ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 4-2: Variance-Reduced Zeroth-Order Methods

Jia (Kevin) Liu

Associate Professor
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Motivation of Variance-Reduced Zeroth-Order Methods
- Representative Algorithms
- Convergence Results

Finite-Sum Minimization with VR Zeroth-Order Methods

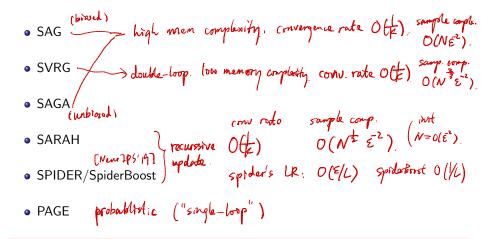
• Consider ZO methods for special case of $\min f(\mathbf{x})$: finite-sum minimization

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$$

- ▶ We have studied finite-sum minimization with VR first-order methods
- Need for solving finite-sum minimization problem with ZO methods:
 - ► Reinforcement learning (e.g., [Fazel et al., ICML'18])
 - ► Non-stationary online optimization problems [Zhang et al., arXiv:2010.07378]
- We have seen that SGD-type ZO methods with noisy \hat{f} have sample complexity $O(d\epsilon^{-4})$ in the last lecture

Can we do better (at least for finite-sum minimization)?

Variance Reduction in First-Order Methods



We will develop their ZO counterparts

ZO-SVRG [Liu et al., NeurlPS'18]

- A zeroth-order version of SVRG
- Consider a non-convex finite-sum problem:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$$

- $f_i \in C_L^{1,1} \left(\|\nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{y})\|_2 \le L \|\mathbf{x} \mathbf{y}\|_2, \, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d, \, \forall i \in \{1, \dots, N\} \right)$
- ▶ Bounded variance of stochastic gradient: $\frac{1}{N} \sum_{i=1}^{N} \|\nabla f_i(\mathbf{x}) \nabla f(\mathbf{x})\|_2^2 < \sigma^2$
- The following gradient estimations are used in [Liu, et al., NeurIPS'18]:

RandGradEst:
$$\nabla f_i(\mathbf{x}) = \frac{1}{\mu} [f_i(\mathbf{x} + \mu \mathbf{u}_i)]$$

Avg-RandGradEst: $\hat{\nabla} f_i(\mathbf{x}) = \frac{d}{\mu} \sum_{i=1}^{q} [f_i(\mathbf{x} + \mu \mathbf{u}_i)]$

$$\text{RandGradEst: } \hat{\nabla}f_i(\mathbf{x}) = \frac{d}{\mu}[f_i(\mathbf{x} + \mu\mathbf{u}_i) - f_i(\mathbf{x})]\mathbf{u}_i$$

$$\text{Avg-RandGradEst: } \hat{\nabla}f_i(\mathbf{x}) = \frac{d}{\mu q}\sum_{j=1}^q[f_i(\mathbf{x} + \mu\mathbf{u}_{i,j}) - f_i(\mathbf{x})]\mathbf{u}_{i,j}$$

$$\begin{array}{l} \text{CFO.} \\ \text{"Jeterministic"} \end{array} \text{CoordGradEst: } \hat{\nabla}f_i(\mathbf{x}) = \frac{1}{2\mu} \sum_{j=1}^d [f_i(\mathbf{x} + \mu_j \mathbf{e}_j) - f_i(\mathbf{x} - \mu_j \mathbf{e}_j)] \mathbf{e}_j \\ \text{"Jeterministic"} \end{array}$$

ZO-SVRG [Liu et al., NeurIPS'18]

The ZO-SVRG Algorithm

- Required: Step-sizes $\{\eta_s^t\}$, epoch length T, starting point $\mathbf{x}_0 \in \mathbb{R}^d$, smoothing parameter μ , number of iterations $K = S \cdot T$, $\phi_0 = \mathbf{x}_0^0$
- o for $s=0,1,2,\ldots,S-1$ Compute ZO full gradient estimate $\hat{\nabla} f(\phi_s)$ for $t=0,1,2,\ldots,T-1$ then Uniformly randomly pick $I_t\subset\{1,\ldots,N\}$ with $|I_t|=B$ with replacement. Compute: $\mathbf{v}_s^t = \frac{1}{B}\sum_{i\in I_t}[\hat{\nabla} f_i(\mathbf{x}_s^t) \hat{\nabla} f_i(\phi_s)] + \hat{\nabla} f(\phi_s)$

end for

Let
$$\phi_{s+1} = \mathbf{x}_{s+1}^0 = \mathbf{x}_s^t$$

end for

Output: \mathbf{x}_{ξ} , where ξ is picked uniformly at random from $\{0, \dots, K-1\}$

ZO-SVRG [Liu et al., NeurIPS'18]

• Compared to FO-SVRG, the only difference is:

$$\begin{aligned} & \text{FO-SVRG: } \mathbf{x}_s^{t+1} = \mathbf{x}_s^t - \eta_s^t \mathbf{v}_s^t, \ \mathbf{v}_s^t = \nabla f_{I_t}(\mathbf{x}_s^t) - \nabla f_{I_t}(\mathbf{x}_s^0) + \nabla f(\mathbf{x}_s^0) \\ & \text{ZO-SVRG: } \mathbf{x}_s^{t+1} = \mathbf{x}_s^t - \eta_s^t \hat{\mathbf{v}}_s^t, \ \hat{\mathbf{v}}_s^t = \hat{\nabla} f_{I_t}(\mathbf{x}_s^t) - \hat{\nabla} f_{I_t}(\mathbf{x}_s^0) + \hat{\nabla} f(\mathbf{x}_s^0) \end{aligned}$$
 where $\hat{\nabla} f_I(\mathbf{x}) = \frac{1}{B} \sum_{i \in I} \hat{\nabla} f_i(\mathbf{x})$

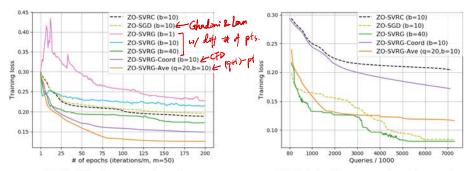
- \bullet Key Problem: $\hat{\nabla} f(\mathbf{x}_s^0)$ is no longer unbiased ZO gradient estimate
- Under stated assumptions, ZO-SVRG after K = ST steps achieves:

$$\begin{aligned} & \mathsf{RandGradEst:} \ \ \mathbb{E}[\|\nabla f(\mathbf{x}_\xi)\|_2^2] = O\left(\frac{d}{T} + \frac{1}{B}\right) \\ & \mathsf{Avg-RandGradEst:} \ \ \mathbb{E}[\|\nabla f(\mathbf{x}_\xi)\|_2^2] = O\left(\frac{d}{T} + \frac{1}{B\min\{d,q\}}\right) \\ & \mathsf{CoordGradEst:} \ \ \mathbb{E}[\|\nabla f(\mathbf{x}_\xi)\|_2^2] = O\left(\frac{d}{T}\right) \end{aligned}$$

 Insight: CoordGradEst (i.e., deterministic gradient estimation) achieves same convergence rate as FO-SVRG

ZO-SVRG [Liu et al., NeurlPS'18]

- Blackbox classification problem motivated by material science:
 - ▶ A nonlinear least square problem $f_i(\mathbf{x}) = (y_i \phi(\mathbf{x}; \mathbf{a}_i))^2$ for $i \in [N]$, where $\phi(\mathbf{x}, \mathbf{a}_i)$ is a blackbox function that only returns function value
 - ightharpoonup N=1,000 crystalline materials/compounds extracted from Open Quantum Materials Database; each compound has d=145 chemical features



(a) Training loss versus iterations

(b) Training loss versus function queries

SpiderSZO [Fang et al., NeurIPS'18]

- Required: $n_0 = [1, \frac{30(2d+9)\sigma}{\epsilon}]$, Lipschitz constant L, epoch T, initial $\mathbf{x}_0 \in \mathbb{R}^d$, outer and inner batch-sizes B_1 and B_2 , num. of iterations K = ST.
- for $k = 0, 1, 2, \dots, K 1$

if mod(k,T) = 0 then

Uniformly randomly pick $I_k\subset\{1,\dots,N\}$ with $|I_k|=B_1$ with replacement. Compute:

$$\mathbf{v}_k = \sum_{j=1}^d \left(\frac{1}{B_1} \sum_{i \in I_k} \frac{[f_i(\mathbf{x}_k + \mu \mathbf{e}_j) - f_i(\mathbf{x}_k)]}{\mu} \right) \mathbf{e}_j \qquad \text{for Grad'}$$

else

Create set of pairs $I_k = \{(i, \mathbf{u}_i)\}$ w/ $|I_k| = B_2$, where $i \sim \mathcal{U}[N]$ (with replacement) and indep. $\mathbf{u}_i \sim \mathcal{N}(0, \mathbf{I}_d)$. Compute:

$$\mathbf{v}_k = \frac{1}{B_2} \sum_{(i,\mathbf{u}_i) \in I_k} \left(\frac{f_i(\mathbf{x}_k + \mu \mathbf{u}_i) - f_i(\mathbf{x}_k)}{\mu} \mathbf{u}_i - \frac{f_i(\mathbf{x}_{k-1} + \mu \mathbf{u}_i) - f_i(\mathbf{x}_{k-1})}{\mu} \mathbf{u}_i \right) \underbrace{+ \mathbf{v}_{k-1}}_{\text{press.}}$$
 end if

Let $\mathbf{x}_{k+1} = \mathbf{x}_k - \eta_k \mathbf{v}_k$, where $\eta_k = \min(\frac{\epsilon}{Ln_0 ||\mathbf{v}_k||}, \frac{1}{2Ln_0})$

end for

Output: \mathbf{x}_{ξ} , where ξ is picked uniformly at random from $\{0, \dots, K-1\}$

SpiderSZO [Fang et al., NeurIPS'18]

- Learning rate $\underline{\eta}_k = \min(\frac{\epsilon}{Ln_0\|\mathbf{v}_k\|}, \frac{1}{2Ln_0})$:
 - ► Follows from normalized gradient descent (NGD) [Nesterov, Book'04]
 - Inversely proportional to norm of "gradient"

smilar to FO-SPSPER

Theorem 1 ([Fang et al., NeurIPS'18])

After $K = O(\epsilon^{-2})$ iterations, with $O(d \min\{N^{1/2}\epsilon^{-2}, \epsilon^{-3}\})$ incremental zeroth-order oracle (IZO, i.e., returning the value of $f_i(\mathbf{x})$ given \mathbf{x} and i) calls, SpiderSZO ensures that:

$$\mathbb{E}[\|\nabla f(\mathbf{x}_{\xi})\|_2] \le 6\epsilon.$$

 \bullet This result is better than the sample complexity of [Nesterov and Spokoiny, FCM'17] by a factor of $N^{1/2}$

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

- A tighter analysis for ZO-SVRG in [Ji et al., ICML'19]:
 - ▶ ZO-SVRG-Coord has a better convergence rate $\mathbb{E}[\|\nabla f(\mathbf{x}_{\xi})\|_{2}^{2}] = O(1/K)$
 - ▶ d times better than the previous analysis in [Liu et al., NeurlPS'18]
 - ▶ To achieve an ϵ -stationary point (i.e., $\mathbb{E}[\|\nabla f(\mathbf{x}_{\xi})\|_2^2] \leq \epsilon^2$), ZO-SVRG-Coord's function query complexity is $O(\min\{N^{2/3}d\epsilon^{-2},d\epsilon^{-10/3}\})$

• Proof Sketch:

- ① Consider an intermediate variant of ZO-SVRG-Coord and ZO-SVRG-Ave called ZO-SVRG-Coord-Rand that uses CFD and SSG for the $\hat{\nabla}f(\phi_s)$ and $\hat{\nabla}f_i(\mathbf{x}_s^t) \hat{\nabla}f_i(\phi_s)$ parts in $\mathbf{v}_s^t = \frac{1}{B}\sum_{i\in I_t}[\hat{\nabla}f_i(\mathbf{x}_s^t) \hat{\nabla}f_i(\phi_s)] + \hat{\nabla}f(\phi_s)$, respectively, as opposed to [Liu et al., NeurlPS'18] that used only one type of gradient estimation at once.
- ② [Ji et al., ICML'19] showed that, although the replacement of SSG with CFD requires d more oracle calls, it achieves more accurate gradient estimation, which yields a convergence rate $\mathbb{E}[\|\nabla f(\mathbf{x}_\xi)\|_2^2] = O(1/K)$. So, the convergence rate stays the same for ZO-SVRG-Coord.

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

- A new variant of ZO-SPIDER in [Ji et al., ICML'19]: ZO-SPIDER-Coord:
 - ► Similar to ZO-SVRG-Coord: Use CFD instead of GSG in SpiderSZO
 - ▶ Show that ZO-SPIDER-Coord has the same convergence rate as SpiderSZO, but with a bigger size-size $\eta_k=1/4L$ and doesn't depend on ϵ (using similar idea as in SpiderBoost)
 - ▶ With appropriate choices of learning rate, sampling radius parameters, outer batch size, ZO-SPIDER-Coord achieves a convergence rate $O(\sqrt{B_1}/K)$
 - ▶ To achieve an ϵ -stationary point (i.e., $\mathbb{E}[\|\nabla f(\mathbf{x}_{\xi})\|_2^2] \leq \epsilon^2$), ZO-SVRG-Coord's function query complexity is $O(\min\{N^{1/2}d\epsilon^{-2},d\epsilon^{-3}\})$

Improved ZO-SVRG and ZO-SPIDER [Ji et al., ICML'19]

- Numerical result comparisons:
 - Generation of black-box adversarial examples (DNN for MNIST handwritten digit classification, use the blackbox attacking loss in [Liu et al. NeurIPS'18])
 - Nonconvex logistic regression on LIBSVM [Chang and Lin, ACM TIST'11]

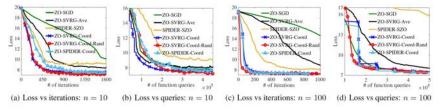


Figure 1. Comparison of different zeroth-order algorithms for generating black-box adversarial examples for digit "1" class

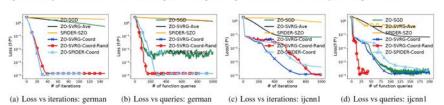


Figure 2. Comparison of different zeroth-order algorithms for logistic regression problem with a nonconvex regularizer

Next Class

Complex-Structured Learning