mathbb{E} \|\bar{\mathbf{d}}_t\|^2 = \mathcal{O}(1/\sqrt{T})$ *.*

Numerical Results: Two-Task Case

• Training loss convergence in terms of communication rounds with different batch-sizes under non-i.i.d. data partition in MultiMNIST.

Numerical Results: Two-Task Case

• The impacts of local update number K on training loss convergence in terms of communication rounds.

Numerical Results: Eight-Task Case

• Normalized loss with the River Flow datasets.

Impact of local step number *K*. Impact of batch sizes.

Numerical Results: 40-Task Case

Experiments on CelebA dataset with 40 binary facial classification problems

Impact of batch sizes (non-i.i.d. case). Impact of batch sizes (i.i.d. case).

Next Class

Project Presentations