ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 5-1: Bilevel Optimization

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Motivation and Bilevel Optimization Formulations
- Representative Algorithms
- Convergence Results

Bilevel Optimization (BLO) Formulation

$$\begin{split} & \min_{\mathbf{x} \in \mathcal{U}} f\left(\mathbf{x}, \mathbf{y}^{*}(\mathbf{x})\right) \\ & \text{s.t.} \quad \mathbf{y}^{*}(\mathbf{x}) \in \operatorname*{argmin}_{h(\mathbf{x}, \mathbf{y}) \leq 0} g\left(\mathbf{x}, \mathbf{y}\right). \end{split}$$

- f, g, and h are bivariate smooth functions
- $\mathbf{x} \in \mathbb{R}^m$ is the upper-level (UL) variables subject to UL constraint set $\mathcal U$
- $\mathbf{y} \in \mathbb{R}^n$ is the lower-level (LL) variables subject to LL constraint $h(\mathbf{x},\mathbf{y}) \leq 0$
- $\mathbf{y}^*(\mathbf{x})$ is a LL optimal solution

Motivating Examples of BLO

• Meta Learning "Learning to learn' UL: pick/adjust hyper-para. LL: TM some learny u/ chosen hp to verify performance • Hyper-parameter Optimization • Actor-critic in RE Critic : evolvate how good the current policy is (PE) W. Autor : improve policy para (PI) To avoid catastrophic forgetting (CF): data raply action tion netuning Pipeline for LLMa and LTM Continual Learning Coreset Selection

Pretraining-Finetuning Pipeline for LLMs and LFMs

BLO Example: Coreset Selection for Model Training

- Goal: Dataset reduction to ease the pain of data storage by identifying the most informative subset of data
- Consists of two tasks:
 - ▶ (T1): Select the most representative data samples to form coreset
 - (T2): Validating the performance of the selected coreset in model training
- Problem formulation:

$$\begin{split} & \min_{\mathbf{w} \in \mathcal{U}} \ell_{\mathrm{val}} \left(\boldsymbol{\theta}^{*}(\mathbf{w}) \right) \\ & \mathsf{s.t.} \quad \boldsymbol{\theta}^{*}(\mathbf{w}) \in \operatorname*{argmin}_{\boldsymbol{\theta}} l_{\mathrm{tr}} \left(\boldsymbol{\theta}, \mathbf{w} \right). \end{split}$$

- w represents weight vector for data selection, with $w_i = 0$ meaning the *i*-th sample is not selected
- θ represents model training parameters

Challenge: The UL and LL tasks are intertwined!

BLO Can Be Intractable

• A non-convex BLO problem even if UL and LL problems are convex:

$$\min_{x \in [-1,1]} x^2 - xy^*(x) - y^*(x)^2$$

s.t. $y^*(x) = \operatorname*{argmin}_{y \in [-1,1], x - y = 0} -(x^2 - xy - y^2).$

- Both UL and LL problems are strongly convex
- It's trivial to see that $y^*(x) = x$
- As a result, the UL objective function can be expressed as ℓ(x) = −x², a non-convex optimization (reverse convex)
- Source of difficulty: The coupling constraint x y = 0
- If the x y = 0 constraint is removed, the problem becomes classical min-max (saddle-point) problem:

$$\min_{x \in [-1,1]} \max_{y \in [-1,1]} x^2 - xy - y^2$$

Only focus on the subset of tractable BLO problems in this course

Classes of Tractable BLO with Special Structures

1 The LL constraint set, if present, is linear and only related to y:

$$h(\mathbf{x}, \mathbf{y}) = \mathbf{A}\mathbf{y} - \mathbf{b}$$

for some matrix ${\bf A}$ and vector ${\bf b}$ of conformal dimensions

- The solution of the LL problem is a singleton
 - Often assume an even stronger condition that the LL objective $g(\cdot, \cdot)$ is strongly convex in y
 - Relaxation to strictly convex settings is still being actively researched

Two Major Classes of BLO Problems in ML Literature

• LL-Unconstrained BLO (LU-BLO)

$$\begin{split} \min_{\mathbf{x} \in \mathcal{U}} f\left(\mathbf{x}, \mathbf{y}^{*}(\mathbf{x})\right) \\ \text{s.t.} \quad \mathbf{y}^{*}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^{n}} g\left(\mathbf{x}, \mathbf{y}\right). \end{split}$$

• LL-Constrained BLO (LC-BLO)

$$\min_{\mathbf{x} \in \mathcal{U}} f(\mathbf{x}, \mathbf{y}^{*}(\mathbf{x}))$$
s.t. $\mathbf{y}^{*}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y} \in \mathcal{C}} g(\mathbf{x}, \mathbf{y}),$

where $C := {\mathbf{y} | \mathbf{A}y - \mathbf{b} \le \mathbf{0}}.$

LC-BLO could be much harder than LU-BLO

Connection of BLO with Game Theory

- BLO has strong ties with Stackelberg (or leader-following) games
 - Two players: leader and follower
 - Leader acts first to maximize its utility based on its knowledge of follower's anticipated response
 - Follower acts second to maximize its utility based on leader's action
 - Identifying a solution (i.e., Stackelberg equilibrium) can be cast as BLO
 - BLO also admits a Stackelberg game-theoretic interpretation (UL and LL problems correspond to identifying optimal leader and follower actions, respectively)
- Special case of Stackelberg game: min-max optimization

$$\min_{\mathbf{x}\in\mathcal{U}}\max_{\mathbf{y}\in\mathcal{C}}f(\mathbf{x},\mathbf{y})$$

- Also referred to as saddle point problem
- Min-max is also a special case of BLO with g = -f
- Also highly relevant and extensively studied in the ML literature

Implicit Gradient (IG)

- Reasons to consider LU-BLO and LC-BLO: UL objectives of both problems are (potentially) differentiable w.r.t. ${\bf y}$
- Suppose Jacobian $\frac{d\mathbf{y}^*(\mathbf{x})}{d\mathbf{x}}$ exists, by chain rule:

$$\frac{df(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))}{d\mathbf{y}\mathbf{y}} = \nabla_{\mathbf{x}}f(\mathbf{x}, \mathbf{y}^*(\mathbf{x})) + \underbrace{\frac{d\mathbf{y}^*(\mathbf{x})^\top}{d\mathbf{x}}}_{\text{IG}} \nabla_{\mathbf{y}}f(\mathbf{x}, \mathbf{y}^*(\mathbf{x}))$$
"hyper-gradient":

- \blacktriangleright IG characterizes gradient of $\operatorname{argmin-based}$ LL objective w.r.t. UL variable $\mathbf x$
- Note: IG does not always exist (even for LU-BLO and LC-BLO)
- Stronger assumptions are need for IG to exist (e.g., $g(\cdot, \cdot)$ is strongly convex)

• Even if IG exists, its computation is very different in LU-BLO and LC-BLO

- LU-BLO: IG can be expressed in closed-form using Implicit Function Theorem
- LC-BLO: IG has no closed-form in general
- For min-max problems with unconstrained LL problem: IG can be ignored
 - $\blacktriangleright \ \nabla_{\mathbf{y}} f(\mathbf{x},\mathbf{y}^*(\mathbf{x})) = \mathbf{0} \text{ since } \nabla_{\mathbf{y}} g(\mathbf{x},\mathbf{y}^*(\mathbf{x})) = \mathbf{0} \text{ and } g = -f$

BLO with Non-Singleton LL Solutions (NS-BLO)

• NS-BLO can be written as:

$$\min_{\mathbf{x} \in \mathcal{U}, \mathbf{y}' \in \mathcal{S}(\mathbf{x})} f(\mathbf{x}, \mathbf{y}')$$
s.t. $\mathcal{S}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y} \in \mathcal{C}} g(\mathbf{x}, \mathbf{y})$

- $\mathcal{S}(\mathbf{x})$ denotes LL solution set
- ▶ Much harder b/c optimization over y is coupled across UL and LL objectives

Three Main Approaches for Solving LU-BLO and LC-BLO

- The Implicit Function (IF)-Based Approach
 - Use Implicit Function Theorem to calculate IG

- The Gradient Unrolling (GU)-Based Approach
 - Unrolling a given algorithm with a fixed number of steps to approximate IG

- The Value-Function (VF)-Based Approach
 - Reformulate BLO as a single-level regularized optimization problem

IF-Based Approach for LU-BLO

- Consider LU-BLO problems with singleton LL solutions and the LL problem is strongly convex in y (LLSC) Convex
 - Some applications may have a strongly regularized function (e.g., $\gamma \|\mathbf{y}\|_2^2$ with large enough γ so LLSC is satisfied
- The IG can be computed as

$$\frac{d\mathbf{y}^*(\mathbf{x})^{\top}}{d\mathbf{x}} = -\nabla_{\mathbf{x},\mathbf{y}}^2 g(\mathbf{x},\mathbf{y}^*(\mathbf{x})) \nabla_{\mathbf{y},\mathbf{y}}^2 g(\mathbf{x},\mathbf{y}^*(\mathbf{x}))^{-1}$$

- ▶ IG computation involves Jacobian $\nabla^2_{\mathbf{x},\mathbf{v}}g$ and Hessian inverse $\nabla^2_{\mathbf{y},\mathbf{v}}g$
- Both could be challenging to compute in practice
- Different IF-based approaches use different techniques to approximate IG

 $\nabla_{y} g(z, y^{x}(z)) = 0$ $\nabla_{y} g(z, y^{x}(z)) = 0$ $\nabla_{y} g(z, y^{x}(z)) = 0$ $\nabla_{y} g(z, y^{x}(z)) = 0$

Basic IF-Based Framework for Solving LU-BLO

In each iteration t:

- **()** LL Optimization: Given \mathbf{x}_t , obtain an approximate LL solution $\hat{\mathbf{y}}(\mathbf{x}_t)$
- **2** Hyper-gradient Approximation: Based on $\hat{\mathbf{y}}(\mathbf{x}_t)$, compute approximate Jacobian and Hessian inverse: $\hat{\nabla}^2_{\mathbf{x},\mathbf{y}}g(\mathbf{x}_t,\hat{\mathbf{y}}(\mathbf{x}_t))$ and $\hat{\nabla}^2_{\mathbf{y},\mathbf{y}}g(\mathbf{x}_t,\hat{\mathbf{y}}(\mathbf{x}_t))^{-1}$
- Ompute approximate hyper-gradient as

$$\hat{\nabla}f(\mathbf{x}_{t}) = \nabla_{\mathbf{x}}f(\mathbf{x}_{t}, \hat{\mathbf{y}}(\mathbf{x}_{t})) - \underbrace{\hat{\nabla}_{\mathbf{x},\mathbf{y}}^{2}g(\mathbf{x}_{t}, \hat{\mathbf{y}}(\mathbf{x}_{t}))}_{\hat{\nabla}_{\mathbf{y},\mathbf{y}}^{2}g(\mathbf{x}_{t}, \hat{\mathbf{y}}(\mathbf{x}_{t}))^{-1}} \underbrace{\nabla_{\mathbf{y}}f(\mathbf{x}_{t}, \hat{\mathbf{y}}(\mathbf{x}_{t}))}_{\mathbf{H}^{-1}} \underbrace{\nabla_{\mathbf{y}}f(\mathbf{x}_{t}, \hat{\mathbf{y}}(\mathbf{x}_{t}))}_{\mathbf{g}}$$

9 UL Optimization: Update UL variable: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \hat{\nabla} f(\mathbf{x}_t)$

Main computational cost stems from computing $\mathbf{H}^{-1}\mathbf{g}$

Approaches to Approximate $\mathbf{H}^{-1}\mathbf{g}$

• Approach 1: The conjugate gradient (CG) approach

- Map $\mathbf{H}^{-1}\mathbf{g}$ to the solution of quadratic program (QP) $\min_{\mathbf{x}} \frac{1}{2}\mathbf{x}^{\top} \mathbf{H} \mathbf{x} \mathbf{g}^{\top} \mathbf{x}$
- \blacktriangleright Use FO methods to numerically solve the QP to approximate $\mathbf{H}^{-1}\mathbf{g}$
- \blacktriangleright Convergence speed depends on the smallest eigenvalue of the PD matrix H

• Approach 2: The Sherman-Morrison-Woodbury approach to compute \mathbf{H}^{-1}

- ► Suppose $\mathbf{B} = \mathbf{A} + \mathbf{U}\mathbf{V}$, where \mathbf{A}^{-1} is known or easily computable, \mathbf{U} and \mathbf{V} are low-rank matrices, and $\mathbf{I} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U}$ is invertible
- ► Then $\mathbf{B}^{-1} = \mathbf{A}^{-1} \mathbf{A}^{-1}\mathbf{U}(\mathbf{I} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}\mathbf{A}^{-1}$
- ▶ Special Case: If rank-one update (i.e., U and V become u and v, respectively), then $\mathbf{B}^{-1} = (\mathbf{A} + \mathbf{uv}^{\top})^{-1} = \mathbf{A}^{-1} \frac{\mathbf{A}^{-1}\mathbf{uv}^{\top}\mathbf{A}^{-1}}{1+\mathbf{v}^{\top}\mathbf{A}^{-1}\mathbf{u}}$

H2=4

Approaches to Approximate $\mathbf{H}^{-1}\mathbf{g}$ 大= シリースパ

• Approach 3: The Neumann-series approximation approach

- If $\|\mathbf{H}\| \leq 1$, then $\sum_{i=0}^{K} [\mathbf{I} \mathbf{H}]^i \to \mathbf{H}^{-1}$ as $K \to \infty$
- Popular for approximating \mathbf{H}^{1} (using finite K) in stochastic setting (i.e., the UL and LL objectives are associated with stochastic oracle
- Choose k uniformly randomly from $\{0, \ldots, K-1\}$ and access batch samples $\{g(\mathbf{x},\mathbf{y};\xi_k)\}_{i=1}^k$ and compute: Ton-Tomber APPTOX.

$$\mathbf{H}^{-1} \approx \frac{k}{L_g} \prod_{i=1}^k \left(\mathbf{I} - \nabla_{\mathbf{y},\mathbf{y}}^2 g(\mathbf{x},\mathbf{y};\xi_i) / L_g \right) \qquad O(\mathbf{k}) \quad \text{Samples}$$

• Biased estimator of \mathbf{H}^{-1} but bias decreases exponentially with K ($\mathcal{O}(k)$) scarpe pproach 4: Hessian-free approach • If LU-BLO is in the form of $\hat{\mathbf{H}}_{L} = \overline{\mathbf{I}} + (\overline{\mathbf{I}} - \frac{\mathbf{T}_{M}}{\mathbf{L}}) (\underline{\mathbf{H}}_{L}, \underline{\mathbf{H}}_{L}, \underline{\mathbf{H}}_{L})$

- Approach 4: Hessian-free approach

$$\min_{\mathbf{x}\in\mathcal{U}} f\left(\mathbf{x},\mathbf{y}^{*}(\mathbf{x})\right), \text{ s.t. } \mathbf{y}^{*}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y}\in\mathbb{R}^{n}} g\left(\mathbf{x},\mathbf{y}\right) + \frac{\lambda}{2} \|\mathbf{y}\|_{2}^{2} \underbrace{\lim_{\mathbf{x}\in\mathcal{U}} e^{\mathbf{x}\cdot\mathbf{x}}}_{\text{Low et al.}}$$

• Assumes $\hat{\nabla}^2_{\mathbf{y},\mathbf{y}} g(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t)) \approx \mathbf{0}$ (reasonable when LL objective g involves deep model, e.g., DNN with ReLU activation, where decision boundary is piece-wise linear in a tropical hyper-surface [Alfarra et al. '22]). Hence, $\mathbf{H} \approx \lambda \mathbf{I}$

Extension of IF-Based Approaches to LC-BLO

- IG no longer has closed-form since $\nabla_{\mathbf{y}}g(\mathbf{x},\mathbf{y}^*(\mathbf{x}))=\mathbf{0}$ does not hold
- Example: Consider the following LC-BLO:

$$\min_{x \in [0,1]} x + y^*(x), \text{ s.t. } y^*(x) \in \operatorname*{argmin}_{y \in [\frac{1}{2},1]} (x - y)^2$$

- It's easy to show that $y^*(x) = 1/2$ for $x \le 1/2$, and $y^*(x) = x$ for x > 1/2.
- At point x = 1/2, the mapping $y^*(x)$ is continuous but not differentiable, hence the UL function $x + y^*(x)$ is non-differentiable.
- With additional assumptions on the matrix A in the constraint set C of LC-BLO, one can apply IFT to the Karuch-Kuhn-Tucker (KKT) condition of the LL problem to calculate IG [Khanduri et al. ICML'23]
 - IF-based approaches are not suitable for handling general nonlinear constraints in LL problem. VF-based approaches are often employed in this case

GU-Based Approach for LU-BLO

Basic Idea:

- Use an unrolled LL optimizer as an intermediate step to connect LL solution with UL optimization process $\Im \to \Im^*$
- \bullet Then use automatic differentiation (AD) technique to compute gradients w.r.t. UL variable ${\bf x}$

The IG computation depends on the LL optimizer and no longer uses implicit function-based expression

Basic GU-Based Framework for Solving LU-BLO

Let $h(\cdot): \mathcal{U} \times \mathcal{C} \to \mathcal{C}$ denote one step of an LL algorithm. In each iteration t:

Q LL Optimization: Run K-step LL optimization:

$$\mathbf{y}_k = h(\mathbf{x}_t, \mathbf{y}_{k-1}), \quad k = 1, \dots, K.$$

Define $\hat{\mathbf{y}}(\mathbf{x}_t) := \mathbf{y}_K = h(\mathbf{x}_t, h(\mathbf{x}_t, \cdots, h(\mathbf{x}_t, \mathbf{y}_0)));$

• UL Optimization: Leverage AD to compute the approximate hyper-gradient $\hat{\nabla}f(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t)) := \frac{df(\mathbf{x}_t, h(\mathbf{x}_t, \cdots, h(\mathbf{x}_t, \mathbf{y}_0)))}{d\mathbf{x}}$

and update UL variable: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \hat{\nabla} f(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t))$

Differences between IF-Based and UG-Based Approaches

Consider the case $h(\cdot)$ is gradient mapping: $h(\mathbf{x}_t, \mathbf{y}_{k-1}) = \mathbf{y}_{k-1} - \beta \nabla_{\mathbf{y}} g(\mathbf{x}_t, \mathbf{y}_{k-1})$ with step size $\beta > 0$ and assume \mathbf{y}_0 is independent of \mathbf{x} .

• K = 1 (i.e., a single GD step is performed for LL problem)): The IG can be computed in closed-form as:

$$\frac{d\hat{\mathbf{y}}(\mathbf{x}_t)}{d\mathbf{x}} = \frac{d[\mathbf{y}_0 - \beta \times \nabla_{\mathbf{y}} g(\mathbf{x}_t, \mathbf{y}_0)]}{d\mathbf{x}} = -\beta \nabla_{\mathbf{x}, \mathbf{y}}^2 g(\mathbf{x}_t, \mathbf{y}_0)$$

• K = 2: The IG can be computed in closed-form as:

$$\frac{d\hat{\mathbf{y}}(\mathbf{x}_t)}{d\mathbf{x}} = \frac{d[\mathbf{y}_1 - \beta \times \nabla_{\mathbf{y}} g(\mathbf{x}_t, \mathbf{y}_1)]}{d\mathbf{x}} = -\beta[\mathbf{I} + \beta \times \nabla_{\mathbf{y}, \mathbf{y}}^2 g(\mathbf{x}_t, \mathbf{y}_1)]\nabla_{\mathbf{x}, \mathbf{y}}^2 g(\mathbf{x}_t, \mathbf{y}_0)$$

Hessian inverse is not needed, but computational and memory requirements rapidly increase as the number of unrolling steps increases

Practical Considerations for UG-Based Approaches

When K is too large, manual unrolling become necessary to save memory and computational costs

• Forward Gradient Unrolling (FGU): The Jacobian y_K w.r.t. x (IG approx.) is:

$$\frac{d\mathbf{y}_{K}}{d\mathbf{x}} = \underbrace{\frac{\partial \mathbf{y}_{K}}{\partial \mathbf{y}_{K-1}}}_{\mathbf{A}_{K}} \underbrace{\frac{d\mathbf{y}_{K-1}}{d\mathbf{x}}}_{\mathbf{Z}_{K-1}} + \underbrace{\frac{\partial \mathbf{y}_{K}}{\partial \mathbf{x}}}_{\mathbf{B}_{K}}$$

or in iterative form: $\mathbf{Z}_k = \mathbf{A}_k \mathbf{Z}_{k-1} + \mathbf{B}_k$, k = 1, 2, ..., K, with $\mathbf{Z}_0 = \frac{\mathbf{y}_0}{d\mathbf{x}} = \mathbf{0}$ assuming \mathbf{y}_0 is independent of \mathbf{x} .

- ▶ Both A_k and B_k can be computed along with the k-th LL step y_k = h(x_t, y_{k-1}) and discarded immediately after Z_k is obtained, thus significantly saving memory cost as K gets large
- ▶ However, FGU needs to keep track of A_k , B_k , and Z_{k-1} , which may still be expensive for high-dimensional x and y variables

Practical Considerations for UG-Based Approaches

To save computation costs for high-dimensional ${\bf x}$ and ${\bf y}:$

• Backward Gradient Unrolling (BGU): Instead of computing IG explicitly, BGU directly obtains gradient of UL variable in the following iterative fashion:

$$\frac{df(\mathbf{x}, \mathbf{y}_{K})}{d\mathbf{x}} = \underbrace{\frac{\partial f(\mathbf{x}, \mathbf{y}_{K})}{\partial \mathbf{x}}}_{\mathbf{c}_{K}} + \underbrace{\frac{d\mathbf{y}_{K}^{\top}}{d\mathbf{x}}}_{\mathbf{z}_{K}^{\top}} \underbrace{\frac{\partial f(\mathbf{x}, \mathbf{y}_{K})}{\partial \mathbf{y}_{K}}}_{\mathbf{z}_{K}^{\top}} \stackrel{(\text{FGU})}{=} \mathbf{c}_{K} + \underbrace{(\mathbf{Z}_{K-1}^{\top} \mathbf{A}_{K}^{\top} + \mathbf{B}_{K}^{\top})}_{\mathbf{z}_{K}^{\top}} \mathbf{d}_{K}$$

$$= \underbrace{(\mathbf{c}_{K} + \mathbf{B}_{K}^{\top} \mathbf{d}_{K})}_{\mathbf{c}_{K-1}} + \mathbf{Z}_{K-1}^{\top} \cdot \underbrace{\mathbf{A}_{K}^{\top} \mathbf{d}_{K}}_{\mathbf{d}_{K-1}} = \mathbf{c}_{K-1} + \mathbf{Z}_{K-1}^{\top} \mathbf{d}_{K-1}$$

$$= \cdots = \mathbf{c}_{0} + \mathbf{Z}_{0}^{\top} \mathbf{d}_{0} = \mathbf{c}_{-1},$$

$$\bullet \mathbf{c}_{k-1} = \mathbf{c}_{k} + \mathbf{B}_{k}^{\top} \mathbf{d}_{k}, \ k = 0, 1, \dots, K, \ \text{with} \ \mathbf{c}_{K} = \frac{\partial f(\mathbf{x}, \mathbf{y}_{K})}{\partial \mathbf{x}}$$

$$\bullet \mathbf{d}_{k-1} = \mathbf{A}_{k}^{\top} \mathbf{d}_{k}, \ k = 0, 1, \dots, K, \ \text{with} \ \mathbf{d}_{K} = \frac{f(\mathbf{x}, \mathbf{y}_{K})}{\partial \mathbf{y}_{K}}$$

• BGU only requires storing $(\mathbf{c}_k, \mathbf{d}_k)$ vectors throughout the recurssion by using the Jacobian-vector product trick, thus being more advantageous for problems with high-dimensional \mathbf{x} and \mathbf{y} than FGU. However, BGU still needs to store all unrolling steps $\{\mathbf{y}_k\}_{k=1}^K$ and may not be efficient for large K

The Value Function (VF)-Based Approach for BLO

- VF-based methods also do not need to compute Hessian inverse
- Key Idea: Reformulate BLO into constrained single-level optimization

$$\min_{\mathbf{x},\mathbf{y}\in\mathcal{C}} f(\mathbf{x},\mathbf{y}), \text{ s.t. } g(\mathbf{x},\mathbf{y}) \leq g^*(\mathbf{x}),$$

where $g^*(\mathbf{x}) := \min_{\mathbf{y} \in \mathcal{C}} g(\mathbf{x}, \mathbf{y})$ is referred to as the value function (VF)

- Challenge: $g^*(\mathbf{x})$ is not necessarily smooth and can be non-convex

• A relaxed version: replace $g^*(\mathbf{x})$ with a smooth surrogate

$$g_{\boldsymbol{\mu}}^{*}(\mathbf{x}) = \min_{\mathbf{y} \in \mathcal{C}} g(\mathbf{x}, \mathbf{y}) + \frac{\mu_{1}}{2} \|\mathbf{y}\|_{2}^{2} + \mu_{2}$$

- $\mu := \{\mu_1, \mu_2\}$ is a pair of positive constants to induce smoothness of $g^*_{\mu}(\mathbf{x})$
- With the relaxed VF formulation, one can adopt standard nonlinear optimization algorithms (e.g., penalty-based or interior-point methods)

Convergence Metrics of BLO

• LU-BLO:

- ► Focus on the notion of *e*-stationary of UL hyper-gradient
- Deterministic setting: A UL solution $\bar{\mathbf{x}}$ is ϵ -stationary if $\|\nabla f(\bar{\mathbf{x}}, \mathbf{y}^*(\bar{\mathbf{x}}))\|_2^2 \le \epsilon$
- ► Stochastic setting: A UL solution $\bar{\mathbf{x}}$ is ϵ -stationary if $\mathbb{E}[\|\nabla f(\bar{\mathbf{x}}, \mathbf{y}^*(\bar{\mathbf{x}}))\|_2^2] \leq \epsilon$, where $\mathbb{E}[\cdot]$ is taken overall all randomness of the algorithm
- ▶ Note: When UL problem in LU-BLO is constrained (i.e., $U \subset \mathbb{R}^m$), then the UL objective $f(\bar{\mathbf{x}}, \mathbf{y}^*(\bar{\mathbf{x}}))$ may not be differentiable over $\bar{\mathbf{x}}$ in general

• LC-BLO:

- If using the IF-based approach and if IF is differentiable, similar ϵ -stationarity can be used
- ► If IF is non-differentiable, can use subgradient optimality, proximal gradient methods, and Moreau envlope techniques
- If using VF-based approaches, a widely used stationarity metric is the KKT stationarity
- Further, one often considers oracle complexity to quantify the number of gradient evaluations to achieve ϵ -stationarity

Convergence Results of Methods for Solving LU-BLO

Classification of methods for solving LU-BLO:

- Deterministic vs. Stochastic
 - IF-based methods: Replace UL and LL gradients by appropriate stochastic gradient estimates. However, obtaining unbiased estimator for Hessian inverse in IG computation is challenging
- Single-loop vs. Double-loop
 - Single-loop: Only performs a fixed number of steps for LL updates before every UL update
 - Double-loop: As many LL updates steps as need to obtain a very accurate approximation of y*(x)
 - Single-loop is easy to implement, while double-loop is easy to analyze
- Vanilla SGD vs. Momentum-based SGD vs. VR-based SGD
 - Momentum-based and VR-based methods typically have better theoretical convergence rate

IF-Based Stochastic Method for LU-BLO & LC-BLO

Given initial \mathbf{x}_0 and iteration number T; In each iteration t:

• LL Optimization: Given \mathbf{x}_t , call vanilla SGD, momentum-based SGD, or VR-based SGD to obtain LL solution $\hat{\mathbf{y}}(\mathbf{x}_t)$

Approximation: Compute stochastic estimate of UL hypergradient:

- Get stochastic versions of $\nabla_{\mathbf{x}} f(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t)), \nabla_{\mathbf{y}} f(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t)), \hat{\nabla}^2_{\mathbf{x}, \mathbf{y}} g(\mathbf{x}_t, \hat{\mathbf{y}}(\mathbf{x}_t))$
- Approximate Hessian inverse $\hat{\nabla}^2_{\mathbf{y},\mathbf{y}}g(\mathbf{x}_t,\hat{\mathbf{y}}(\mathbf{x}_t))^{-1}$
- Obtain stochastic estimate of UL hyper-gradient $\hat{\nabla} f(\mathbf{x}_t, \xi_t)$ for \mathbf{x}_t

Convergence Results of BLO Methods

Momentum-Based and VR-Based BLO

Method	Principle	Loop	UL OC	LL OC				
STABLE [Chen et al. AISTATS'22] M	IF	Single	$O(\epsilon^{-2})$	$O(\epsilon^{-2})$				
SUSTAIN [Khanduri et al. NeurIPS'21]	IF	Single	$O(\epsilon^{-1.5})$	$O(\epsilon^{-1.5})$				
VRBO [Yang et al. NeurIPS '21] STUPP	R IF	Double	$O(\epsilon^{-1.5})$	$O(\epsilon^{-1.5})$				
SABA [Dagreou et al. NeurIPS'22] Share	IF	Double	$O(N^{2/3}\epsilon^{-1})$	$O(N^{2/3}\epsilon^{-1})$				
F ³ SA [Kwon et al. 23]	VF	Single	$O(\epsilon^{-2.5})$	$O(\epsilon^{-2.5})$				
SBFW [Akhtar et al. '21] M	IF	Single	$O(\epsilon^{-4})$	$O(\epsilon^{-4})$				
SobA: $y_{kel} = y_{\ell} - p^{t} o_{y} g(z_{1}, y_{\ell})$ $y_{kel} = y_{\ell} - p^{t} ()$ $z_{kel} = z_{k} - y^{t} (z_{k}, y_{k}, z_{kel})$ $z_{kel} = z_{k} - y^{t} (z_{k}, y_{k}, z_{kel})$								
JKL (ECE@OSU) EC	JKL (ECE@OSU) ECE 8101: Lecture 5-1			2				

Convergence Results of BLO Methods

Deterministic BLO

	Method	Principle	Loop	UL OC	LL OC
GD.	BA [Ghadimi & Wang '18]	IF	Single	$O(\epsilon^{-1})$	$O(\epsilon^{-1.25})$
GP	AID-BIO [Ji et al. ICML'21]	IF	Single	$O(\epsilon^{-1})$	$O(\epsilon^{-1})$
	ITD-BIO [Ji et al. ICML'21]	GU	Double	$O(\epsilon^{-1})$	$O(\epsilon^{-1})$
21:60 aut. M	MSTSA [Khanduri et al. '21]	IF	Single	$O(\epsilon^{-1})$	$O(\epsilon^{-1})$
	K-RMD [Shaban et al. AISTATS'19]	GU	Double	$O(\epsilon^{-2})$	$O(K\epsilon^{-2})$
	FGU/BGU [Franceschi et al. ICML'21]	GU	Double	N/A	N/A