ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 4-1: Zeroth-Order Methods with Random Directions of Gradient Estimations

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Overview of Zeroth-Order Methods and Their Applications
- Representative Techniques for Random Directions of Gradient Estimations
- **Convergence Results**

Overview of Zeroth-Order Methods

- Zeroth-order (gradient free) method: Use only function values
	- ▶ Reinforcement learning [Malik et al., AISTATS'20]
	- ▶ Blackbox adversarial attacks on DNN [Papernot et al., CCS'17]
	- \triangleright Or problems with structure making gradients difficult or infeasible to obtain

Two major classes of zeroth-order methods

- \triangleright Methods that do not have any connections to gradient
	- ★ Random search algorithm [Schumer and Steiglitz, TAC'68]
	- ↫ Nelder-Mead algorithm [Nelder and Mead, Comp J. '65]
	- ★ Model-based methods [Conn et al., SIAM'09]
	- ★ Stochastic three points methods (STP) [Bergou et al., SIAM J. Opt. '20]
	- **★ STP with momentum [Gorbunov et al., ICLR'20]**
- \triangleright Methods that rely on gradient estimations
	- \star More modern approach, the focus of this course

Model-free RL B ellman: $V(s) = E[f+f\gamma V(s_{t+1})]$ Reinforcement Looming

Multer-based RL

MPP: P(211,26,21) Y(31,24)

Policy Heration VIS) . Gandient - TD

Clear Heration VIS) . (1974)

Dynamic Ping &

Bellow Optimal Parague . (1964)

Dynamic Ping & CLSA)

Dynamic Ping & Mudd-back RL

PP. P(Sin Se Ser) V(s), a)

Palar prior Ref. 10

Blanc Prior V(s), a)

Solar prior Prior V(s), a)

System Compute Prior V(s)

Solar prior Prior V(s)

Compute Prior V(s)

Compute Prior V(s)

Compute Prior V(s Suproget $\mathcal{O}b\hat{j}$, TRpo, Ppo--Ex : Piscrete-time Linear- Quadratic Regulator (LQRI $(56, 06)$: $C_4 = 56.84 + 96.84$
 $(0, 0.8)$
 $(1, 0.6)$
 $(2, 0.8)$
 $(3, 0.8)$ $\begin{array}{ccccc} (s_{\epsilon}, a_{\epsilon}) & c_{\epsilon} = s_{\epsilon} & s_{\epsilon} + a_{\epsilon} & a_{\epsilon} & a_{\epsilon} & c_{\epsilon} \\ n & n & f_{\epsilon} & f_{\epsilon} & f_{\epsilon} \\ n^{\mu} & n^{\kappa} & g_{\epsilon} & f_{\epsilon} & f_{\epsilon} \\ n^{\mu} & n^{\kappa} & g_{\epsilon} & f_{\epsilon} & f_{\epsilon} \end{array}$ n $\begin{array}{r|l}\n\text{map} & \text{map} \\
\downarrow & \text{map$ ~. Go . w.(.o.g. assume \underline{v} a r. vac. $\underline{v} \sim D$ s.t. $\underline{\mathbb{E}[Y]} \geq 0$ $\underline{\mathbb{E}}[\underline{\mathbb{Y}}\underline{\mathbb{Y}}] = \underline{\mathbb{I}}$
 $\underline{\mathbb{E}}[\underline{\mathbb{Y}}\underline{\mathbb{Y}}] = \underline{\mathbb{I}}$ $w_{i}(0.9)$ assume Q a Y vac. $Q \sim Q$ s.t. $P(X \mid -Q) P(X \mid -P)$
 $\frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}} \sum_{i=1}^{n} \frac{1}{\sqrt{2}}$

By classical opt $\cot \theta$ theory : $Q_t = -\frac{1}{2}$
 $Q = -\frac{1}{2}$.he by the dt-Ricarti eqn. (assuming A, B, B, B)

If we don't know ^E , ^B , *, @ , we can search over lin. policies : ¹ . Rand initialization : (init (E ,10) - cost of executing ^a lin- policy I from So . Cit (E ,)=t+⁺² zo-opt. God terity^a a espectral A polh ^E is said to be ctrlible for (A .B) if PLA-EB EE : PLA-E) < ¹³ Note : ¹ : LQR is Locally Lipschitz ^I (Cintr(50) - Cnitr(K , 50)1 ⁼ ^X IE-EIIF ²⁰ . LOR has locally Lipschitz cont-grad. 1D Cinitr(K) - -Cimt. rl⁼ I-EIF . So Ghir()is nonconvex : ER : PEEE) LR is nonconvea

Basic Idea of (Deterministic) Gradient Estimation

• Gradient estimation with finite-difference directional derivative estimation:

(Forward version):
$$
\mathbf{g}(\mathbf{x}) = \sum_{i=1}^{d} \frac{f(\mathbf{x} + \mu \mathbf{e}_i) - f(\mathbf{x})}{\mu} \mathbf{e}_i,
$$

(Centered version): $\mathbf{g}(\mathbf{x}) = \sum_{i=1}^{d} \frac{f(\mathbf{x} + \mu \mathbf{e}_i) - f(\mathbf{x} - \mu \mathbf{e}_i)}{2\mu} \mathbf{e}_i,$

where \mathbf{e}_i is the *i*-th natural basis vector of \mathbb{R}^n and μ is the sampling radius
contribution of \mathbb{R}^n For the gradient estimation above, it can be shown that for $f \in C_{\ell}^{V\!U\!V}$ (i.e., continuously differentiable with Lipschitz-continuous gradient) $\frac{(-\mu e_i)}{e_i}$

sampling radius
 $f \in C_0$ (i.e., grad
 f (i.e., grad
 μ
 μ or deroy motation

$$
\|\mathbf{g}(\mathbf{x}) - \nabla f(\mathbf{x})\|_2 \le \mu L \sqrt{d}
$$

- Natural idea: Replace actual gradient with gradient estimation in any first-order optimization scheme (deterministic ZO methods)
	- \triangleright Pro: Use Lipschitz-like bound above to characterize convergence performance
	- \triangleright Con: Suffer from problem dimensionality for large *d* (*O*(*d*) ZO-oracle calls)

Randomized Gradient Estimation

• Two-point random gradient estimator

ient Estimation

\ngradient estimator

\n
$$
\hat{\nabla}f(\mathbf{x}) = (d/\mu)[f(\mathbf{x} + \mu \mathbf{u}) - f(\mathbf{x})]\mathbf{u},
$$
\nrandom direction

where u is an i.i.d. random direction

 \bullet ($q+1$)-point random gradient estimator

$$
\hat{\nabla}f(\mathbf{x}) = (d/(\mu q)) \sum_{i=1}^{q} [f(\mathbf{x} + \mu \mathbf{u}_i) - f(\mathbf{x})] \mathbf{u}_i,
$$

which is also referred to as average random gradient estimator

- **Benefits:**
	- \blacktriangleright Make every iteration simpler
	- \blacktriangleright Easy convergence proof
	- ▶ For problems limited to only several (or even one) ZO oracle queries

Formalization of Stochastic Zeroth-Order Methods

• Consider the problem of the following form:

 $\min_{\mathbf{x}\in Q\subseteq\mathbb{R}^d}f(\mathbf{x})$

A stochastic ZO method generates *{*x*k}* as follows:

$$
\mathbf{x}_{k+1} = \mathcal{A}\left(\hat{f}, \mathbf{X}, P, \{\mathbf{x}_i\}_{i=0}^k, \{\mathbf{u}_i\}_{i=0}^k\right)
$$

- ► \hat{f} : ZO-oracle (could be noisy, i.e., \hat{f} is not necessarily equal to f ; e.g., $\hat{f}(\mathbf{x}) = f(\mathbf{x}) + \epsilon(\mathbf{x})$ or $\hat{f}(\mathbf{x}, \mathbf{u}) = f(\mathbf{x}) + \epsilon(\mathbf{x}, \mathbf{u})$ with $\mathbb{E}_{\mathbf{u}}[\hat{f}(\mathbf{x}, \mathbf{u})] = f(\mathbf{x})$)
- \blacktriangleright $\{\mathbf x_i\}_{i=0}^k$: history of x-variables
- $\blacktriangleright \{u_i\}_{i=0}^k$: random sampling directions
- \blacktriangleright *P*: parameters (dimension *d* of x, *L*-Lipschitz constant, etc.)
- This lecture: Focus on non-convex objective function

Random Directions Gradient Estimations

Consider the following ZO scheme using gradient approximation:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k),
$$

where $g(\mathbf{x}_k, \mathbf{u}_k)$ follows the two-point random gradient estimator:

$$
\mathbf{g}(\mathbf{x}_k,\mathbf{u}_k)=\frac{\hat{f}(\mathbf{x}_k+\mu\mathbf{u}_k)-\hat{f}(\mathbf{x}_k)}{\mu}\mathbf{u}_k
$$

 \bullet It makes sense to use centrally symmetric distributions for \mathbf{u}_k :

 \triangleright Uniformly distributed over unit Euclidean sphere [Flaxman et al. SODA'05], [Gorbunov et al. SIOPT'18], [Dvurechensky et al., E. J. OR'21]:

$$
\mathbf{u}_k \sim \mathcal{U}\{S^{d-1}\}, \text{ where } S^{d-1} = \{\mathbf{x} \in \mathbb{R}^d : ||\mathbf{x}||_2 = 1\}
$$

▶ Gaussian smoothing [Nesterov and Spokoiny, Math Prog.'06]:

$$
\mathbf{u}_k \sim \mathcal{N}(0, \mathbf{I}_d)
$$

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

Gaussian smoothing approximation:

$$
f_{\mu}(\mathbf{x}) = \frac{1}{\kappa} \int_{\mathbb{R}^d} f(\mathbf{x} + \mu \mathbf{u}) e^{-\frac{1}{2} \|\mathbf{u}\|_2^2} d\mathbf{u},
$$

where $\kappa = \int_{\mathbb{R}^d} e^{-\frac{1}{2} ||\mathbf{u}||_2^2} d\mathbf{u} = (2\pi)^{d/2}.$

- **Good properties:**
	- ► Convexity preservation: If f is convex, so is f_u
	- \blacktriangleright Differentiability
	- ► If $f \in C_{L_0}^{0,0}$ (or $f \in C_{L_1}^{1,1}$), the same holds for f_μ with $L_0(f_\mu) \le L_0(f)$ (or $L_1(f_u) \leq L_1(f)$

$$
\triangleright |f_{\mu}(\mathbf{x}) - f(\mathbf{x})| \leq \mu L_0 \sqrt{d} \text{ if } f \in C_{L_0}^{0,0}
$$

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

• Consider the following algorithm:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k), \text{ and } \mathbf{u}_k \sim \mathcal{N}(0, \mathbf{I}_d).
$$

For nonconvex $f \in C^{1,1}_{L_1}$, we have (let $U = {\mathbf{u}_k}_{k=0}^{K-1}$): $=$ $0^(d)$

Consider the following algorithm.
\n
$$
\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \mathbf{g}(\mathbf{x}_k, \mathbf{u}_k), \text{ and } \mathbf{u}_k \sim \mathcal{N}(0, \mathbf{I}_d).
$$
\n• For nonconvex $f \in C_{L_1}^{1,1}$, we have (let $U = {\mathbf{u}_k}_{k=0}^{K-1}$):
\n
$$
\|\mathbf{g}\|_{\mathbf{u}}^2 \leq \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_U[\|\nabla f_\mu(\mathbf{x}_k)\|_2^2] \leq 8(d+4)L_1 \left[\frac{f_\mu(\mathbf{x}_0) - f^{\mathbf{w}}}{K} + \frac{3\mu^2(d+4)}{32} L_1 \right]
$$
\n• Using the facts that $\|\underline{f}_\mu(\mathbf{x}) - \nabla f(\mathbf{x})\|_2 \leq \frac{\mu L_1}{2}(d+3)^{\frac{3}{2}}$ and $\mathcal{O}(\frac{1}{K})$
\n $\|\nabla f(\mathbf{x})\|_2^2 \leq 2 \|\nabla f_\mu(\mathbf{x})\|_2^2 \|\nabla f(\mathbf{x})\|_2^2 + 2 \|\nabla f_\mu(\mathbf{x})\|_2^2$, we obtain: $\mathbf{f}_0 \in \mathbb{A}$ and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_U[\|\nabla f(\mathbf{x}_k)\|_2^2] \leq 2 \frac{\mu^2 L_1^2}{4} (d+3)^3 \cdot \mathcal{O}(d^3)$
\n $+ 16(d+4)L_1 \left[\frac{f_\mu(\mathbf{x}_0) - f^{\mathbf{x}}}{K} + \frac{3\mu^2(d+4)}{32} L_1 \right]$

Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

Choosing $\mu = O(\epsilon/ [d^3 L_1])$ ensures $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}_U [\|\nabla f(\mathbf{x}_k)\|_2^2] \le \epsilon^2$, which implies the following sample complexity:

$$
K = O(d\epsilon^{-2}). \quad \approx \quad \mathbf{G} \mathbf{D}.
$$

For $f \in C_{L_0}^{0,0}$, we have (let $S_K = \sum_{k=0}^{K-1} s_k$):

$$
\frac{1}{S_K} \sum_{k=0}^{K-1} s_k \mathbb{E}_U[\|\nabla f_\mu(\mathbf{x}_k)\|_2^2] \le \frac{1}{S_K} \left[(f_\mu(\mathbf{x}_0) - f^*) + \frac{1}{\mu} d^{\frac{1}{2}} (d+4)^2 L_0^3 \sum_{k=0}^{K-1} s_k^2 \right]
$$

• Consider a bounded domain Q with $\text{diam}(Q) \leq R$. To ensure $\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}_U[\|\nabla f_\mu(\mathbf{x}_k)\|_2^2]\leq \epsilon^2$ and $|f_\mu(\mathbf{x})-f(\mathbf{x})|\leq \delta,$ we have the following sample complexity:

$$
K = O\left(\frac{d(d+4)^2 L_0^5 R}{\epsilon^4 \delta}\right). \qquad O\left(\frac{d^3}{\epsilon^4}\right)
$$

• If $s_k \to 0$ and $\mu \to 0$, convergence of $\mathbb{E}_U[\|\nabla f(\mathbf{x}_k)\|_2]$ can also be proved.

Extensions of Gaussian Smoothing to Noisy ˆ*f*

Consider the following:

- Noisy $\hat{f}: |\hat{f}(\mathbf{x}) f(\mathbf{x})| \leq \delta$ **RL**:
- Hölder continuous gradient (intermediate smoothness)

$$
\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L_{\nu} \|\mathbf{x} - \mathbf{y}\|_2^{\nu}, \text{ for some } \nu \in [0, 1],
$$

which implies the following generalized descent lemma:

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L_\nu}{1 + \nu} ||\mathbf{y} - \mathbf{x}||^{1 + \nu}
$$

To ensure $\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}_U[\|\nabla f(\mathbf{x}_k)\|_2^2]\leq \epsilon^2$, we have the following sample complexity [Shibaev et al., Opt. Lett. '21]: νţ

$$
K = O\left(\frac{d^{2 + \frac{1-\nu}{2\nu}}}{\epsilon^{\frac{2}{\nu}}}\right) \text{ if } \delta = O\left(\frac{\epsilon^{\frac{3+\nu}{2\nu}}}{d^{\frac{3+7\nu}{4\nu}}}\right).
$$

Extensions of Gaussian Smoothing to Noisy ˆ*f*

Special case of $\nu = 1$ (i.e., $f \in C^{1,1}_{L_1}$): Sample complexity is improved to

i.e.,
$$
f \in C_{L_1}^{1,1}
$$
): Sample complexity is impr
\n
$$
K = \underbrace{O(d\epsilon^{-2})}, \qquad \text{Sowolar G.D.}
$$
\nThen, [Nesterov and Spokoiny, FCM'17]

which is d -times better than [Nesterov and Spokoiny, FCM'17]

 \bullet If $|\hat{f}(\mathbf{x}) - f(\mathbf{x})| \leq \epsilon_f$, where f is convex and 1-Lipschitz and $\epsilon_f \sim \max\{\epsilon^2/\sqrt{\bar{d}}, \epsilon/d\}$, then [Risteski and Li, NeurlPS'16] showed that there exists an algorithm that finds ϵ -optimal solution (i.e., $\hat{f}(\mathbf{x}) - \hat{f}^* \leq \epsilon$) with sample complexity $Poly(d, \epsilon^{-1})$. Also, the dependence $\epsilon_f(\epsilon)$ is optimal s of Gaussian

case of $\nu = 1$ (i.e.,

same as

d times better the
 $-f(\mathbf{x}) | \leq \epsilon_f$, when as

etter than [I]
 ϵ_f , where f
 ϵ/d }, then [

1 that finds (
 $\frac{Poly(d, \epsilon^{-1})}{LB - mod t}$

LB-matching

came as

Randomized Stochastic Gradient-Free Methods of Sk⁼ Fr. Ot).

Gaussian smoothing is extended to [Ghadimi and Lan, SIAM J. Opt. '13] [Ghadimi et al., Math Prog. '16] (unconstrained case, i.e., $Q = \mathbb{R}^d$):

- $\hat{f} = F(\mathbf{x}, \xi)$ such that $\mathbb{E}_{\xi}[F(\mathbf{x}, \xi)] = f(\mathbf{x})$, where ξ is a random variable whose distribution P is supported on $\Xi \subseteq \mathbb{R}^d$
- $F(\cdot,\xi)$ has L_1 -Lipschitz continuous gradient
- Consider the following randomized stochastic gradient-free method (RSGF):

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - s_k G(\mathbf{x}_k, \xi_k, \mathbf{u}_k),
$$

$$
G(\mathbf{x}_k, \xi_k, \mathbf{u}_k) = \frac{\overline{\mathbf{f}}(\mathbf{x}_k + \mu \mathbf{u}_k, \xi_k) - \overline{\mathbf{f}}(\mathbf{x}_k, \xi_k)}{\mu} \mathbf{u}_k
$$

• It follows from $\mathbb{E}_{\xi}[F(\mathbf{x},\xi)]=f(\mathbf{x})$ that $\mathbb{E}_{\xi,\mathbf{u}}[G(\mathbf{x},\xi,\mathbf{u})]=\nabla f_u(\mathbf{x})$

• Similar to FO-SGD in [Ghadimi and Lan, SIAM J. Opt. '13], RSGF chooses \mathbf{x}_R from $\{\mathbf{x}_k\}_{k=1}^K$ where R is a r.v. with p.m.f. P_R supported on $\{1,\ldots,K\}$ JKL (ECE@OSU) ECE 8101: Lecture 4-1 13 andom termination index

Randomized Stochastic Gradient-Free Methods

For $f \in C^{1,1}_{L_1}$, smoothing parameter μ , $D_f = (2(f(\mathbf{x}_1) - f^*)/L)^{\frac{1}{2}}$, and $\mathbb{E}_{\xi}[\|\nabla \hat{f}(\mathbf{x},\xi)-\nabla f(\mathbf{x})\|_2^2] \leq \sigma^2$ and p.m.f. of *R* being:

$$
\mathbb{E} \left\| \sum_{k=1}^{n} \left\| \mathcal{V}_{k}(k) \right\|^2 = \frac{s_k - 2L(d+4)s_k^2}{\sum_{i=1}^{K} (s_i - 2L(d+4)s_i^2)},
$$

it then holds that:

$$
\frac{1}{L_1}\mathbb{E}[\|\nabla f(\mathbf{x}_R)\|_2^2] \le \frac{1}{\sum_{k=1}^K [s_k - 2L_1(d+4)s_k^2]} \left[D_f^2 + 2\mu^2(d+4) \times \left(1 + L_1(d+4)^2 \sum_{k=1}^K \left(\frac{s_k}{4} + L s_k^2\right)\right) + 2(d+4)\sigma^2 \sum_{k=1}^K s_k^2\right],
$$

where the expectation is taken w.r.t. *R* and $\{\xi_k\}$.

Randomized Stochastic Gradient-Free Methods

Choose constant step-size $s_k = \frac{1}{\sqrt{d+4}} \min\{\frac{1}{4L\sqrt{d+4}}, \frac{\bar{D}}{\sigma\sqrt{K}}\}$ for some $\tilde{D} > 0$ (some estimation of D_f): ota).

Choose constant step-size
$$
s_k = \frac{1}{\sqrt{d+4}} \min\left\{\frac{1}{4L\sqrt{d+4}}, \frac{\tilde{D}}{\sigma\sqrt{K}}\right\}
$$
 for some \tilde{D}
\n(some estimation of D_f):
\n
$$
\frac{1}{L_1} \mathbb{E}[\|\nabla f(\mathbf{x}_R)\|_2^2] \le \frac{12(d+4)L_1D_f^2}{K} + \frac{2\sigma\sqrt{d+4}}{\sqrt{K}} \left(\tilde{D} + \frac{D_f^2}{\tilde{D}}\right)
$$
\nTo ensure $\Pr\{\|\nabla f(\mathbf{x}_R)\|_2^2 \le \epsilon\} \ge \underbrace{1-\delta}_{\mathbf{L}-\tilde{D}} \left(\text{i.e., } (\epsilon, \delta)\text{-solution}\right), \text{ the zeroth-order oracle sample complexity is: $\mathbb{V}_{\mathbf{W} \cdot \mathbf{h} \cdot \mathbf{f}}$. **result**.$

$$
O\left(\frac{dL_1^2 D_f^2}{\delta \epsilon} + \frac{dL_1^2}{\delta^2} \left(\tilde{D} + \frac{D_f^2}{\tilde{D}}\right) \frac{\sigma^2}{\epsilon^2}\right)
$$

$$
O\left(\delta^2\right) \qquad \log\left(\frac{l}{\delta}\right)
$$

Randomized Stochastic Gradient-Free Methods

Two-phase randomized stochastic gradient-free method (2-RSGF) [Ghadimi and Lan, SIAM J. Opt. '13]

- $\textsf{Run} \ \textsf{RSGF} \ S = \log(1/\delta) \ \textsf{times} \ \textsf{as} \ \textsf{a} \ \textsf{subroutine} \ \textsf{producing} \ \textsf{a} \ \textsf{list} \ \{\bar{{\bf x}}_k\}_{k=1}^S$
- Output point \bar{x}^* is chosen in such a way that:

$$
\|\mathbf{g}(\bar{\mathbf{x}}^*)\|_2 = \min_{s=1,\ldots,S} \|\mathbf{g}(\bar{\mathbf{x}}_s)\|_2, \text{ where } \mathbf{g}(\bar{\mathbf{x}}_s) = \frac{1}{T} \sum_{k=1}^T G_\mu(\bar{\mathbf{x}}_s, \xi_k, \mathbf{u}_k),
$$

where $G_{\mu}(\bar{\mathbf{x}}_s, \xi_k, \mathbf{u}_k)$ is defined as in RSGF

• The zeroth-order oracle sample complexity for achieving (ϵ, δ) -solution:

$$
\|\mathbf{g}(\bar{\mathbf{x}}^*)\|_2 = \min_{s=1,\dots,S} \|\mathbf{g}(\bar{\mathbf{x}}_s)\|_2, \text{ where } \mathbf{g}(\bar{\mathbf{x}}_s) = \frac{1}{T} \sum_{k=1}^T G_\mu(\bar{\mathbf{x}}_s, \xi_k, \mathbf{u}_k),
$$

\nwhere $G_\mu(\bar{\mathbf{x}}_s, \xi_k, \mathbf{u}_k)$ is defined as in RSGF
\n• The zeroth-order oracle sample complexity for achieving (ϵ, δ) -solution:
\n
$$
O\left(\frac{dL_1^2 D_f^2(\log(1/\delta))}{\epsilon} + dL_1^2 \left(\tilde{D} + \frac{D_f^2}{\tilde{D}}\right)^2 \frac{\sigma^2}{\epsilon^2} \frac{\log(1/\delta)}{\log(1/\delta)} + \frac{d(\log^2(1/\delta))}{\delta} \left(1 + \frac{\sigma^2}{\epsilon}\right)\right)
$$

\n• A more general problem $\min_{\mathbf{x} \in \mathcal{O}} \sup \Psi(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ is also solved in

A more general problem $\min_{\mathbf{x} \in \Omega \subseteq \mathbb{R}^d} \Psi(\mathbf{x}) = f(\mathbf{x}) + h(\mathbf{x})$ is also solved in [Ghadimi et al., Math Prog.'16]

▶ $f \in C_L^{1,1}$: nonconvex; $h(\mathbf{x})$ is simple convex and possibly non-smooth

RSGF Based on Uniform Sampling over Unit Sphere

- Consider the problem $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \triangleq \mathbb{E}_{\xi}[F(\mathbf{x},\xi)] = \mathbb{E}_{\xi}[\hat{f}(\mathbf{x},\xi)]$
	- \blacktriangleright $f(\mathbf{x})$ is *L*-Lipschitz and *µ*-smooth
	- \blacktriangleright $|F(\mathbf{x}, \xi)| \leq \Omega$ and *F*'s variance is bounded by V_f
- Stochastic gradient estimation based on uniform sampling over unit sphere:

$$
\mathbf{g}(\mathbf{x}_k,\xi_k,\mathbf{u}_k)=n\frac{\hat{f}(\mathbf{x}_k+\mu\mathbf{u}_k,\xi_k)-\hat{f}(\mathbf{x}_k-\mu\mathbf{u}_k,\xi_k)}{2\mu},
$$

where $\mathbf{u}_k \sim \mathcal{U}(S^{n-1})$. The update process is $\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{g}(\mathbf{x}_k, \xi_k, \mathbf{u}_k)$ After *K* steps, we have [Sener and Koltun, ICML'20]:

$$
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\nabla f(\mathbf{x}_k)\|_2^2] = O\left(\frac{n}{K^{1/2}} + \frac{n^{2/3}}{K^{1/3}}\right)
$$

$$
O\left(\frac{1}{K^2}\right)
$$

RSGF Based on Uniform Sampling over Unit Sphere

- Consider the case for a given ξ , $F(\mathbf{x}, \xi) = g(r(\mathbf{x}, \theta^*))$, where $g(\cdot, \Psi)$ and $r(\cdot, \theta)$ are parameterized function classes
	- \blacktriangleright $r(\cdot, \theta^*) : \mathbb{R}^n \to \mathbb{R}^d$, where $d \ll n$
	- **►** $F(\cdot, \xi) : \mathbb{R}^n \to \mathbb{R}$ is actually defined on a *d*-dimensional manifold *M* for all ξ
- Thus, if one knows the manifold (i.e., θ^*) and g and r are smooth, we have from chain rule: $\nabla f(\mathbf{x}) = J(\mathbf{x}, \theta^*) \nabla_r g(r, \Psi)$, where $J(\mathbf{x}, \theta^*) = \frac{\partial r(\mathbf{x}, \theta^*)}{\partial \mathbf{x}}$. This leads to [Sener and Koltun, ICML'20]:

$$
G(\mathbf{x}_k, \xi_k, \mathbf{u}_k) = d \frac{\hat{f}(\mathbf{x}_k + \mu J_q \mathbf{u}_k, \xi_k) - \hat{f}(\mathbf{x}_k - \mu J_q \mathbf{u}_k, \xi_k)}{2\mu} \mathbf{u}_k,
$$

where J_q is the orthonomalized $J(\mathbf{x}_k, \theta^*)$ and $\mathbf{u}_k \sim \mathcal{U}(S^{d-1})$. It follows that

$$
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[\|\nabla f(\mathbf{x}_k)\|_2^2] = O\left(\frac{n^{1/2}}{K} + \frac{n^{1/2} + d + dn^{1/2}}{K^{1/2}} + \frac{d^{2/3} + n^{1/2}d^{2/3}}{K^{1/3}}\right)
$$

which is much better than the previous bound for $d \leq n^{1/2}$.

.

 $O(k^{3})$

Which Gradient Estimation Works Better?

• Gradient estimations with random directions are worse than finite differences in terms of $#$ of samples required to ensure the norm condition: "SNR"

 $\|\mathbf{g}(\mathbf{x}) - \nabla f(\mathbf{x})\|_2 \leq \theta \|\nabla f(\mathbf{x})\|_2$, for some $\theta \in [0, 1)$

Which Gradient Estimation Works Better?
\n• Gradient estimations with random directions are worse than finite differences
\nin terms of # of samples required to ensure the norm condition:
\n
$$
||g(x) - ∇f(x)||_2 \le \theta ||∇f(x)||_2
$$
, for some $\theta \in [0, 1)$
\n• Gradient estimation methods are studied in [Berahas et al., FCM'21]:
\nCompare the # of calls r (i.e., "batch size") to ensure norm condition
\n
$$
||g(x) - ∇f(x)||_2 \le \theta ||∇f(x)||_2
$$
, for some $\theta \in [0, 1)$
\n• Gradient estimation methods are studied in [Berahas et al., FCM'21]:
\nCompare the # of calls r (i.e., "batch size") to ensure norm condition
\n
$$
||g(x)||_2
$$
, FFD (Forward Finite Differences):
$$
\sum_{i=1}^d \frac{\hat{f}(x+\mu e_i)-\hat{f}(x)}{\mu}e_i
$$

\n
$$
||g(x)||_2
$$
, $u_i = [Q]_{i}$ for μ and μ

Which Gradient Estimation Works Better?

- Consider an unconstrained problem $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ [Berahas et al., FCM'21]:
	- Noisy ZO oracle: $\hat{f}(\mathbf{x}) = f(\mathbf{x}) + \epsilon(\mathbf{x})$
	- Noise ϵ is bounded uniformly: $|\epsilon(\mathbf{x})| \leq \epsilon_f$ (noise not neccessarily random)
	- ▶ $f(\mathbf{x}) \in C^{1,1}_L$ or $f(\mathbf{x}) \in C^{2,2}_M$ (twice continuously differentiable with *M*-Lipschitz Hessian)

LI is essentially FFD with directions given as columns of a nonsingular matrix ${\bf Q}$ Let us a sentially FFD with directions given as columns of
For GSG, cGSG, SSG, and cSSG, results are w.p. $1-\delta$

• For GSG, cGSG, SSG, and cSSG, results are w.p. $1 - \delta$

Next Class

Variance-Reduced Zeroth-Order Methods