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Outline

In this lecture:

Overview of Zeroth-Order Methods and Their Applications

Representative Techniques for Random Directions of Gradient Estimations

Convergence Results
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Overview of Zeroth-Order Methods

Zeroth-order (gradient free) method: Use only function values

↭ Reinforcement learning [Malik et al., AISTATS’20]
↭ Blackbox adversarial attacks on DNN [Papernot et al., CCS’17]
↭ Or problems with structure making gradients di!cult or infeasible to obtain

Two major classes of zeroth-order methods

↭ Methods that do not have any connections to gradient
↫ Random search algorithm [Schumer and Steiglitz, TAC’68]
↫ Nelder-Mead algorithm [Nelder and Mead, Comp J. ’65]
↫ Model-based methods [Conn et al., SIAM’09]
↫ Stochastic three points methods (STP) [Bergou et al., SIAM J. Opt. ’20]
↫ STP with momentum [Gorbunov et al., ICLR’20]

↭ Methods that rely on gradient estimations
↫ More modern approach, the focus of this course
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Basic Idea of (Deterministic) Gradient Estimation

Gradient estimation with finite-di!erence directional derivative estimation:

(Forward version): g(x) =
d∑

i=1

f(x+ µei)→ f(x)

µ
ei,

(Centered version): g(x) =
d∑

i=1

f(x+ µei)→ f(x→ µei)

2µ
ei,

where ei is the i-th natural basis vector of Rn and µ is the sampling radius

For the gradient estimation above, it can be shown that for f ↑ C
1,1
L (i.e.,

continuously di!erentiable with Lipschitz-continuous gradient)

↓g(x)→↔f(x)↓2 ↗ µL

↘
d

Natural idea: Replace actual gradient with gradient estimation in any
first-order optimization scheme (deterministic ZO methods)

↭ Pro: Use Lipschitz-like bound above to characterize convergence performance
↭ Con: Su!er from problem dimensionality for large d (O(d) ZO-oracle calls)
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Randomized Gradient Estimation

Two-point random gradient estimator

↔̂f(x) = (d/µ)[f(x+ µu)→ f(x)]u,

where u is an i.i.d. random direction

(q + 1)-point random gradient estimator

↔̂f(x) = (d/(µq))
q∑

i=1

[f(x+ µui)→ f(x)]ui,

which is also referred to as average random gradient estimator

Benefits:
↭ Make every iteration simpler
↭ Easy convergence proof
↭ For problems limited to only several (or even one) ZO oracle queries
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Formalization of Stochastic Zeroth-Order Methods

Consider the problem of the following form:

min
x→Q↑Rd

f(x)

A stochastic ZO method generates {xk} as follows:

xk+1 = A
(
f̂ ,X, P, {xi}ki=0, {ui}ki=0

)

↭ f̂ : ZO-oracle (could be noisy, i.e., f̂ is not necessarily equal to f ; e.g.,
f̂(x) = f(x) + ω(x) or f̂(x,u) = f(x) + ω(x,u) with Eu[f̂(x,u)] = f(x))

↭ {xi}ki=0: history of x-variables
↭ {ui}ki=0: random sampling directions
↭ P : parameters (dimension d of x, L-Lipschitz constant, etc.)

This lecture: Focus on non-convex objective function
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Random Directions Gradient Estimations

Consider the following ZO scheme using gradient approximation:

xk+1 = xk → skg(xk,uk),

where g(xk,uk) follows the two-point random gradient estimator:

g(xk,uk) =
f̂(xk + µuk)→ f̂(xk)

µ
uk

It makes sense to use centrally symmetric distributions for uk:

↭ Uniformly distributed over unit Euclidean sphere [Flaxman et al. SODA’05],
[Gorbunov et al. SIOPT’18], [Dvurechensky et al., E. J. OR’21]:

uk → U{Sd→1}, where S
d→1 = {x ↑ Rd : ↓x↓2 = 1}

↭ Gaussian smoothing [Nesterov and Spokoiny, Math Prog.’06]:

uk → N (0, Id)
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Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Gaussian smoothing approximation:

fµ(x) =
1

ω

∫

Rd

f(x+ µu)e↓
1
2↔u↔

2
2du,

where ω =
∫
Rd e

↓ 1
2↔u↔

2
2du = (2ε)d/2.

Good properties:
↭ Convexity preservation: If f is convex, so is fµ
↭ Di!erentiability
↭ If f ↑ C

0,0
L0

(or f ↑ C
1,1
L1

), the same holds for fµ with L0(fµ) ↔ L0(f) (or
L1(fµ) ↔ L1(f))

↭ |fµ(x)↗ f(x)| ↔ µL0

↘
d if f ↑ C

0,0
L0
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Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Consider the following algorithm:

xk+1 = xk → skg(xk,uk), and uk ≃ N (0, Id).

For nonconvex f ↑ C
1,1
L1

, we have (let U = {uk}K↓1
k=0 ):

1

K

K↓1∑

k=0

EU [↓↔fµ(xk)↓22] ↗ 8(d+ 4)L1

[
fµ(x0)→ f

8

K
+

3µ2(d+ 4)

32
L1

]

Using the facts that ↓fµ(x)→↔f(x)↓2 ↗ µL1

2 (d+ 3)
3
2 and

↓↔f(x)↓22 ↗ 2↓↔fµ(x)→↔f(x)↓22 + 2↓↔fµ(x)↓22, we obtain:

1

K

K↓1∑

k=0

EU [↓↔f(xk)↓22] ↗ 2
µ
2
L
2
1

4
(d+ 3)3

+ 16(d+ 4)L1

[
fµ(x0)→ f

8

K
+

3µ2(d+ 4)

32
L1

]
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Gaussian Smoothing [Nesterov and Spokoiny, FCM’17]

Choosing µ = O(ϑ/[d3L1]) ensures
1
K

∑K↓1
k=0 EU [↓↔f(xk)↓22] ↗ ϑ

2, which
implies the following sample complexity:

K = O(dϑ↓2).

For f ↑ C
0,0
L0

, we have (let SK =
∑K↓1

k=0 sk):

1

SK

K↓1∑

k=0

skEU [↓↔fµ(xk)↓22] ↗
1

SK

[
(fµ(x0)→ f

↗) +
1

µ
d

1
2 (d+ 4)2L3

0

K↓1∑

k=0

s
2
k

]

Consider a bounded domain Q with diam(Q) ↗ R. To ensure
1
K

∑K↓1
k=0 EU [↓↔fµ(xk)↓22] ↗ ϑ

2 and |fµ(x)→ f(x)| ↗ ϖ, we have the
following sample complexity:

K = O

(
d(d+ 4)2L5

0R

ϑ4ϖ

)
.

If sk ⇐ 0 and µ ⇐ 0, convergence of EU [↓↔f(xk)↓2] can also be proved.
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Extensions of Gaussian Smoothing to Noisy f̂

Consider the following:

Noisy f̂ : |f̂(x)→ f(x)| ↗ ϖ

Hölder continuous gradient (intermediate smoothness)

↓↔f(x)→↔f(y)↓2 ↗ Lω↓x→ y↓ω2 , for some ϱ ↑ [0, 1],

which implies the following generalized descent lemma:

f(y) ↗ f(x) +↔f(x)↘(y → x) +
Lω

1 + ϱ
↓y → x↓1+ω

To ensure 1
K

∑K↓1
k=0 EU [↓↔f(xk)↓22] ↗ ϑ

2, we have the following sample
complexity [Shibaev et al., Opt. Lett. ’21]:

K = O

(
d
2+ 1→ω

2ω

ϑ
2
ω

)
if ϖ = O

(
ϑ

3+ω
2ω

d
3+7ω
4ω

)
.
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Extensions of Gaussian Smoothing to Noisy f̂

Special case of ϱ = 1 (i.e., f ↑ C
1,1
L1

): Sample complexity is improved to

K = O(dϑ↓2),

which is d times better than [Nesterov and Spokoiny, FCM’17]

If |f̂(x)→ f(x)| ↗ ϑf , where f is convex and 1-Lipschitz and
ϑf ≃ max{ϑ2/

↘
d, ϑ/d}, then [Risteski and Li, NeurIPS’16] showed that there

exists an algorithm that finds ϑ-optimal solution (i.e., f̂(x)→ f̂
↗ ↗ ϑ) with

sample complexity Poly(d, ϑ↓1). Also, the dependence ϑf (ϑ) is optimal
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Randomized Stochastic Gradient-Free Methods

Gaussian smoothing is extended to [Ghadimi and Lan, SIAM J. Opt. ’13]
[Ghadimi et al., Math Prog. ’16] (unconstrained case, i.e., Q = Rd):

f̂ = F (x, ς) such that Eε[F (x, ς)] = f(x), where ς is a random variable
whose distribution P is supported on ! ⇒ Rd

F (·, ς) has L1-Lipschitz continuous gradient

Consider the following randomized stochastic gradient-free method (RSGF):

xk+1 = xk → skG(xk, ςk,uk),

G(xk, ςk,uk) =
f̂(xk + µuk, ςk)→ f̂(xk, ςk)

µ
uk

It follows from Eε[F (x, ς)] = f(x) that Eε,u[G(x, ς,u)] = ↔fµ(x)

Similar to FO-SGD in [Ghadimi and Lan, SIAM J. Opt. ’13], RSGF chooses
xR from {xk}Kk=1 where R is a r.v. with p.m.f. PR supported on {1, . . . ,K}
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Randomized Stochastic Gradient-Free Methods

For f ↑ C
1,1
L1

, smoothing parameter µ, Df = (2(f(x1)→ f
↗)/L)

1
2 , and

Eε[↓↔f̂(x, ς)→↔f(x)↓22] ↗ φ
2 and p.m.f. of R being:

PR(k) =
sk → 2L(d+ 4)s2k∑K

i=1(si → 2L(d+ 4)s2i )
,

it then holds that:

1

L1
E[↓↔f(xR)↓22] ↗

1
∑K

k=1[sk → 2L1(d+ 4)s2k]

[
D

2
f + 2µ2(d+ 4)⇑

(
1 + L1(d+ 4)2

K∑

k=1

(
sk

4
+ Ls

2
k)

)
+ 2(d+ 4)φ2

K∑

k=1

s
2
k

]
,

where the expectation is taken w.r.t. R and {ςk}.
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Randomized Stochastic Gradient-Free Methods

Choose constant step-size sk = 1≃
d+4

min{ 1
4L

≃
d+4

,
D̃

ϑ
≃
K
} for some D̃ > 0

(some estimation of Df ):

1

L1
E[↓↔f(xR)↓22] ↗

12(d+ 4)L1D
2
f

K
+

2φ
↘
d+ 4↘
K

(
D̃ +

D
2
f

D̃

)

To ensure Pr{↓↔f(xR)↓22 ↗ ϑ} ⇓ 1→ ϖ (i.e., (ϑ, ϖ)-solution), the
zeroth-order oracle sample complexity is:

O

(
dL

2
1D

2
f

ϖϑ
+

dL
2
1

ϖ2

(
D̃ +

D
2
f

D̃

)
φ
2

ϑ2

)
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Randomized Stochastic Gradient-Free Methods

Two-phase randomized stochastic gradient-free method (2-RSGF) [Ghadimi and
Lan, SIAM J. Opt. ’13]

Run RSGF S = log(1/ϖ) times as a subroutine producing a list {x̄k}Sk=1

Output point x̄↗ is chosen in such a way that:

↓g(x̄↗)↓2 = min
s=1,...,S

↓g(x̄s)↓2, where g(x̄s) =
1

T

T∑

k=1

Gµ(x̄s, ςk,uk),

where Gµ(x̄s, ςk,uk) is defined as in RSGF

The zeroth-order oracle sample complexity for achieving (ϑ, ϖ)-solution:

O



dL
2
1D

2
f log(1/ϖ)

ϑ
+ dL

2
1

(
D̃ +

D
2
f

D̃

)2
φ
2

ϑ2
log(1/ϖ) +

d log2(1/ϖ)

ϖ

(
1 +

φ
2

ϑ

)



A more general problem minx→Q↑Rd ”(x) = f(x) + h(x) is also solved in
[Ghadimi et al., Math Prog.’16]

↭ f ↑ C
1,1
L : nonconvex; h(x) is simple convex and possibly non-smooth
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RSGF Based on Uniform Sampling over Unit Sphere

Consider the problem minx→Rn f(x) ↭ Eε[F (x, ς)] = Eε[f̂(x, ς)]
↭ f(x) is L-Lipschitz and µ-smooth
↭ |F (x, ε)| ↔ ! and F ’s variance is bounded by Vf

Stochastic gradient estimation based on uniform sampling over unit sphere:

g(xk, ςk,uk) = n
f̂(xk + µuk, ςk)→ f̂(xk → µuk, ςk)

2µ
,

where uk ≃ U(Sn↓1). The update process is xk+1 = xk → sg(xk, ςk,uk)

After K steps, we have [Sener and Koltun, ICML’20]:

1

K

K∑

k=1

E[↓↔f(xk)↓22] = O

(
n

K1/2
+

n
2/3

K1/3

)
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RSGF Based on Uniform Sampling over Unit Sphere

Consider the case for a given ς, F (x, ς) = g(r(x, ↼↗),”↗), where g(·,”) and
r(·, ↼) are parameterized function classes

↭ r(·, ϑ↑) : Rn ≃ Rd, where d ⇐ n

↭ F (·, ε) : Rn ≃ R is actually defined on a d-dimensional manifold M for all ε

Thus, if one knows the manifold (i.e., ↼↗) and g and r are smooth, we have

from chain rule: ↔f(x) = J(x, ↼↗)↔rg(r,”), where J(x, ↼↗) = ϖr(x,ϱ↑)
ϖx .

This leads to [Sener and Koltun, ICML’20]:

G(xk, ςk,uk) = d
f̂(xk + µJquk, ςk)→ f̂(xk → µJquk, ςk)

2µ
uk,

where Jq is the orthonomalized J(xk, ↼
↗) and uk ≃ U(Sd↓1). It follows that

1

K

K∑

k=1

E[↓↔f(xk)↓22] = O

(
n
1/2

K
+

n
1/2 + d+ dn

1/2

K1/2
+

d
2/3 + n

1/2
d
2/3

K1/3

)
.

which is much better than the previous bound for d ↗ n
1/2.
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Which Gradient Estimation Works Better?

Gradient estimations with random directions are worse than finite di!erences
in terms of # of samples required to ensure the norm condition:

↓g(x)→↔f(x)↓2 ↗ ↼↓↔f(x)↓2, for some ↼ ↑ [0, 1)

Gradient estimation methods are studied in [Berahas et al., FCM’21]:
Compare the # of calls r (i.e., “batch size”) to ensure norm condition

↭ FFD (Forward Finite Di!erences):
∑d

i=1
f̂(x+µei)→f̂(x)

µ ei

↭ CFD (Centered Finite Di!erences):
∑d

i=1
f̂(x+µei)→f̂(x→µei)

2µ ei

↭ LI (Linear Interpolation):
∑d

i=1
f̂(x+µui)→f̂(x)

µ ui, ui = [Q]i

↭ GSG (Gaussian Smoothed Gradients): 1
r

∑r
i=1

f̂(x+µui)→f̂(x)
µ ui, ui → N (0, Id)

↭ cGSG (Centered GSG): 1
r

∑r
i=1

f̂(x+µui)→f̂(x→µui)
2µ ui, ui → N (0, Id)

↭ SSG (Sphere Smoothed Gradients): d
r

∑r
i=1

f̂(x+µui)→f̂(x)
µ ui, ui → U(Sd→1)

↭ cSSG (Centered SSG): d
r

∑r
i=1

f̂(x+µui)→f̂(x→µui)
2µ ui, ui → U(Sd→1)
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Which Gradient Estimation Works Better?

Consider an unconstrained problem minx→Rd f(x) [Berahas et al., FCM’21]:
↭ Noisy ZO oracle: f̂(x) = f(x) + ω(x)
↭ Noise ω is bounded uniformly: |ω(x)| ↔ ωf (noise not neccessarily random)
↭ f(x) ↑ C

1,1
L or f(x) ↑ C

2,2
M (twice continuously di!erentiable with

M -Lipschitz Hessian)

Method Number of calls r →↑f(x)→2
FFD d

2
↓

dLωf
ε

CFD d
2
↓
d 3
√

Mω2f
3↓6ε

LI d
2↔Q→1↔

↓
dLωf

ε

GSG 12d
ϑε2

+ d+20
16ϖ

6d
↓

Lωf
ε

cGSG 12d
ϑε2

+ d+30
144ϖ

12 3
√

d7/2Mω2f
ε

SSG [ 8d
ε2

+ 8d
3ε + 11d+104

24 ] log d+1
ϖ

4d
↓

Lωf
ε

cSSG [ 8d
ε2

+ 8d
3ε + 9d+192

27 ] log d+1
ϖ

4 3
√

d7/2Mω2f
ε

LI is essentially FFD with directions given as columns of a nonsingular matrix Q

For GSG, cGSG, SSG, and cSSG, results are w.p. 1↔ ω
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Next Class

Variance-Reduced Zeroth-Order Methods
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