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Outline

In this lecture:

Key Idea of Decentralized Nonconvex Optimization for Learning

Representative Techniques

Convergence Results

JKL (ECE@OSU) ECE 8101: Lecture 3-2 2



Revisit the Distributed/Federated Learning Problem

Consider the problem:

min
x2Rm

f(x) , min
x2Rd

1

N

NX

i=1

fi(x),

where fi(x) , E⇠i⇠Di [Fi(x, ⇠i)] is nonconvex

Distributed/Federated Learning: The “summation” in the mini-batched SGD,
which implies a decomposable and distributed implementation:

I Each stochastic gradient rf(xk, ⇠i) can be computed by a “worker/client” i
I Bk workers can compute such stochastic gradients in parallel
I A server collects the stochastic gradients returned by workers and aggregate

But what if we don’t have a server?
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Reasons for “Not Having a Server” in Distributed Learning

Networks Having No Infrastructure
I Networking protocols based on random access (CSMA, ALOHA, etc.)
I Ad hoc sensor networks for environmental monitoring
I Multi-agent systems (autonomous driving, UAVs/UGVs, robotics, etc.)
I Autonomous swarms on battle field
I In-situ disaster recovery

Security/Robustness/Privacy Concerns
I Avoid single point of failure
I Avoid having a single target under cyber-attacks
I Avoid communication/networking bottleneck
I Need for information privacy preservation
I Need for decentralization to avoid being controlled by a single party

Economics Motivations
I Competition/collaboration among entities
I Build trust between multiple parties
I Fairness guarantees
I Promote personalization and diversity...
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Decentralization Optimization for Learning: The Setup

A network represented by a connected graph
G = (N ,L), with |N | = N , |L| = L

x 2 Rd: a global learning model

Each node/agent i can only evaluate a local
objective function fi(x) , E⇠i⇠Di [Fi(x, ⇠i)]

Global objective function is: 1
N

PN
i=1 fi(x)

Goal: To learn the global model collaboratively in a
decentralized fashion (i.e., w/o needing any server)

f1(x)

f3(x) f4(x)

3 4

1

2

f2(x)
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Example: Decentralized Learning in Multi-Agent Systems

A multi-agent system (drones, robots,
soldiers, etc.). Each agent collects
high-resolution images {uij ,vij , ✓ij}Ni

j=1

uij , vij , ✓ij : pixels, geographical
information, ground-truth label of the j-th
image at agent i.

Agents collaboratively perform image regression based on linear model with
parameters x = [x>

1 x>
2 ]

>

This problem can be written as: minx f(x) , minx
PN

i=1 fi(x), where

fi(x) , 1
Ni

PNi

j=1(✓ij � u>
ijx1 � v>

ijx2)2
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Consensus Reformulation: The First Step

Goal: To solve the following optimization
problem distributively & collaboratively

min
x2Rd

f(x) = min
x2Rd

1

N

NX

i=1

fi(x)

Clearly, this problem can be rewritten in a
consensus form:

min
xi2Rd,8i

(
1

N

NX

i=1

fi(xi)

����xi = xj , 8(i, j) 2 L
)

f1(x1)

f3(x3) f4(x4)

3 4

2

1

f2(x2)

The consensus reformulation shares the same spirit with distributed/federated
learning that each node maintains a local copy of the global model
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Recall What We Did When We Have a Server

In distributed/federated learning: Each node/client i computes

xi,k+1 = x̄k � skgi,k

where x̄k , 1
N

PN
i=1 xi,k is the node/client average in iteration k

This prompts the following natural idea for decentralized learning

xi,k+1 = “Some approximation of x̄k”� skgi,k

This idea turns out to the foundation of decentralized consensus optimization
I Note: This is an insight in hindsight. Decentralized consensus optimization

traces its roots to the seminal work [Tsitsiklis, Ph.D. Thesis@MIT, 1984]!
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A Decentralized Method for Computing Average

Consider a consensus matrix W 2 RN⇥N that satisfies:

Doubly stochastic:
PN

i=1[W]ij =
PN

j=1[W]ij = 1.

Sparsity pattern defined by network topology: [W]ij > 0 for 8 (i, j) 2 L and
[W]ij = 0 otherwise

Symmetric and hence real eigenvalues in (�1, 1] (thus can be sorted).
Moreover, easy to see that �max = 1 with corresponding eigenvector 1N .

W.l.o.g., denote eigenvalues as �1 < �N  · · ·  �1 = 1. Let
� , max{|�2|, |�N |} (i.e., 2nd-largest eigenvalue in magnitude).

f1(x)

f3(x) f4(x)

3 4

1

2

f2(x)

W =

2

64

1/4 1/4 1/4 1/4
1/4 3/4 0 0
1/4 0 3/4 0
1/4 0 0 3/4

3

75

JKL (ECE@OSU) ECE 8101: Lecture 3-2 9



A Decentralized Method for Computing Average

1 k = 0. Each node has initial value xi,0 to be averaged with other nodes

2 In k-th iteration: Each node shares its local copy to its neighbors.

3 Upon reception of all local copies from its neighbors, each node performs the
local updates:

xi,k+1 =
X

j2Ni

[W]ijxj,k,

where Ni,{j2N : (i, j)2L}.

4 Let k  k + 1 and go to Step 2
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A Decentralized Method for Computing Average

Define a stacked matrix of all local copies:

Xk ,
⇥
x1,k x2,k · · · xN,k

⇤
2 Rd⇥N

.

Then the algorithm in the previous slide can be compactly written as

Xk+1 = XkW,

(i.e., Xk = X0Wk). Similar to a discrete-time finite-state Markov chain.

Fact: The stationary distribution of an irreducible aperiodic finite-state
Markov chain is uniform i↵ its transition matrix is doubly stochastic.

Convergence rate of “averaging”: Let W1 = limk!1 Wk. Then, we have
W1 = 1

N 1N1>
N . Further, it holds that

��W1ei �Wkei
��  �

2k
, 8i 2 {1, . . . , N}, k 2 N.
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Decentralized Stochastic Gradient Descent (DSGD)

The DSGD algorithm [Nedic and Ozdaglar, TAC’09]:

1 Initialization: Let k = 1. Choose initial values for xi,1 and step-size ↵1.

2 In k-th iteration: Each node sends its local copy to its neighbors.

3 Upon reception of all local copies from its neighbors, each node updates its
local copy:

xi,k+1 =
X

j2Ni

[W]ijxj,k

| {z }
Avg consensus step

� skrFi(xi,k, ⇠i,k)| {z }
Local SGD step

,

where Ni,{j2N : (i, j)2L}.

4 Let k  k + 1 and go to Step 2
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Convergence Results of DSGD

Assumptions:

fi(·), 8i are L-smooth

Unbiased stochastic gradients: E⇠i,k⇠Di [rFi(xi,k, ⇠i,k)] = rfi(xi,k), 8i, k

Bounded local stochastic gradient variance:

E[krFi(x, ⇠)�rfi(x)k2]  �
2
, 8i,x

Bounded gradient dissimilarity:

Ei⇠U([n])[krfi(x)�rf(x)k2]  ⇣
2
, 8x

Start from 0: X0 = 0 (not necessary, but simplifies the proof w.l.o.g.)
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Convergence Results of DSGD

Let sk = s, 8k, and define two constants:

D1 :=

✓
1

2
� 9s2L2

N

(1� �)2D2

◆
, and D2 :=

✓
1� 18s2

(1� �)2
NL

2

◆

Theorem 1 ([Lian et al. NeurIPS’17])

Under the stated assumptions, the following convergence rate holds for DSGD:

1

K

 
1� sL

2

K�1X

k=0

E
"����

@f(Xk)1N

N

����
2
#
+D1

K�1X

k=0

E
"����rf

✓
Xk1N

N

◆����
2
#!

 f(0)� f
⇤

sK
+

sL

2N
�
2 +

s
2
L
2
N�

2

(1� �2)D2
+

9s2L2
N⇣

2

(1� �)2D2
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Convergence Results of DSGD

Corollary 2 ([Lian et al. NeurIPS’17])

Under the same assumptions as in Theorem 5, if s = 1

2L+�
p

K/N
, then DSGD

achieves the following convergence rate:

1

K

K�1X

k=0

E
"����rf

✓
Xk1N

N

◆����
2
#
 8(f(0)� f

⇤)

K
+

(8f(0)� 8f⇤ + 4L)�p
KN

.

Remark 1
If K is su�ciently large such that

K � 4L4
N

5

�2(f(0)� f⇤ + L)2

✓
�
2

1� �2
+

9⇣2

(1� �)2

◆
and K � 72L2

N
2

�2(1� �)2
,

then the convergence rate of DSGD is O
⇣

1
K + 1p

NK

⌘
.
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Convergence Results of DSGD

Theorem 3 ([Lian et al. NeurIPS’17])

With s = 1

2L+�
p

K/N
and under the same assumptions in Theorem 5, it holds that

1

KN
E

2

4
K�1X

k=0

NX

i=1

�����

PN
i0=1 xi0,k

N
� xi,k

�����

2
3

5  Ns
2 A

D2
,

where the constant A is defined as:

A :=
2�2

1� �2
+

18⇣2

(1� �)2
+

L
2

D1

✓
�
2

1� �2
+

9⇣2

(1� �)2

◆

+
18

(1� �)2

✓
f(0)� f

⇤

sK
+

sL�
2

2ND1

◆
.

Remark 2
The local copies achieve consensus at the rate O(1/K)
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Prelim :

EnE(in---n),WW,
cmEERIRS--- DENEwinSma] xw

Recall : Filt=Wjih-SDF Gik , 3rd
Concatenating [i..Fi , we have :

--------Fin
In matrix form :

Ert = EnW-sF(em , En

Right-multiply
both sides by Iw.

EriI= IRWIn-CE(ri(u) In
un

n

=> ErEn=rEn-r50) In

=>fi Rynemic of a



decent lemma

of
12

Proof of Thm1 : Quad Cross.

From descent lemma :ELERI-ELfEn]-FRisin ·Agent Drift
C

Cross. "Rick-Ep
↑Fin

Consider the Quad term : ecfiltik).

EIIFiik , Si)/2) = /Dr And ,Sinical) +
- +Ri

=It : Lik,Sir)-i +El /]
+Fin , Sill-EN il/fin)]

unbiasedness.

=> IHEM] EffE]-*AfEUTEND i ,Sik)7+

ElC



FiikSik)-*fi Rin)12]
Efz O

+Fik ,Gib) -DiFiR) ,<Fri ·Bih)-DFFin]
unbiasedness

Thus:
Fil).

EHEIGE
-Eff]- fwI

+IIFB]-
Now

,
let's bound TI
:ttill

(IICZFnBr]-TI) --Fin , Sin) /P
(1- DF:in ,Bil]

=E-PfinfiCik)-FikSikA
Copachitz: [Iw-Eil,

2

-Fi/] + &
? "Agent drift"



Numerical Results of DSGD

Linear Speedup E↵ect
I 32-layer residual network and CIFAR-10 dataset
I Up to 16 machines; each machine includes two Xeon E5-2680 8-core

processors and a NVIDIA K20 GPU
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A “Tug of War” in DSGD

Revisit the DSGD algorithm:

The algorithmic update at each agent is:

xi,k+1 =
X

j2Ni

[W]ijxj,k

| {z }
Avg consensus step

� skrFi(xi,k, ⇠i,k)| {z }
Local SGD step

,

where Ni,{j2N : (i, j)2L}.

The average consensus step and the local SGD step “conflict” with each other.
Can we do better?
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The Gradient Tracking Idea

Gradient-Tracking DSGD: [Lu et al., DSW’19]:

1 Initialization: Let k = 1. Choose initial values for xi,1 and step-size s1.
Define an auxiliary variable yi,k with yi,1 = rFi(xi,1, ⇠i,1).

2 In k-th iteration: Each node sends its local copy to its neighbors.

3 Upon reception of all local copies from its neighbors, each node updates its
local copy:

xi,k+1 =
X

j2Ni

[W]ijxj,k � skyi,k,

yi,k+1 =
X

j2Ni

[W]ijyj,k +rFi(xi,k+1, ⇠i,k+1)�rFi(xi,k, ⇠i,k).

where Ni,{j2N : (i, j)2L}.

4 Let k  k + 1 and go to Step 2
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Convergence Results for GT-DSGD

Define P
k , E[f(x̄k)] + E[kxk � 1N ⌦ x̄kk2] +QE[kyk � 1N ⌦ ȳkk2]

Theorem 4 (Convergence of Agent-Average [Lu et al. DSW’19])

If the step-size is set to C0p
T
, then it holds that:

C1E[kȳkk2] +
C2

C0
E[kxt � 1N ⌦ x̄tk2] 

✓
P

0 � P
⇤

C0
+ C4C0�

2

◆
1p
T
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Convergence Results for GT-GSGD

Theorem 5 (Contration of Consensus Gap [Lu et al. DSW’19])

Let ⇢ be some constant such that (1 + ⇢)�2
< 1. It holds that:

E[kxk+1 � 1N ⌦ x̄k+1k]  (1 + ⇢)�2E[kxk � 1N ⌦ x̄kk2]

+ 3

✓
1 +

1

⇢

◆
s
2E[kyk � 1N ⌦ ȳkk2] + 6

✓
1 +

1

⇢

◆
s
2
�

2
,

E[kyk � 1N ⌦ ȳkk] 
4L2

s
2

N

✓
1 +

1

�

◆2

k¯̃ykk2

+

 
L
2

N2
�
2(1 + ⇢)

✓
1 +

1

⇢

◆
+

4L2

N2

✓
1 +

1

⇢

◆2
!
E[kxk � 1N ⌦ x̄kk2]

+

 
(1 + ⇢)�2 +

4L2
s
2

N2

✓
1 +

1

⇢

◆2
!
E[kyk � 1N ⌦ ȳkk2]

4L2
s
2

N2

✓
1 +

1

⇢

◆2

�
2
.

JKL (ECE@OSU) ECE 8101: Lecture 3-2 21



Next Class

Zeroth-Order Methods
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