
ECE 8101: Nonconvex Optimization

for Machine Learning

Lecture Note 5-1: Bilevel Optimization

Jia (Kevin) Liu

Associate Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Autumn 2024

JKL (ECE@OSU) ECE 8101: Lecture 5-1 1

Outline

In this lecture:

Motivation and Bilevel Optimization Formulations

Representative Algorithms

Convergence Results

JKL (ECE@OSU) ECE 8101: Lecture 5-1 2

Bilevel Optimization (BLO) Formulation

min
x2U

f (x,y⇤(x))

s.t. y
⇤(x) 2 argmin

h(x,y)0
g (x,y) .

f , g, and h are bivariate smooth functions

x 2 Rm is the upper-level (UL) variables subject to UL constraint set U
y 2 Rn is the lower-level (LL) variables subject to LL constraint h(x,y)  0

y
⇤(x) is a LL optimal solution

JKL (ECE@OSU) ECE 8101: Lecture 5-1 3

Motivating Examples of BLO

Meta Learning

Hyper-parameter Optimization

Actor-critic in RL

Continual Learning

Coreset Selection

Pretraining-Finetuning Pipeline for LLMs and LFMs

JKL (ECE@OSU) ECE 8101: Lecture 5-1 4

"Learning to learn"

UL : pick/adjust hyper-para
.

L : Fr some leaving -/
chosen hip to

verify performance.

L Critic: evaluate how good the current policy is (PE)
UL

.
Actor : improve policy para . (PI)

To avoid catastrophic forgetting (EF) :
"dath reply.

wasPerche
,

S

BLO Example: Coreset Selection for Model Training

Goal: Dataset reduction to ease the pain of data storage by identifying the
most informative subset of data

Consists of two tasks:
I (T1): Select the most representative data samples to form coreset
I (T2): Validating the performance of the selected coreset in model training

Problem formulation:

min
w2U

`val (✓
⇤(w))

s.t. ✓⇤(w) 2 argmin
✓

ltr (✓,w) .

I w represents weight vector for data selection, with wi = 0 meaning the i-th
sample is not selected

I ✓ represents model training parameters

Challenge: The UL and LL tasks are intertwined!

JKL (ECE@OSU) ECE 8101: Lecture 5-1 5

BLO Can Be Intractable

A non-convex BLO problem even if UL and LL problems are convex:

min
x2[�1,1]

x2 � xy⇤(x)� y⇤(x)2

s.t. y⇤(x) = argmin
y2[�1,1],x�y=0

�(x2 � xy � y2).

I Both UL and LL problems are strongly convex
I It’s trivial to see that y⇤(x) = x
I As a result, the UL objective function can be expressed as `(x) = �x2, a

non-convex optimization (reverse convex)
I Source of di�culty: The coupling constraint x� y = 0

If the x� y = 0 constraint is removed, the problem becomes classical
min-max (saddle-point) problem:

min
x2[�1,1]

max
y2[�1,1]

x2 � xy � y2

Only focus on the subset of tractable BLO problems in this course

JKL (ECE@OSU) ECE 8101: Lecture 5-1 6

Classes of Tractable BLO with Special Structures

1 The LL constraint set, if present, is linear and only related to y:

h(x,y) = Ay � b

for some matrix A and vector b of conformal dimensions

2 The solution of the LL problem is a singleton

I Often assume an even stronger condition that the LL objective g(·, ·) is
strongly convex in y

I Relaxation to strictly convex settings is still being actively researched

JKL (ECE@OSU) ECE 8101: Lecture 5-1 7

Two Major Classes of BLO Problems in ML Literature

LL-Unconstrained BLO (LU-BLO)

min
x2U

f (x,y⇤(x))

s.t. y
⇤(x) = argmin

y2Rn
g (x,y) .

LL-Constrained BLO (LC-BLO)

min
x2U

f (x,y⇤(x))

s.t. y
⇤(x) = argmin

y2C
g (x,y) ,

where C := {y|Ay � b  0}.

LC-BLO could be much harder than LU-BLO

JKL (ECE@OSU) ECE 8101: Lecture 5-1 8

Connection of BLO with Game Theory

BLO has strong ties with Stackelberg (or leader-following) games
I Two players: leader and follower
I Leader acts first to maximize its utility based on its knowledge of follower’s

anticipated response
I Follower acts second to maximize its utility based on leader’s action
I Identifying a solution (i.e., Stackelberg equilibrium) can be cast as BLO
I BLO also admits a Stackelberg game-theoretic interpretation (UL and LL

problems correspond to identifying optimal leader and follower actions,
respectively)

Special case of Stackelberg game: min-max optimization

min
x2U

max
y2C

f(x,y)

I Also referred to as saddle point problem
I Min-max is also a special case of BLO with g = �f
I Also highly relevant and extensively studied in the ML literature

JKL (ECE@OSU) ECE 8101: Lecture 5-1 9

Implicit Gradient (IG)

Reasons to consider LU-BLO and LC-BLO: UL objectives of both problems
are (potentially) di↵erentiable w.r.t. y

Suppose Jacobian dy⇤(x)
dx exists, by chain rule:

df(x,y⇤(x))

dy
= rxf(x,y

⇤(x)) +
dy⇤(x)>

dx| {z }
IG

ryf(x,y
⇤(x))

I IG characterizes gradient of argmin-based LL objective w.r.t. UL variable x

I Note: IG does not always exist (even for LU-BLO and LC-BLO)
I Stronger assumptions are need for IG to exist (e.g., g(·, ·) is strongly convex)

Even if IG exists, its computation is very di↵erent in LU-BLO and LC-BLO
I LU-BLO: IG can be expressed in closed-form using Implicit Function Theorem
I LC-BLO: IG has no closed-form in general

For min-max problems with unconstrained LL problem: IG can be ignored
I ryf(x,y

⇤(x)) = 0 since ryg(x,y
⇤(x)) = 0 and g = �f

JKL (ECE@OSU) ECE 8101: Lecture 5-1 10

"hyper-quaent"

BLO with Non-Singleton LL Solutions (NS-BLO)

NS-BLO can be written as:

min
x2U,y02S(x)

f (x,y0)

s.t. S(x) = argmin
y2C

g (x,y)

I S(x) denotes LL solution set
I Much harder b/c optimization over y is coupled across UL and LL objectives

JKL (ECE@OSU) ECE 8101: Lecture 5-1 11

Three Main Approaches for Solving LU-BLO and LC-BLO

The Implicit Function (IF)-Based Approach
I Use Implicit Function Theorem to calculate IG

The Gradient Unrolling (GU)-Based Approach
I Unrolling a given algorithm with a fixed number of steps to approximate IG

The Value-Function (VF)-Based Approach
I Reformulate BLO as a single-level regularized optimization problem

JKL (ECE@OSU) ECE 8101: Lecture 5-1 12

IF-Based Approach for LU-BLO

Consider LU-BLO problems with singleton LL solutions and the LL problem is
strongly convex in y (LLSC)

I Some applications may have a strongly regularized function (e.g., �kyk22 with
large enough � so LLSC is satisfied

The IG can be computed as

dy⇤(x)>

dx
= �r2

x,yg(x,y
⇤(x))r2

y,yg(x,y
⇤(x))�1

I IG computation involves Jacobian r2
x,yg and Hessian inverse r2

y,yg
I Both could be challenging to compute in practice
I Di↵erent IF-based approaches use di↵erent techniques to approximate IG

JKL (ECE@OSU) ECE 8101: Lecture 5-1 13

n

(1) : 4yg(1 , y
* (2))= 0

t

Totakeing S

Basic IF-Based Framework for Solving LU-BLO

In each iteration t:

1 LL Optimization: Given xt, obtain an approximate LL solution ŷ(xt)

2 Hyper-gradient Approximation: Based on ŷ(xt), compute approximate
Jacobian and Hessian inverse: r̂2

x,yg(xt, ŷ(xt)) and r̂2
y,yg(xt, ŷ(xt))�1

3 Compute approximate hyper-gradient as

r̂f(xt) = rxf(xt, ŷ(xt))�
r̂2

x,yg(xt, ŷ(xt)) r̂2
y,yg(xt, ŷ(xt))

�1

| {z }
H�1

ryf(xt, ŷ(xt))| {z }
g

4 UL Optimization: Update UL variable: xt+1 = xt � ↵r̂f(xt)

Main computational cost stems from computing H
�1

g

JKL (ECE@OSU) ECE 8101: Lecture 5-1 14

E)(2+, Yt)

F

Approaches to Approximate H
�1
g

Approach 1: The conjugate gradient (CG) approach
I Map H

�1
g to the solution of quadratic program (QP) minx

1
2x

>
Hx� g

>
x

I Use FO methods to numerically solve the QP to approximate H
�1

g

I Convergence speed depends on the smallest eigenvalue of the PSD matrix H

Approach 2: The Sherman-Morrison-Woodbury approach to compute H
�1

I Suppose B = A+UV, where A
�1 is known or easily computable, U and V

are low-rank matrices, and I+VA
�1

U is invertible
I Then B

�1 = A
�1 �A

�1
U(I+VA

�1
U)�1

VA
�1

I Special Case: If rank-one update (i.e., U and V become u and v,

respectively), then B
�1 = (A+ uv

>)�1 = A
�1 � A�1uv>A�1

1+v>A�1u

JKL (ECE@OSU) ECE 8101: Lecture 5-1 15

#=g

D

Approaches to Approximate H
�1
g

Approach 3: The Neumann-series approximation approach
I If kHk  1, then

PK
i=0[I�H]i ! H

�1 as K ! 1
I Popular for approximating H

�1 (using finite K) in stochastic setting (i.e., the
UL and LL objectives are associated with stochastic oracle

I Choose k uniformly randomly from {0, . . . ,K � 1} and access batch samples
{g(x,y; ⇠k)}ki=1 and compute:

H
�1 ⇡ k

Lg

kY

i=1

✓
I�r2

y,yg(x,y; ⇠i)/Lg

◆

I Biased estimator of H�1 but bias decreases exponentially with K

Approach 4: Hessian-free approach
I If LU-BLO is in the form of

min
x2U

f (x,y⇤(x)) , s.t. y⇤(x) = argmin
y2Rn

g (x,y) +
�
2
kyk22

I Assumes r̂2
y,yg(xt, ŷ(xt)) ⇡ 0 (reasonable when LL objective g involves deep

model, e.g., DNN with ReLU activation, where decision boundary is piece-wise
linear in a tropical hyper-surface [Alfarra et al. ’22]). Hence, H ⇡ �I

JKL (ECE@OSU) ECE 8101: Lecture 5-1 16

=

&
FO -Taylor approx.

O(k) sample's

& Noctampls
#Z a wl game

Ex= E+CE-
& Lin et

at .

zom('2)
"Prometheus .

"

Extension of IF-Based Approaches to LC-BLO

IG no longer has closed-form since ryg(x,y⇤(x)) = 0 does not hold

Example: Consider the following LC-BLO:

min
x2[0,1]

x+ y⇤(x), s.t. y⇤(x) 2 argmin
y2[12 ,1]

(x� y)2

I It’s easy to show that y⇤(x) = 1/2 for x  1/2, and y⇤(x) = x for x > 1/2.
I At point x = 1/2, the mapping y⇤(x) is continuous but not di↵erentiable,

hence the UL function x+ y⇤(x) is non-di↵erentiable.

With additional assumptions on the matrix A in the constraint set C of
LC-BLO, one can apply IFT to the Karuch-Kuhn-Tucker (KKT) condition of
the LL problem to calculate IG [Khanduri et al. ICML’23]

I IF-based approaches are not suitable for handling general nonlinear constraints
in LL problem. VF-based approaches are often employed in this case

JKL (ECE@OSU) ECE 8101: Lecture 5-1 17

-

GU-Based Approach for LU-BLO

Basic Idea:

Use an unrolled LL optimizer as an intermediate step to connect LL solution
with UL optimization process

Then use automatic di↵erentiation (AD) technique to compute gradients
w.r.t. UL variable x

The IG computation depends on the LL optimizer and no longer uses implicit
function-based expression

JKL (ECE@OSU) ECE 8101: Lecture 5-1 18

-

- y

Basic GU-Based Framework for Solving LU-BLO

Let h(·) : U ⇥ C ! C denote one step of an LL algorithm. In each iteration t:

1 LL Optimization: Run K-step LL optimization:

yk = h(xt,yk�1), k = 1, . . . ,K.

Define ŷ(xt) := yK = h(xt, h(xt, · · · , h(xt,y0)));

2 UL Optimization: Leverage AD to compute the approximate hyper-gradient

r̂f(xt, ŷ(xt)) :=
df(xt, h(xt, h(xt, · · · , h(xt,y0))))

dx

and update UL variable: xt+1 = xt � ↵r̂f(xt, ŷ(xt))

JKL (ECE@OSU) ECE 8101: Lecture 5-1 19

-

jt)
m

Di↵erences between IF-Based and UG-Based Approaches

Consider the case h(·) is gradient mapping: h(xt,yk�1) = yk�1��rxg(xt,yk�1)
with step size � > 0 and assume y0 is independent of x.

K = 1 (i.e., a single GD step is performed for LL problem)): The IG can be
computed in closed-form as:

dŷ(xt)

dx
=

d[y0 � � ⇥ryg(xt,y0)]

dx
= ��r2

x,yg(xt,y0)

K = 2: The IG can be computed in closed-form as:

dŷ(xt)

dx
=

d[y1 � � ⇥ryg(xt,y1)]

dx
= ��[I+�⇥r2

y,yg(xt,y1)]r2
x,yg(xt,y0)

Hessian inverse is not needed, but computational and memory requirements
rapidly increase as the number of unrolling steps increases

JKL (ECE@OSU) ECE 8101: Lecture 5-1 20

&

X
MAML.

Practical Considerations for UG-Based Approaches

When K is too large, manual unrolling become necessary to save memory and
computational costs

Forward Gradient Unrolling (FGU): The Jacobian yK w.r.t. x (IG approx.) is:

dyK

dx| {z }
ZK

=
@yK

@yK�1| {z }
AK

dyK�1

dx| {z }
ZK�1

+
@yK

@x| {z }
BK

or in iterative form: Zk = AkZk�1 +Bk, k = 1, 2, . . . ,K, with Z0 = y0

dx = 0

assuming y0 is independent of x.

I Both Ak and Bk can be computed along with the k-th LL step
yk = h(xt,yk�1) and discarded immediately after Zk is obtained, thus
significantly saving memory cost as K gets large

I However, FGU needs to keep track of Ak, Bk, and Zk�1, which may still be
expensive for high-dimensional x and y variables

JKL (ECE@OSU) ECE 8101: Lecture 5-1 21

Practical Considerations for UG-Based Approaches

To save computation costs for high-dimensional x and y:

Backward Gradient Unrolling (BGU): Instead of computing IG explicitly, BGU
directly obtains gradient of UL variable in the following iterative fashion:

df(x,yK)

dx
=

@f(x,yK)

@x| {z }
cK

+
dy>

K

dx| {z }
Z

>
K

@f(x,yK)

@yK| {z }
dK

(FGU)
= cK + (Z>

K�1A
>
K +B

>
K)

| {z }
Z

>
K

dK

= (cK +B
>
KdK)| {z }

cK�1

+Z
>
K�1 ·A>

KdK| {z }
dK�1

= cK�1 + Z
>
K�1dK�1

= · · · = c0 + Z
>
0 d0 = c�1,

I ck�1 = ck +B
>
k dk, k = 0, 1, . . . ,K, with cK = @f(x,yK)

@x

I dk�1 = A
>
k dk, k = 0, 1, . . . ,K, with dK = f(x,yK)

@yK

BGU only requires storing (ck,dk) vectors throughout the recurssion by using
the Jacobian-vector product trick, thus being more advantageous for
problems with high-dimensional x and y than FGU. However, BGU still needs
to store all unrolling steps {yk}Kk=1 and may not be e�cient for large K

JKL (ECE@OSU) ECE 8101: Lecture 5-1 22

The Value Function (VF)-Based Approach for BLO

VF-based methods also do not need to compute Hessian inverse

Key Idea: Reformulate BLO into constrained single-level optimization

min
x,y2C

f(x,y), s.t. g(x,y)  g⇤(x),

where g⇤(x) := miny2C g(x,y) is referred to as the value function (VF)

I Challenge: g⇤(x) is not necessarily smooth and can be non-convex

A relaxed version: replace g⇤(x) with a smooth surrogate

g⇤µ(x) = min
y2C

g(x,y) +
µ1

2
kyk22 + µ2

I µ := {µ1, µ2} is a pair of positive constants to induce smoothness of g⇤µ(x)
I With the relaxed VF formulation, one can adopt standard nonlinear

optimization algorithms (e.g., penalty-based or interior-point methods)

JKL (ECE@OSU) ECE 8101: Lecture 5-1 23

-

Convergence Metrics of BLO

LU-BLO:

I Focus on the notion of ✏-stationary of UL hyper-gradient

I Deterministic setting: A UL solution x̄ is ✏-stationary if krf(x̄,y⇤(x̄))k22  ✏

I Stochastic setting: A UL solution x̄ is ✏-stationary if E[krf(x̄,y⇤(x̄))k22]  ✏,
where E[·] is taken overall all randomness of the algorithm

I Note: When UL problem in LU-BLO is constrained (i.e., U ⇢ Rm), then the
UL objective f(x̄,y⇤(x̄)) may not be di↵erentiable over x̄ in general

LC-BLO:
I If using the IF-based approach and if IF is di↵erentiable, similar ✏-stationarity

can be used
I If IF is non-di↵erentiable, can use subgradient optimality, proximal gradient

methods, and Moreau envlope techniques
I If using VF-based approaches, a widely used stationarity metric is the KKT

stationarity

Further, one often considers oracle complexity to quantify the number of
gradient evaluations to achieve ✏-stationarity

JKL (ECE@OSU) ECE 8101: Lecture 5-1 24

Convergence Results of Methods for Solving LU-BLO

Classification of methods for solving LU-BLO:

Deterministic vs. Stochastic
I IF-based methods: Replace UL and LL gradients by appropriate stochastic

gradient estimates. However, obtaining unbiased estimator for Hessian inverse
in IG computation is challenging

Single-loop vs. Double-loop
I Single-loop: Only performs a fixed number of steps for LL updates before

every UL update
I Double-loop: As many LL updates steps as need to obtain a very accurate

approximation of y⇤(x)
I Single-loop is easy to implement, while double-loop is easy to analyze

Vanilla SGD vs. Momentum-based SGD vs. VR-based SGD
I Momentum-based and VR-based methods typically have better theoretical

convergence rate

JKL (ECE@OSU) ECE 8101: Lecture 5-1 25

IF-Based Stochastic Method for LU-BLO & LC-BLO

Given initial x0 and iteration number T ; In each iteration t:

1 LL Optimization: Given xt, call vanilla SGD, momentum-based SGD, or
VR-based SGD to obtain LL solution ŷ(xt)

2 Approximation: Compute stochastic estimate of UL hypergradient:
I Get stochastic versions of rxf(xt, ŷ(xt)),ryf(xt, ŷ(xt)),r̂2

x,yg(xt, ŷ(xt))
I Approximate Hessian inverse r̂2

y,yg(xt, ŷ(xt))
�1

I Obtain stochastic estimate of UL hyper-gradient r̂f(xt, ⇠t) for xt

3 UL Optimization: Call vanilla SGD, momentum-based SGD, or VR-based
SGD to update xt

JKL (ECE@OSU) ECE 8101: Lecture 5-1 26

Convergence Results of BLO Methods

Stochastic BLO
Method Principle Loop UL OC LL OC

BSA [Ghadimi & Wang ’18] IF Double O(✏�2) O(✏�3)
TTSA [Hong et al. ’20] IF Single O(✏�2.5) O(✏�2.5)

stocBio [Ji et al. ICML’21] IF Double O(✏�2) O(✏�2)
SOBA [Dagreou et al. NeurIPS’22] IF Single O(✏�2) O(✏�2)

ALSET [Chen et al. 21] IF Single O(✏�2) O(✏�2)
F2SA [Kwon et al. 23] VF Single O(✏�3.5) O(✏�3.5)

AmIGO [Arbel & Mairal, ICLR’22] IF Double O(✏�2) O(✏�2)

Momentum-Based and VR-Based BLO
Method Principle Loop UL OC LL OC

STABLE [Chen et al. AISTATS’22] IF Single O(✏�2) O(✏�2)
SUSTAIN [Khanduri et al. NeurIPS’21] IF Single O(✏�1.5) O(✏�1.5)

VRBO [Yang et al. NeurIPS ’21] IF Double O(✏�1.5) O(✏�1.5)
SABA [Dagreou et al. NeurIPS’22] IF Double O(N2/3

✏
�1) O(N2/3

✏
�1)

F3SA [Kwon et al. 23] VF Single O(✏�2.5) O(✏�2.5)
SBFW [Akhtar et al. ’21] IF Single O(✏�4) O(✏�4)

JKL (ECE@OSU) ECE 8101: Lecture 5-1 27

1.Newman eferer
↓

cute /50. BS-

Cust oc)LRS
.

0 (1)BS

M

M

-VRspepte
- M .

SOBA : yet = It- Pogget ,At), Star.....1 AmzG : EFApr,1)
Yt+= It -pty----) zi=BrCryp,Ek+7-
+ = It - r+ (HG) , =Ex-VCHE).

Convergence Results of BLO Methods

Deterministic BLO
Method Principle Loop UL OC LL OC

BA [Ghadimi & Wang ’18] IF Single O(✏�1) O(✏�1.25)
AID-BIO [Ji et al. ICML’21] IF Single O(✏�1) O(✏�1)
ITD-BIO [Ji et al. ICML’21] GU Double O(✏�1) O(✏�1)
MSTSA [Khanduri et al. ’21] IF Single O(✏�1) O(✏�1)

K-RMD [Shaban et al. AISTATS’19] GU Double O(✏�2) O(K✏
�2)

FGU/BGU [Franceschi et al. ICML’21] GU Double N/A N/A

JKL (ECE@OSU) ECE 8101: Lecture 5-1 28

GD .

GP

2n:GD
Out= M. -

