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In this lecture:
o Key Idea of Decentralized Nonconvex Optimization for Learning
@ Representative Techniques

@ Convergence Results
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Revisit the Distributed/Federated Learning Problem

@ Consider the problem:
. N
Jnin, /69 % iy sz’
where f;(x) £ E¢,p, [Fi(x,&;)] is nonconvex

o Distributed/Federated Learning: The “summation” in the mini-batched SGD,
which implies a decomposable and distributed implementation:
» Each stochastic gradient V f(xx,&;) can be computed by a “worker/client” i
» By workers can compute such stochastic gradients in parallel
> A server collects the stochastic gradients returned by workers and aggregate

But what if we don’t have a server?
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Reasons for “Not Having a Server” in Distributed Learning

o
@ Networks Having No Infrastructure //v >

» Networking protocols based on random access (CSMA, ALOHA, etc.)
Ad hoc sensor networks for environmental monitoring

Multi-agent systems (autonomous driving, UAVs/UGVs, robotics, etc.)
Autonomous swarms on battle field

In-situ disaster recovery

vVYyVvyy

@ Security/Robustness/Privacy Concerns

» Avoid single point of failure

Avoid having a single target under cyber-attacks

Avoid communication /networking bottleneck

Need for information privacy preservation

Need for decentralization to avoid being controlled by a single party

vVYyVvyy

@ Economics Motivations
» Competition/collaboration among entities
> Build trust between multiple parties
» Fairness guarantees
» Promote personalization and diversity...
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Decentralization Optimization for Learning: The Setup
@ A network represented by a connected graph
G=(WN,L), with |N|=N, |£|=L
e x € R%: a global learning model

e Each node/agent i can only evaluate a local
objective function f;(x) £ E¢,.p, [F;(x,&)]

o Global objective function is: + Zil fi(x)

Ja(x) fa(x)

@ Goal: To learn the global model collaboratively in a
decentralized fashion (i.e., w/o needing any server)
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Example: Decentralized Learning in Multi-Agent Systems

e A multi-agent system (drones, robots,
soldiers, etc.). Each agent collects
high-resolution images {u;;, v;, Gij}év;l

@ uyj, vy, 0;;: pixels, geographical
information, ground-truth label of the j-th
image at agent 1.

@ Agents collaboratively perform image regression based on linear model with
parameters x = [x| x; ||

o This problem can be written as: min, f(x) £ min, Zf\/:l fi(x), where

N.
filx) & 5 25205 — uljxi — viixa)?

JKL (ECE@OSU) ECE 8101: Lecture 3-2



Consensus Reformulation: The First Step

@ Goal: To solve the following optimization
problem distributively & collaboratively

LI O

min f(x) = min —
z€R?  zerd N

o Clearly, this problem can be rewritten in a

consensus form: e fi(x1) e
f3(X

1 N 3) f4(X4)
min {N ;fz(xz) x; = x;,V(i,5) € ﬁ}

x; ER? Vi

The consensus reformulation shares the same spirit with distributed /federated
learning that each node maintains a local copy of the global model
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Recall What We Did When We Have a Server

@ In distributed /federated learning: Each node/client i computes
Xikr1 = Xk — 5k8ik  NET-FLEET
where x;, £ + vazl X; 1, is the node/client average in iteration k
@ This prompts the following natural idea for decentralized learning

Xik+1 = Some approximation of X;," — 58 i

@ This idea turns out to the foundation of decentralized consensus optimization

» Note: This is an insight in hindsight. Decentralized consensus optimization
traces its roots to the seminal work [Tsitsiklis, Ph.D. Thesis@MIT, 1984]!
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A Decentralized Method for Computing Average

Consider a consensus matrix W € RV*N that satisfies:

@ Doubly stochastic: Zil[W]” = Zjvzl[W]” =1
@ Sparsity pattern defined by network topology: [W];; > 0 for V (i,7) € £ and
[W];; = 0 otherwise

e Symmetric and hence real eigenvalues in (—1, 1] (thus can be sorted).
Moreover, easy to see that A\.x = 1 with corresponding eigenvector 1.

@ W.l.o.g., denote eigenvalues as —1 < Ay <--- < A = 1. Let
B 2 max{|Xz|, |An|} (i.e., 2nd-largest eigenvalue in magnitude).

1/4 1/4 1/4 1/4
1/4 3/4 0 0
1/4 0 3/4 0
1/4 0 0 3/4

JKL (ECE@OSU) ECE 8101: Lecture 3-2



A Decentralized Method for Computing Average

W
QGQ/LV ’bi?zao

(7(

@ k = 0. Each node has initial value x; ¢ to be averaged with other nodes
@ In k-th iteration: Each node shares its local copy to its neighbors.

© Upon reception of all local copies from its neighbors, each node performs the
local updates: Wiy

Xigr1= Y (WX,
jE{\.[i

where N; £ {jeN : (i,j)€L}.

Q Let k <+ k+1 and go to Step 2
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A Decentralized Method for Computing Average

@ Define a stacked matrix of all local copies:

Xk £ [ X1,k X2k XNk ] S RdXN.
A
N 1 .
@ Then the algorithm in the previous slide can be compactly written as

-
Xyt = X W, ‘)_ST =W X

(ie., X = ()L\m’\\/'k Similar to a discrete-time finite-state Markov chain.

Poren ”Frpkmmb T
@ Fact: The stationary distribution of an irreducible aperiodic finite-state

Markov chain is uniform iff its transition matrix is doubly stochastic.

o Convergence rate of “averaging”: Let W = limj_,.c W*. Then, we have
W = V1n1). Further, it holds that o, ey caown ™y +ome
5 _I.V' v KR { [N.\
T IWre - Whe < gt vie (1 Nken. DN
p j_. . ).N [A'X
v Y
11
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Decentralized Stochastic Gradient Descent (DSGD)

The DSGD algorithm [Nedic and Ozdaglar, TAC'09]:

@ Initialization: Let k£ = 1. Choose initial values for x; ; and step-size ;.
@ In k-th iteration: Each node sends its local copy to its neighbors.

© Upon reception of all local copies from its neighbors, each node updates its
local copy:

Xik+1 = Zje./\/- [Wlijxjk — sV E; (Xi k5 &i k)
i —_— ———

Local SGD st
Avg consensus step oca step

where N; £ {jeN : (i,j)€L}.

Q Let k< k+1 and go to Step 2
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Convergence Results of DSGD

Assumptions:
e fi(+), Vi are L-smooth
o Unbiased stochastic gradients: E¢, , v, [VFi(Xik, & k)] = V fi(Xi k), Vi, k
@ Bounded local stochastic gradient variance:
E[IVFi(x,6) = Vfi(x)II’] <o?, Vix
Bounded gradient dissimilarity:  Non—i~-od.
Eiu@plIVF(x) = VI < ¢, ¥x

Start from 0: Xy = 0 (not necessary, but simplifies the proof w.l.0.g.)
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Convergence Results of DSGD

@ Let s = s, Vk, and define two constants:

1 9s22N 1852 9
D= (5‘ (1—6)2D2>’ and Do = <1‘ a—pe - )

[ !
i : ' -~ PTRup)
Theorem 1 ([Lian et al. NeurlPS'17]) Iqj-am j‘ﬂ“u \Jw
Under the stated assumptions, theiol,/owing,cojvergence rate holds for DSGD:

= | % Tk !
K-1 2] ot “K-1 2
1 1—sL 6f( )]-N XklN
E( 5 ZEH&N +D; Y E||Vf N
k=0 k=0 V‘—W
_ % 272N 2 272872 =4S -
Sf(o) f L 5L o s?LNo +95LNC % /\/é—°
sK 2N ( - 52)D2 (]. - 5)2D2

N
[l

M=

'*(“I

{
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Convergence Results of DSGD

Corollary 2 ([Lian et al. NeurlPS'17])

Under the same assumptions as in Theorem 5, if s = , then DSGD
2L+o \/
achieves the following convergence rate:
K-1 2 2 *
1 X1y 8(£(0) = f7) . (8f(0) = 8f* +4L)o
=Y E|||Vf < + .
k=0 & K VKN
Remark 1
If K is sufficiently large such that
4LAN5 o? 9¢? T2L2N?
K > dK> ———
= 2(f0) -+ L)’ (1—@ " (1—5)2> A

then the convergence rate of DSGD is O (% \/[1]7)
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Convergence Results of DSGD

Theorem 3 ([Lian et al. NeurlPS'17])

With s = ——— and under the same assumptions in Theorem 5, it holds that
2L+0+/K/N

%
K—1 Xi 1 2 A
z’ 1 v/,

b)) I>C L S

k=0 i=1

where the constant A is defined as:
202 18¢2 iL? 2 9¢?
A="2 7 ¢ 5T = 7 5 I ¢ 5

1-62 (1-6)2 D \1-p2 (1-5)
n 18 f(0) — f* n sLo? .

(1-p)2 sK 2N D,

Remark 2

The local copies achieve consensus at the rate O(1/K)
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Numerical Results of DSGD

@ Linear Speedup Effect

> 32-layer residual network and CIFAR-10 dataset
» Up to 16 machines; each machine includes two Xeon E5-2680 8-core
processors and a NVIDIA K20 GPU

1.0 1.0
—— Momentum SGD, 1 machine —— Momentum SGD, 1 machine
0.8 —— D-PSGD, 4 machines 0.8 —— D-PSGD, 4 machines
0 ~ D-PSGD, 8 machines » ~ D-PSGD, 8 machines
§ o D-PSGD, 16 machines § D-PSGD, 16 machines
o o
g £
£ 04 £o0.
= ]
0.2
0
0.0 . S 0.0,
50 100 150 200 00 02 04 06 08 1.0 12 1.4
Epoch Time (s) led
(a) Iteration vs Training Loss (b) Time vs Training Loss
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A “Tug of War” in DSGD

Revisit the DSGD algorithm:

@ The algorithmic update at each agent is:

Xi k1 = Zje.M [Wlijxj e — sV E; (Xi k5 &i k)
i SN——————

Avg consensus step Local SGD step

where N; £ {jeN : (i,j)€L}.

The average consensus step and the local SGD step “conflict” with each other.
Can we do better? J
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The Gradient Tracking Idea

Gradient-Tracking DSGD: [Lu et al., DSW'19]:

@ |Initialization: Let £ = 1. Choose initial values for x; 1 and step-size s;.
Define an auxiliary variable y;  with y; 1 = VF;(%;,1,&1)-

@ In k-th iteration: Each node sends its local copy to its neighbors.

© Upon reception of all local copies from its neighbors, each node updates its
local copy:

Xi k41 = Zje./\/' (W1iiXj 6 — SkYik,

Yik+1 = ZJ.GN, (Wiiyik + VE(Xi k1,8 k1) — VE(Xik, Sik)-

where N; £ {jeN : (i,j)€L}.

Q Let k <+ k+1 and go to Step 2
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Convergence Results for GT-DSGD

o Define P* £ E[f(x5)] + E[llxx — 1n @ X||*] + QE[[lyx — 1n @ y& ]

Theorem 4 (Convergence of Agent-Average [Lu et al. DSW'19])

If the step-size is set to 3—% then it holds that:

0

B O, B PO _ p* 1
27, L2 . N (L5 2\ 1
C1E[[|7%I] + COE[”Xt 1y ® %] < < & + C4Coo ) -
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Convergence Results for GT-GSGD
Theorem 5 (Contration of Consensus Gap [Lu et al. DSW'19])
Let p be some constant such that (1 + p)3? < 1. It holds that:

Ellxk+1 — 1n @ Xesall] < (1 + p)B%Elllxi — 1y © R[]

1 1
+3 (1 + ;) S?E[|lyx — 1n @ ¥&|?] +6 <1 + ;> s%ko?,

_ 41242 1\ -
Elly - v o wil] < 255 (143 ul?
[ 1\ 412 1\° .
+ (mﬂ (1+p) <1+;> TNz <1+;> Efllxr — 1n ® X |]

D2 2
+ ((1 +p)B* + AL (1 aF %) ) Elllyr — 1n ® ¥x/°]

N2

41252 ( 1)2
e 1+— /4,02.
N2 p
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Next Class

Zeroth-Order Methods

JKL (ECE@OSU) ECE 8101: Lecture 3-2



