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Outline

In this lecture:
@ Motivation of Variance-Reduced Zeroth-Order Methods
@ Representative Algorithms

@ Convergence Results
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Finite-Sum Minimization with VR Zeroth-Order Methods

o Consider ZO methods for special case of min f(x): finite-sum minimization

xERd

N
. 1
min f(x) = N E:lfl(x)
i=
» We have studied finite-sum minimization with VR first-order methods

@ Need for solving finite-sum minimization problem with ZO methods:

> Reinforcement learning (e.g., [Fazel et al., ICML'18])
> Non-stationary online optimization problems [Zhang et al., arXiv:2010.07378]

@ We have seen that SGD-type ZO methods with noisy f have sample
complexity O(de=?) in the last lecture

Can we do better (at least for finite-sum minimization)?
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Variance Reduction in First-Order Methods
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We will develop their ZO counterparts J
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Z0O-SVRG [Liu et al., NeurlPS'18]

@ A zeroth-order version of SVRG

o Consider a non-convex finite-sum problem:

min f(x) NZfz

> fi e Oy (IVfi(x) = Vi(y)ll2 < Llx — yll2, ¥x,y € RY, Vi € {1,...,N})
» Bounded variance of stochastic gradient: + SN IVAi(x) - Vix)|; < o?
@ The following gradient estimations are used in [Liu, et al., NeurIPS'18]:

RandGradEst: Vf;(x) =

Tl

[fi(x + pug) — fi(x)]ug Lﬂ
556\

. d &
Avg-RandGradEst: Vf;(x) = E;[fl(x-l- p; ) — fi(x)]ug; [‘L’—H)jﬂ‘-
d
Eiwﬁ‘ » CoordGradEst: Vf;(x) = i ;[ﬂ(ﬁ pje;) — fi(x — pje;)le;
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ZO-SVRG [Liu et al., NeurlPS'18]
The ZO-SVRG Algorithm

e Required: Step-sizes {n’}, epoch length T, starting point xo € RY,

smoothing parameter j, number of iterations K = S - T, ¢g = x)

o fors=0,1,2,...,5 -1
Compute ZO full gradient estimate V f(¢,)
fort=0,1,2,...,7 — 1 then
Uniformly randomly pick I; C {1,..., N} with |I;>< B with
replacement. Compute: ol Use

R A A
vi = % Z[Vfi(xi) = Vfi(¢s)] + VF(6s) ; 1;7
iel

t+1 _ ot tot
Xs = X5 =1V,
end for
_ G0 ot
Let 11 =X, 1 = X
end for

Output: x¢, where ¢ is picked uniformly at random from {0,..., K — 1}
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Z0O-SVRG [Liu et al., NeurlPS'18]
@ Compared to FO-SVRG, the only difference is:

FO-SVRG: xt+1 =x
ZO-SVRG: x!t?
where Vf1(x) = £ 3¢, Vi(x)

o Key Problem: Vf(x?) is no longer unbiased ZO gradient estimate

to,t

—MNsVs, V
tot -
_nsvw Vg

@ Under stated assumptions, ZO-SVRG after K = ST steps achieves:

d 1
o(7+3)

d 1
Avg—RandGradEst: E[HVf(Xg)H%} =0 (T + BHlll’l{dq})

RandGradEst: E[||V f(x¢)||3]

d

CoordGradEst: E[||V f(x¢)|3] = O (T)

@ Insight: CoordGradEst (i.e., deterministic gradient estimation) achieves same
convergence rate as FO-SVRG

JKL (ECE@OSU) ECE 8101: Lecture 4-2



Z0O-SVRG [Liu et al., NeurlPS'18]

@ Blackbox classification problem motivated by material science:

» A nonlinear least square problem f;(x) = (y; — ¢(x;a;))? for i € [N], where
¢(x,a;) is a blackbox function that only returns function value

» N = 1,000 crystalline materials/compounds extracted from Open Quantum
Materials Database; each compound has d = 145 chemical features
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(a) Training loss versus iterations
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SpiderSZO [Fang et al., NeurlPS'18]

o Required: ny = [1, M] Lipschitz constant L, epoch T, initial

xo € R?, outer and inner batch-sizes B; and By, num. of iterations KX = ST.
o fork=0,1,2,..., K -1
if mod (k,T) =0 then
Uniformly randomly pick I, C {1,..., N} with |I;| = By with
replacement. Compute:
Sk

e [fi(xk + pej) = fi(xx)] 1
A% 2( 2 P T—?D Fol Grd!

else
Create set of pairs I, = {(i,u;)} w/ |Ix| = Bz, where i ~ U[N]
(with replacement) and indep. u; ~ N(0,1,). Compute:

1 (fi(karﬂui)*fi(xk)u,ffi(xk—l +uui)*fi(xk 1) >+vk )

Vi = 72 ' L i
(ol \ @,gg, /
end if
Let Xg+1 = Xk — Nk Vk, where 7 = min(
end for
Output: x¢, where § is picked uniformly at random from {0,..., K — 1}

Ln0||vk I 2Ln0 )
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SpiderSZO [Fang et al., NeurlPS'18]

€ 1 = O(e)
Tolvell 2 )’
» Follows from normalized gradient descent (NGD) [Nesterov, Book’'04]
> Inversely proportional to norm of “gradient”

@ Learning rate 1, = min(

Theorem 1 ([Fang et al., NeurlPS'18])

After K = O(e™?) iterations, with O(dmin{ €3}) incremental
zeroth-order oracle (I1Z0, i.e., returning the value of f;(x) given x and i) calls,
SpiderSZO ensures that:

E[IVf(x¢)ll2] < Ge.

@ This result is better than the sample complexity of [Nesterov and Spokoiny,
FCM'17] by a factor of N'1/2
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

@ A tighter analysis for ZO-SVRG in [Ji et al., ICML'19]:
» ZO-SVRG-Coord has a better convergence rate E[||V f(x¢)||3] = O(1/K)
» d times better than the previous analysis in [Liu et al., NeurlPS'18]
» To achieve an e-stationary point (i.e., E[||Vf(x¢)|3] < €?), ZO-SVRG-Coord’s
function query complexity is O(min{N2/3de’2, de’lo/g})

@ Proof Sketch:

@ Consider an intermediate variant of ZO-SVRG-Coord and ZO-SVRG-Ave
called ZO-SVRG-Coord-Rand that uses CFD and SSG for the @f(qbf) and
Vi(xh) = VFi(ds) parts in v = 25 [VFi(x) — Vils)] + VE(6s),
respectively, as opposed to [Liu et al., NeurIPS'18] that used only one type of
gradient estimation at once.

@ [Ji et al., ICML'19] showed that, although the replacement of SSG with CFD
requires d more oracle calls, it achieves more accurate gradient estimation,
which yields a convergence rate E[||V f(x¢)||3] = O(1/K). So, the
convergence rate stays the same for ZO-SVRG-Coord.
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

@ A new variant of ZO-SPIDER in [Ji et al., ICML'19]: ZO-SPIDER-Coord:

» Similar to ZO-SVRG-Coord: Use CFD instead of GSG in SpiderSZO
» Show that ZO-SPIDER-Coord has the same convergence rate as SpiderSZO,
but with a bigger size-size n, = 1/4L and doesn’t depend on € (using similar

idea as in SpiderBoost)

» With appropriate choices of learning rate, sampling radius parameters, outer
batch size, ZO-SPIDER-Coord achieves a convergence rate O(v/B1/K)

» To achieve an e-stationary point (i.e., E[||V f(x¢)|3] < €?), ZO-SVRG-Coord’s
function query complexity is O(min{N'/2de™2, de™3})
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Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

@ Numerical result comparisons:

> Generation of black-box adversarial examples (DNN for MNIST handwritten
digit classification, use the blackbox attacking loss in [Liu et al. NeurlPS'18])
Nonconvex logistic regression on LIBSVM [Chang and Lin, ACM TIST'11]
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Figure I. Comparison of different zeroth-order algorithms for generating black-box adversarial examples for digit *1" class
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Figure 2. Comparison of different zeroth-order algorithms for logistic regression problem with a nonconvex regularizer
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Next Class

Complex-Structured Learning
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