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Outline

In this lecture:
@ Overview of Zeroth-Order Methods and Their Applications
@ Representative Techniques for Random Directions of Gradient Estimations

@ Convergence Results
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Overview of Zeroth-Order Methods

@ Zeroth-order (gradient free) method: Use only function values

> Reinforcement learning [Malik et al., AISTATS'20]
» Blackbox adversarial attacks on DNN [Papernot et al., CCS'17]
» Or problems with structure making gradients difficult or infeasible to obtain

@ Two major classes of zeroth-order methods

» Methods that do not have any connections to gradient
* Random search algorithm [Schumer and Steiglitz, TAC'68]
Nelder-Mead algorithm [Nelder and Mead, Comp J. '65]
Model-based methods [Conn et al., SIAM’09]
Stochastic three points methods (STP) [Bergou et al., SIAM J. Opt. '20]
STP with momentum [Gorbunov et al., ICLR'20]

* % % %

» Methods that rely on gradient estimations
* More modern approach, the focus of this course
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Basic Idea of (Deterministic) Gradient Estimation

@ Gradient estimation with finite-difference directional derivative estimation:

X + el
Zf pei) — f(x)

(Forward version)

€;,

(Centered version)

(2l

Z S (x+ pei) Mf(x — pei)

where e; is the i-th natural basis vector of R™ and p is the iampllng radius

T— Lt
@ For the gradient estimation above, it can be shown that for f € (| e., 9,,(:(
continuously differentiable with Lipschitz-continuous gradient)

Naslem wotufim
lg(x) = V(x)ll, < nLVd

@ Natural idea: Replace actual gradient with gradient estimation in any
first-order optimization scheme (deterministic ZO methods)

» Pro: Use Lipschitz-like bound above to characterize convergence performance
» Con: Suffer from problem dimensionality for large d (O(d) ZO-oracle calls)
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Randomized Gradient Estimation

@ Two-point random gradient estimator

V(x) = (d/p)[f (x+p0) - f()]u,

where u is an i.i.d. random direction

@ (¢ + 1)-point random gradient estimator

q

VI(x) = (d/ (1) Y1 (x4 pug) = ()],

i=1

which is also referred to as average random gradient estimator

@ Benefits:

> Make every iteration simpler
» Easy convergence proof
» For problems limited to only several (or even one) ZO oracle queries
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Formalization of Stochastic Zeroth-Order Methods

@ Consider the problem of the following form:

min X
nin f(x)

@ A stochastic ZO method generates {x} as follows:
Xk+1 = A (fv Xa P7 {Xi}i?:O? {uz}f:O)

> f: Z0O-oracle (could be r)oisy, ie., f is not necessarily equaJ to f; e.g.,
f(x) = f(x) +€(x) or f(x,u) = f(x) + €(x,u) with Eu[f(x, )] = f(x))
{xi}¥_o: history of x-variables

» {u;}F_: random sampling directions

P: parameters (dimension d of x, L-Lipschitz constant, etc.)

v

v

@ This lecture: Focus on non-convex objective function
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Random Directions Gradient Estimations

o Consider the following ZO scheme using gradient approximation:
Xk4+1 = X — Skg(xka Uk),

where g(xy, uy) follows the two-point random gradient estimator:

g(xp,uy) = fxk+ ,uu:) — f(xk)uk

@ It makes sense to use centrally symmetric distributions for uy:

» Uniformly distributed over unit Euclidean sphere [Flaxman et al. SODA'05],
[Gorbunov et al. SIOPT'18], [Dvurechensky et al., E. J. OR'21]:

e ~U{SYTY, where ST = {x e R : [|x]|, = 1}
» Gaussian smoothing [Nesterov and Spokoiny, Math Prog.’06]:

u, ~ N(0,14)
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Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

@ Gaussian smoothing approximation:

1 1
Fux) == | flx+ p)e 2l
K Rd

where £ =[5, e~zluligu = (27)4/2.

@ Good properties:
» Convexity preservation: If f is convex, so is f,
> Differentiability
> If f € CYY (or f € Cp)), the same holds for f, with Lo(fu) < Lo(f) (or
Li(fu) < L1(f))
> [ fu(x) = F)| < uLoVd if f € CF

JKL (ECE@OSU) ECE 8101: Lecture 4-1



Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

@ Consider the following algorithm:

Xk+1 = Xk — skg(xk, uk), and Ui ~ N(O,Id>.

@ For nonconvex f € C’i’ll. we have (let U = {u;};—'):

/ ~0@)
K—
LWW” Z vllIV £ (xi)l13] < 8(d+4)Ly [fu("(}){— J"“?Jr 3 (d+4)L ]
e o). @_
@ Using the facts th’a&g |l fu(x) = Vf(x)][2 < LLy(d 4 3)% and )
IVFGOI < 21V fu () £ VTCOIB + 2V ()3, we obtain: o & ball.

K—1 A;
% > EolllV£(x)]3) < 2“24L M o)
k=0

fu(xo0) — & 3p%(d+4)
K 3 Ll]

+16(d+4)L, [
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Gaussian Smoothing [Nesterov and Spokoiny, FCM'17]

e Choosing pu = O(e/[d*L,]) ensures - SR BV (k) [13] < €2, which
implies the following sample complexity:

K=0(de?). = 6D,
e For f € CO’OO, we have (let Sk = Zfz_ol Sk):

K-1

1
S é Sk:]EU[va/t(Xk’)Hg]S
K=o

1 . K-l
Faloxo) — £+ Lab@ s 0728 3 ]

k=0

1
Sk

=

o Consider a bounded domain @ with diam(Q) < R. To ensure

LSV EG IV () [13] < € and £, (x) — f(x)| <6, we have the

following sample complexity:

K:O<d(d+4)2LgR). O(’;f;)

et
o If s — 0 and u — 0, convergence of Ey/[||V f(x1)]|2] can also be proved.
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Extensions of Gaussian Smoothing to Noisy f

Consider the following:

o Noisy f: |f(x) - f(x)| <6  RL:

@ Holder continuous gradient (intermediate smoothness)
IVF(x)—Vf(y)lz2 < L,||x—yl5, for some v € [0,1],

which implies the following generalized descent lemma:

F3) < F6+ TF60T (v =)+ 1oy = [

e To ensure + Zf:_ol Eu[||Vf(xx)|3] < €2, we have the following sample
complexity [Shibaev et al., Opt. Lett. '21]: VT

24152 o2
KzO(d )if&zO(%).
€ d
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Extensions of Gaussian Smoothing to Noisy f

@ Special case of v =1 (i.e., f € Ci’ll): Sample complexity is improved to

K=0@dc?), Swilr 6D
game 05 E—
which is d-tirres—better=than [Nesterov and Spokoiny, FCM'17]

o If |f(x) — f(x)| < e, where f is convex and 1-Lipschitz and
¢ ~ max{e?/V/d,e/d}, then [Risteski and Li, NeurlPS'16] showed that there
exists an algorithm that finds e-optimal solution (i.e., f(x) — f* <€) with

sample complexity Poly(d.e”'). Also, the dependence ¢(e) is optimal
LB—meQ‘rj
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Randomized Stochastic Gradient-Free Methods

L
Gaussian smoothing is extended to [Ghadimi and Lan, SIAM J. Opt. '13]
[Ghadimi et al., Math Prog. '16] (unconstrained case, i.e., Q = R%):

o f = F(x,¢) such that E¢[F(x,£)] = f(x), where ¢ is a random variable
whose distribution P is supported on = C R¢

@ F(-,&) has Ly-Lipschitz continuous gradient

o Consider the following randomized stochastic gradient-free method (RSGF):

Xpt1 = Xk — G (Xk, Eky W),
?(Xk + pug, &) — F(Xka fk
u
o It follows from E¢[F(x,&)] = f(x) that E¢ o[G(x,&,u)] = V f,(x)

@ Similar to FO-SGD in [Ghadimi and Lan, SIAM J. Opt. '13], RSGF chooses
xp from {xx}2_ | where R is a r.v. with p.m.f. Pg supported on {1,..., K}
vdom
*W\AM’\% W‘J*?‘
=

G(xk, &k, ug) =




Randomized Stochastic Gradient-Free Methods

@ For f € Ci’ll, smoothing parameter p, Dy = (2(f(x1) — f*)/L)z, and
E¢[|VF(x,€) — Vf(x)[3] <02 and p.m.f. of R being:
sk —2L(d+ 4)s?
Sisa(si = 2L(d +4)s7)”

1 .T(,z\[vfo | Pr(k) =

it then holds that:

Dreilsk — 2L1(d +4)s7]
K s K
<1 + Ly(d +4)? (Zk + Lsi)> +2(d+4)0 ) s%] ,

k=1

EIIV ) 3] DY+ 22(d + 1)

where the expectation is taken w.r.t. R and {{;}.
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Randomized Stochastic Gradient-Free Methods

o Choose constant step-size s, = \/dlﬂ min{ 4L\/d+74’ 0_5?} for some D > 0

(some estimation of Dy):

Lalv sl < 2T DND) | 20V (D " ﬁ)
1 d VK D
Or)  off)

o To ensure Pr{||Vf(xr)|3 < €} ZLZ‘S—({G-' (€, 6)-solution), the

zeroth-order oracle sample complexity is: ""L'V’( 3

O(@+<D+%’%> :-j)
o5 ) (oj%)
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Randomized Stochastic Gradient-Free Methods

Two-phase randomized stochastic gradient-free method (2-RSGF) [Ghadimi and
Lan, SIAM J. Opt. '13]

@ Run RSGF S = log(1/§) times as a subroutine producing a list {X;}7_,

@ Output point X* is chosen in such a way that:
1 T
lg(x")lla = min [lg(xs)[l2, where g(x;) = E G (X, Eo k),
s=he8 T

where G,(Xs, &k, uy) is defined as in RSGF

@ The zeroth-order oracle sample complexity for achieving (e, §)-solution:

%) s e 1. 2)
0(d<™)

o A more general problem minycgcre ¥(x) = f(x) + h(x) is also solved in
[Ghadimi et al., Math Prog.'16]

» f € Cp': nonconvex; h(x) is simple convex and possibly non-smooth

dL3D3(log(1/6
1fog</>+dL%<
€
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RSGF Based on Uniform Sampling over Unit Sphere

o Consider the problem minyegn f(x) 2 Ee[F(x,€)] = Ee[f(x,€)]
» f(x) is L-Lipschitz and p-smooth
> |F(x,§)] < and F's variance is bounded by V;

@ Stochastic gradient estimation based on uniform sampling over unit sphere:

g(Xp, Epyuy) = nf(Xk + Mukafk)Q—Mf(Xk — Mukafk)’

where uy, ~ U(S"~1). The update process is x 1 = xi, — sg(Xp, &, Up)

o After K steps, we have [Sener and Koltun, ICML'20]:
K 2/3
n n
Z [V £ (xi)13] (m+m>
Cg&% )
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RSGF Based on Uniform Sampling over Unit Sphere

o Consider the case for a given &, F(x,§) = g(r(x,0*), U*), where g(-, ¥) and
(-, 0) are parameterized function classes
> r(-,0%) : R™ — R%, where d < n
» F(-, &) : R™ — R is actually defined on a d-dimensional manifold M for all £

@ Thus, if one knows the manifold (i.e., #*) and g and r are smooth, we have
. « * or(x,0*
from chain rule: Vf(x) = J(x,0%)V,g(r, ¥), where J(x,6*) = %.
This leads to [Sener and Koltun, ICML"20]:

Flxp + pdgug, &) — f(xi — pdguy, &)
2u

G(xi, &k, ug) =d uy,

where J, is the orthonomalized .J(xy, 6*) and uy ~ U(S971). It follows that

K
1 , /2 pl2 4 d4dnt/? @2/3 4 pl/2q2/3
e L EIVA 18 =0 (" + i+

o(F)

which is much better than the previous bound for d < n'/2.
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Which Gradient Estimation Works Better?

@ Gradient estimations with random directions are worse than finite differences

in terms of # of samples required to ensure the norm condition:
“svR’
Ig(x) = Vf(x)ll2 < 0[|Vf(x)]|2, for some § € [0,1)

o Gradient estimation methods are studied in [Berahas et al., FCM'21]:
Compare the # of calls r (i.e., "batch size") to ensure norm condition
Lgkumindle FFD (Forward Finite Differences): YO0 | [octuen=/Cde,

“ '”“l > CFD (Centered Finite Differences): 3¢ M

2n

» LI (Linear Interpolation): Ez f(x'H“”) f(x)u u; = Qﬁ( ,\M \,/,I. -
2k,
GSG (Gaussian Smoothed Gradients): + Z@:l RICSSES (CI T ~ N(0,14)

X % n
rardenizd > cGSG (Centered GSG): %Z?Zl %‘Muz u; ~ N(0,14)
0 » SSG (Sphere Smoothed Gradients): %Z(?:l Mul w; ~U(ST)
(re\ ) - : .
YJC > cSSG (Centered SSG): 430 | %}Muz u; ~ U8
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Which Gradient Estimation Works Better?

o Consider an unconstrained problem min,cga f(x) [Berahas et al.,

» Noisy ZO oracle: f(x) = f(x) + €(x)
> Noise € is bounded uniformly: |e(x)| < e (noise not neccessarily random)

» f(x) € CPlor f(x) € C3?

M-Lipschitz Hessian)

(twice continuously differentiable with

FCM'21]:

7)) =

Method [ Number of calls NCIE
FFD 4 @
CFD d Z\fd:ﬂ

LI d %
— Bl g | S
ccss e e
SSG 8d ?,9 + 11d+104]1 dj;rl) %
cSSG [gg + 39 + 9d+192]logﬂ w J

T,

@ Ll is essentially FFD with directions given as columns of a nonsingular matrix Q
@ For GSG, cGSG, SSG, and c¢SSG, results are w.p. 1 —§
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Next Class

Variance-Reduced Zeroth-Order Methods
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