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Outline

In this lecture:
@ Motivation and Bilevel Optimization Formulations
@ Representative Algorithms

@ Convergence Results
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Bilevel Optimization (BLO) Formulation

min f (x,y"(x))

stt. y*(x) € argmin g (x,y) .
h(x,y)<0

e f, g, and h are bivariate smooth functions
@ x € R™ is the upper-level (UL) variables subject to UL constraint set U
e y € R" is the lower-level (LL) variables subject to LL constraint h(x,y) <0

@ y*(x) is a LL optimal solution
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Motivating Examples of BLO
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BLO Example: Coreset Selection for Model Training

@ Goal: Dataset reduction to ease the pain of data storage by identifying the
most informative subset of data

@ Consists of two tasks:

» (T1): Select the most representative data samples to form coreset
» (T2): Validating the performance of the selected coreset in model training

@ Problem formulation:
min 4y, (0% (w))

weu

stt. 0"(w) € argminly, (0, w).
0

> w represents weight vector for data selection, with w; = 0 meaning the i-th
sample is not selected
> O represents model training parameters

Challenge: The UL and LL tasks are intertwined!

JKL (ECE@OSU) ECE 8101: Lecture 5-1



BLO Can Be Intractable

@ A non-convex BLO problem even if UL and LL problems are convex:

min z* — zy*(z) — y*(z)?
z€[—1,1]
sit. y'(z) = argmin —(372 -y — y2).

y€[-1,1],z—y=0

» Both UL and LL problems are strongly convex

> It's trivial to see that y*(z) = =

» As a result, the UL objective function can be expressed as £(x) = —z°, a
non-convex optimization (reverse convex)

» Source of difficulty: The coupling constraint z —y =0

o If the x — y = 0 constraint is removed, the problem becomes classical
min-max (saddle-point) problem:

min  max 2% — zy — 9>
ze[-1,1] ye[-1,1]

Only focus on the subset of tractable BLO problems in this course
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Classes of Tractable BLO with Special Structures

@ The LL constraint set, if present, is linear and only related to y:
h(x,y)=Ay —b

for some matrix A and vector b of conformal dimensions

@ The solution of the LL problem is a singleton

» Often assume an even stronger condition that the LL objective g(-, ") is
strongly convex in y

> Relaxation to strictly convex settings is still being actively researched
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Two Major Classes of BLO Problems in ML Literature

@ LL-Unconstrained BLO (LU-BLO)

min f (x,y"(x))

st. y"(x) =argming (x,y) .
yeR®

o LL-Constrained BLO (LC-BLO)

min f (x,y" (x))

st. y*(x) =argming (x,y),
yeC

where C := {y|Ay — b < 0}.

LC-BLO could be much harder than LU-BLO
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Connection of BLO with Game Theory

@ BLO has strong ties with Stackelberg (or leader-following) games

» Two players: leader and follower

> Leader acts first to maximize its utility based on its knowledge of follower's
anticipated response

> Follower acts second to maximize its utility based on leader’s action

» ldentifying a solution (i.e., Stackelberg equilibrium) can be cast as BLO

» BLO also admits a Stackelberg game-theoretic interpretation (UL and LL
problems correspond to identifying optimal leader and follower actions,
respectively)

@ Special case of Stackelberg game: min-max optimization

e Seey)

» Also referred to as saddle point problem
» Min-max is also a special case of BLO with g = —f
> Also highly relevant and extensively studied in the ML literature
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Implicit Gradient (IG)

@ Reasons to consider LU-BLO and LC-BLO: UL objectives of both problems
are (potentially) differentiable w.r.t. y

@ Suppose Jacobian % exists, by chain rule:
df (x,y*(x N dy*(x)T N
TV ) — sy 00) + 2 0y v o)
«w Mrw_ 7?‘&(1«?’4\* I‘, T

> |G characterizes gradient of argmin-based LL objective w.r.t. UL variable x
» Note: IG does not always exist (even for LU-BLO and LC-BLO)
> Stronger assumptions are need for IG to exist (e.g., g(-,-) is strongly convex)

@ Even if IG exists, its computation is very different in LU-BLO and LC-BLO

» LU-BLO: IG can be expressed in closed-form using Implicit Function Theorem
» LC-BLO: IG has no closed-form in general

@ For min-max problems with unconstrained LL problem: IG can be ignored
> Vyf(x,¥"(x)) = 0 since Vyg(x,y"(x)) =0and g = —f
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BLO with Non-Singleton LL Solutions (NS-BLO)

@ NS-BLO can be written as:

. !
min X,
e ing F(xy")

st. S(x) = argming (x,y)
yeC

» S(x) denotes LL solution set
> Much harder b/c optimization over y is coupled across UL and LL objectives
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Three Main Approaches for Solving LU-BLO and LC-BLO

@ The Implicit Function (IF)-Based Approach
> Use Implicit Function Theorem to calculate IG

@ The Gradient Unrolling (GU)-Based Approach

> Unrolling a given algorithm with a fixed number of steps to approximate IG

@ The Value-Function (VF)-Based Approach

» Reformulate BLO as a single-level regularized optimization problem
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IF-Based Approach for LU-BLO

@ Consider LU-BLO problems with singleton LL solutions and the LL problem is
strongly convex in y (LLSC) cenvex
» Some applications may have a stronglyYregularized function (e.g., ||y ||3 with
large enough « so LLSC is satisfied

@ The IG can be computed as

» Both could be challenging to compute in practic
» Different IF-based approaches use different techniqlyes to approximate 1G

OB S L R Low _,
Wﬂg 51¢ o + v%%f)(/%m)—‘g* = %%)

urti z
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Basic IF-Based Framework for Solving LU-BLO

In each iteration ¢:

@ LL Optimization: Given x;, obtain an approximate LL solution y(x;)

@ Hyper-gradient Approximation: Based on y(x;), compute approximate

Jacobian and Hessian inverse: V2 g(x¢, ¥(x;)) and V2 _g(x;, ¥(x:)) !

© Compute approximate hyper-gradient as

@f(xt) = Vi f(xe,y(x:))— 2 (=440

V2005, 0) 72 0 7 050)) 1 Ve 9050)

H-! g

@ UL Optimization: Update UL variable: x;41 = x; — a@f(xt)

Main computational cost stems from computing H™'g J
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Approaches to Approximate H™'g

@ Approach 1: The conjugate gradient (CG) approach fr=a
» Map H™'g to the solution of quadratic program (QP) miny %XTHX —g'x
» Use FO methods to numerically solve the QP to approximate H™'g

» Convergence speed depends on the smallest eigenvalue of the P$D matrix H

@ Approach 2: The Sherman-Morrison-Woodbury approach to compute H~*

» Suppose B = A + UV, where A™! is known or easily computable, U and V
are low-rank matrices, and I + VAU is invertible

» Then B™' = A™!' —A™'U(I+ VA™'U)"'VA™!

» Special Case: If rank-one update (i.e., U and V become u and v,

. _ _ _ —1 TA—1
respectively), then B! = (A +uv') ' = A~ — AH_V“T%
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Approaches to Approximate H™'g S = Ty
28
@ Approach 3: The Neumann-series approximation approach

> If |H|| <1, then 25 [T-H]' - H ' as K — oo
> Popular for approximating ! (using finite K) in stochastic setting (i.e., the

UL and LL objectives are assogiated with stochastic oracle
» Choose k uniformly randomly fkom {0, ..., K — 1} and access batch samples

{9(x,y; &)1 and compute: k o *[,,.«,J[gr -
H ~ LEH <If y,yg(x v;&i)/Lg ) Od() W‘]’Lﬁ

9 =1

» Biased estimator of H™! but\ias decreases exponentially with K / DU{) A
N / sorp

@ Approach 4: Hessian-free approach ’° = ﬁ(l{ %lp)
= I+CI— > Hkl

» |f LU-BLO is in the form of

:l:>

\l

_ A 2 (L“« et[
min f (x,y"(x)), st.y (X) = argming (x, y) IIyH T8
FraﬂMﬁ

> Assumes ﬁf, y9(x¢,¥(x¢)) = 0 (reasonable when LL objective g involves deep
model, e.g., DNN with ReLU activation, where decision boundary is piece-wise
linear in a tropical hyper-surface [Alfarra et al. '22]). Hence, H &~ A\I
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Extension of |IF-Based Approaches to LC-BLO

@ |G no longer has closed-form since Vyg(x,y*(x)) = 0 does not hold

@ Example: Consider the following LC-BLO:
min x + y* (), s.t. y*(z) € argmin(z — y)?
CEG[O,I] ye[%,l]

> It's easy to show that y*(z) = 1/2 for  <1/2, and y*(z) = = for x > 1/2.
» At point = = 1/2, the mapping y*(x) is continuous but not differentiable,
hence the UL function = + y*(x) is non-differentiable.

o With additional assumptions on the matrix A in the constraint set C of
LC-BLO, one can apply IFT to the Karuch-Kuhn-Tucker (KKT) condition of
the LL problem to calculate IG [Khanduri et al. ICML'23]

> IF-based approaches are not suitable for handling general nonlinear constraints
in LL problem. VF-based approaches are often employed in this case
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GU-Based Approach for LU-BLO

Basic ldea:

@ Use an unrolled LL optimizer as an intermediate step to connect LL solution
with UL optimization process X
9=y

@ Then use automatic differentiation (AD) technique to compute gradients
w.r.t. UL variable x

The IG computation depends on the LL optimizer and no longer uses implicit
function-based expression J
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Basic GU-Based Framework for Solving LU-BLO

Let h(:) : U x C — C denote one step of an LL algorithm. In each iteration :
@ LL Optimization: Run K-step LL optimization:
Yk:h(Xt7Yk—1)7 k:17aK

Define y(x¢) :=yx = h(x¢, h(x¢, -+, h(x¢,¥0)));

@ UL Optimization: Leverage AD to compute the approximate hyper-gradient
[£32)

V(x4 3(x1)) = df (ke Mg, h(kpo - (X4, ¥0))))

dx

and update UL variable: x,41 = x; — aV f(x¢, §(x¢))
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Differences between IF-Based and UG-Based Approaches

Consider the case h(-) is gradient mapping: h(x;,yr—1) = yk_l—ﬂvgg(xt,yk_l)
with step size 8 > 0 and assume yj is independent of x.

e K =1 (i.e., a single GD step is performed for LL problem)): The IG can be

computed in closed-form as: p MAML
dy(x¢)  dlyo — B x Vyg(xs,¥0)] 2
dx - dX - _Bvx,yg(xh YO)

@ K =2: The IG can be computed in closed-form as:

dy(x¢) _ dlyr — B X Vyg(xt,y1)]
Ix = dxy = —B[I—I—ﬁxv;yg(xt,yl)}Vi’yg(xhyO)

Hessian inverse is not needed, but computational and memory requirements
rapidly increase as the number of unrolling steps increases
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Practical Considerations for UG-Based Approaches

When K is too large, manual unrolling become necessary to save memory and
computational costs
@ Forward Gradient Unrolling (FGU): The Jacobian yx w.r.t. x (IG approx.) is:

dyk _ Oyr dyx-1  Oyk
= +
dx Oyk_1._ dx ox
—— ——

Zy Ax Zg_1 Bxk

or in iterative form: Zy = ApZr_1 + By, k=1,2,..., K, with Zy = 2 =0
assuming yq is independent of x.

» Both Aj and By can be computed along with the k-th LL step
Yk = h(xt,ykr—1) and discarded immediately after Zj, is obtained, thus
significantly saving memory cost as K gets large

» However, FGU needs to keep track of Ay, By, and Zy_1, which may still be
expensive for high-dimensional x and y variables
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Practical Considerations for UG-Based Approaches

To save computation costs for high-dimensional x and y:

@ Backward Gradient Unrolling (BGU): Instead of computing IG explicitly, BGU
directly obtains gradient of UL variable in the following iterative fashion:

T

dx B ox dx Iy K
——— , s
CK Zy dx K

= (ck +Brdg)+Zf_; - Ajdgx = cx_1 + Zj_ydg_1
—_— ——
CK—1 dg-1
=-=co+Zgdo=c_1,

> i1 =cr +Blde, k=0,1,..., K, with cx = 2]
» dp_1 = Aldy, k=0,1,..., K, with dK:%

e BGU only requires storing (cy, dy) vectors throughout the recurssion by using
the Jacobian-vector product trick, thus being more advantageous for
problems with high-dimensional x and y than FGU. However, BGU still needs
to store all unrolling steps {y}%_, and may not be efficient for large K
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The Value Function (VF)-Based Approach for BLO

@ VF-based methods also do not need to compute Hessian inverse

o Key Idea: Reformulate BLO into constrained single-level optimization

min_ f(x,y), s.t. g(x,y) < ¢g*(x),
x,y€eC

where g*(x) := minycc g(x,y) is referred to as the value function (VF)

> Challenge: g*(x) is not necessarily smooth and can be non-convex

o A relaxed version: replace g*(x) with a smooth surrogate
93, (x) = ming(x, y) + 5L 1y13 + 2
K yeC ’ 2

» p = {p1,po} is a pair of positive constants to induce smoothness of g}, (x)
> With the relaxed VF formulation, one can adopt standard nonlinear
optimization algorithms (e.g., penalty-based or interior-point methods)
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Convergence Metrics of BLO

o LU-BLO:
» Focus on the notion of e-stationary of UL hyper-gradient
» Deterministic setting: A UL solution X is e-stationary if |V f(%,y*(%))||3 < €

» Stochastic setting: A UL solution X is e-stationary if E[||Vf(X,y*(X))||3] < ¢
where E[-] is taken overall all randomness of the algorithm

> Note: When UL problem in LU-BLO is constrained (i.e., Y C R™), then the
UL objective f(X,y" (X)) may not be differentiable over X in general

o LC-BLO:
> If using the IF-based approach and if IF is differentiable, similar e-stationarity
can be used
> If IF is non-differentiable, can use subgradient optimality, proximal gradient
methods, and Moreau envlope techniques
> If using VF-based approaches, a widely used stationarity metric is the KKT
stationarity

@ Further, one often considers oracle complexity to quantify the number of
gradient evaluations to achieve e-stationarity
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Convergence Results of Methods for Solving LU-BLO

Classification of methods for solving LU-BLO:

@ Deterministic vs. Stochastic
> |F-based methods: Replace UL and LL gradients by appropriate stochastic
gradient estimates. However, obtaining unbiased estimator for Hessian inverse
in IG computation is challenging

@ Single-loop vs. Double-loop

> Single-loop: Only performs a fixed number of steps for LL updates before
every UL update

» Double-loop: As many LL updates steps as need to obtain a very accurate
approximation of y*(x)

> Single-loop is easy to implement, while double-loop is easy to analyze

@ Vanilla SGD vs. Momentum-based SGD vs. VR-based SGD

» Momentum-based and VR-based methods typically have better theoretical
convergence rate
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IF-Based Stochastic Method for LU-BLO & LC-BLO

Given initial xg and iteration number T"; In each iteration ¢:

@ LL Optimization: Given x4, call vanilla SGD, momentum-based SGD, or
VR-based SGD to obtain LL solution y(x;)

@ Approximation: Compute stochastic estimate of UL hypergradient:
> Get stochastic versions of Vi f(x¢,¥(x¢)), Vy f(x¢, y(xt)),@iyg(xt, y(xt))
> Approximate Hessian inverse V2 ,g(x;, §(x¢)) ™"

» Obtain stochastic estimate of UL hyper-gradient @f(xt,ft) for x;

© UL Optimization: Call vanilla SGD, momentum-based SGD, or VR-based
SGD to update x;
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Convergence Results of BLO Methods

e B
| v f% I::,;,Ju
PP g bt UL e L .
et LS (T.l)-dep- Stochastic BLO
\, Method Principle Loop UL OC LL OC
"BSA [Ghadimi & Wang "18] IF Double | O(e~?) O(e3)
(U—)Qu.‘(‘n/én"”» TTS.A [Hong et al. '20] IF Single | O(e=2) | O(e™2?) | w
" stocBio [Ji et al. ICML'21] &nst IF Double | O(e™?) O(c=2) ocke)
SOBA [Dagreou et al. NeurlPS'22] IF Single O(e7?) O(e7?)
ALSET [Chen et al. 21] IF Single O(e7?) O(e?) loaks
F2SA [Kwon et al. 23] VF Single | O(e=3°) | O(e=3)
AmIGO [Arbel & Mairal, ICLR'22] IF Double | O(e~?) O(e~?)
Momentum-Based and VR-Based BLO
Method Principle Loop UL OC LL OC
STABLE [Chen et al. AISTATS22] Ml IF Single 0 ?) 0 ?)
SUSTAIN [Khanduri et al. NeurlPS'21]¢ IF Single O(e~19) O(e~1?)
VRBO [Yang et al. NeurlPS '21]57‘”’%8 IF Double O(e~19) O(e~19)
SABA [Dagreou et al. NeurlPS'22] skah IF Double | O(N2/3¢=1) | O(N?/3¢~1)
F3SA [Kwon et al. 23] S VF Single O(e=25) O(e—29)
SBEW [Akhtar et al. "21] M. IF Single O(e %) O(e™ )
;t =
Sk Vg = ﬂé“ €'0q6[7:l/%{»), okt Fa2D: 'gp:AL (&k.am)
Yo = Yoo fEL- 27D 2= by Chi g )
ey = e = yE (KR Lpa| =% V(G

JKL (ECE@OSU) ECE 8101: Lecture 5-1

27



Convergence Results of BLO Methods

Deterministic BLO

Method Principle Loop UL OC LL OC
. BA [Ghadimi & Wang "18] IF Single | O(e™1) | O(e~12%)
ar AID-BIO [Ji et al. ICML'21 IF Single | O(c 1) | O(c D
ITD-BIO [Ji et al. ICML21 GU Double | O(c 1) | O(c )
g MSTSA [Khanduri et al. '21] IF Single | O(c 1) | O(c 1))
K-RMD [Shaban et al. AISTATS'19] GU Double | O(e=2) | O(Ke?)
FGU/BGU [Franceschi et al. ICML'21] GU Double N/A N/A
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