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Outline

In this lecture:

Key Idea of Distributed Optimization for Federated Learning

Representative Algorithms

Convergence Results
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Revisit the General Expectation Minimization Problem

min
x→Rd

f(x) = min
x→Rd

Eω↑D[f(x, ω)]

The SGD method using mini-batch Bk with |Bk| = Bk is:

xk+1 = xk → sk

Bk

Bk∑

i=1

↑f(xk, ωi)

Key Insight: The “summation” in the mini-batched version of SGD implies a

decomposable structure that lends itself to distributed implementation!

↭ Each stochastic gradient →f(xk, ωi) can be computed by a “worker” i
↭ Bk workers can compute such stochastic gradients in parallel

↭ A server collects the stochastic gradients returned by workers and aggregate

This insight is the foundation of Distributed Learning and Federated Learning
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Distributed Learning in Data Center Setting

Distributed ML Systems

Time consuming
Resource intensive

Model ImageClassfication DeepSpeech2

Dataset ResNet50 LibriSpeech

System 8 GPUs 16 GPUs

Time 115 minutes
[1]

3-5 days
[2]

Parameter Server-Worker (SW) Architecture

......

...... PSM

Gradients Parameters

Parameter Server Worker

Database for Training Dataset

W1 W2 WN

PS1

Ring-All-Reduce (RAR) Architecture

worker 1

worker 2

worker 3

worker 4

[1] Mlperf training results, https://mlperf.org/training-results-0-6/
[2] E. B. Dario Amodei, Rishita Anubhai, C. Case, J. Casper, B. Catanzaro, J. Chen et al., ”Deep speech 2: End-to-end speech recognition in english and
mandarin,” in Proc. of the 33th International Conference on Machine Learning (ICML), 2016.
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Federated Learning System Architecture
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......

Parameter Server
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Dataset 1 Dataset 2 Dataset 3 Dataset m

Client 1 Client 2 Client 3 Client m
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Federated Learning (FL)

The term “federated learning” was first coined in 2016 (arXiv):

↭ “We term our approach Federated Learning, since the learning task is solved
by a loose federation of participating devices (which we refer to as clients)
which are coordinated by a central server.” [McMahan et al. AISTATS’17]

Key motivations of FL:

↭ FL was first focused on mobile & edge devices collaborating to train a global

model and later became a general learning paradigm

↭ No need to transfer clients’ data to the server to preserve privacy

A very active ongoing research field with the following defining challenges:

↭ Dataset sizes are unbalanced across clients in general

↭ Datasets are non-i.i.d. across clients in general

↭ Could involve a massive number of client devices

↭ Limited communication bandwidth between server and clients

↭ Limited device availability (e.g., powered-o!, charging, no wifi...)

Two widely studied FL settings:

↭ Cross-device: Huge number of (unreliable) clients (e.g., mobile devices)

↭ Cross-silo: Small number of (relatively) reliable clients (hospitals, banks, etc.)
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Cross-Device Federated Learning

According to [Kairouz et al. arXiv-1912.04977]:

Total population: 106–1010 devices

Device selected per-round: 50–5000

Total devices participated in training a model: 105–107

Number of rounds for convergence: 500–10000

Wall-clock training time: 1–10 days

Data partition: By samples
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Cross-Silo Federated Learning

The number of clients is relatively small. Often reasonable to assume that

clients are available at all times

Relevant when a number of companies or organizations share incentive to

training a model based on their data, but cannot share data directly

Data partition: Could be either by samples or by features

↭ Also referred to as “horizontal” and “vertical” FL in the literature, respectively

↭ By examples: Relevant in cross-silo FL when a single organization cannot

centralize their data

↭ By features: Relevant in cross-silo FL if data security/privacy is of higher

concerns (e.g., banks)

Challenges:

↭ Incentive mechanisms: participants might be competitors; utility fairness

among clients (free-rider problem); dividing earning among participants, etc.

↭ Preserving privacy on di!erent levels (clients, users, etc.)
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Applications of Federated Learning

Cross-device FL:

Google Gboard Apple QuickType Apple “Hey Siri”

↭ Google: Extensive use of cross-device FL in Gboard mobile keyboard, features on
Pixel phones, and Android Messages

↭ Apple: Use of cross-device FL in QuickType keyboard next word prediction and vocal
classifier for “Hey Siri”

↭ doc.ai uses cross-device FL for medical research, Snips uses cross-device FL for

hotword detection, etc.

Cross-silo FL:

↭ Financial risk prediction for reinsurance, pharmaceutical discovery, electronic health

record mining, medical data segmentation, smart manufacturing, etc.
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Typical Federated Training Process

Client selection:

↭ Server samples from a set of available clients (idle, on wi-fi, plugged in...)

Broadcast:

↭ The selected clients download the current model weights

Client computation:

↭ Each selected client locally computes an update to the model by some

algorithm (e.g., SGD or variants) on the local data

↭ Potential additional processing: Privacy, compression, etc.

Aggregation:

↭ Server collects an aggregates of the updates from clients

↭ Potential additional processing: filtering for security, etc.

Model update:

↭ The server updates the global model based on aggregated updates

↭ Potential additional processing: additional scaling, momentum, extra data, etc.
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Why Does Federated Learning Generate So Much Interest?

FL is inherently inter-disciplinary:

↭ Machine learning

↭ Distributed optimization techniques

↭ Cryptography

↭ Security

↭ Di!erential privacy

↭ Fairness

↭ Compressed sensing

↭ Crowd-sensing

↭ Wireless networking

↭ Economics

↭ Statistics

↭ May play a role in emerging technologies (Blockchains, Metarverse, ...)

Many of the hardest problems in FL are at the intersections of multiple areas
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Optimization Algorithms for Federated Learning

Key di!erences between distributed optimization and FL:

↭ Non-i.i.d. and unbalanced datasets across clients

↭ Limited communication bandwith

↭ Unreliable and limited client device availability

FedAvg Algorithm (aka Local SGD/parallel SGD): basic template of FL

↭ N : Num. of clients; M : Clients per round;

↭ T : Total communication round; K: Num. of local steps per round

↭ At Server:

1 Initialize x0
2 for each round t = 1, 2, . . . , T do

St → (random set of M clients)
for each client i ↑ St in parallel do

xt+1
i → ClientUpdate(i, x̄t)

x̄t+1 → (1/M)
∑M

i=1 x
t+1
i

↭ ClientUpdate(i,x):
1 x0 → x
2 for local step k = 0, . . . ,K ↓ 1 do

xk+1 → xk ↓ sk↔f(xk, ω) for ω ↗ Pi
3 Return xK to server
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Convergence Results: FedAvg with I.I.D. Datasets

Mini-batch of data used for a client’s local update is statistically identical to

a uniform sampling (with replacement) from the union of all clients’ datasets

Although unlikely in practice, i.i.d. case provides basic understanding for FL

For simplicity, assume for now M = N . Consider the problem:

min
x→Rm

f(x) ↭ min
x→Rm

1

N

N∑

i=1

fi(x),

where fi(x) ↭ Eωi↑Di [Fi(x, ωi)] is nonconvex

Assumptions:

↭ L-smooth: ↑→fi(x)↓→fi(y)↑ ↔ L↑x↓ y↑, ↗x,y.
↭ Bounded gradient variance and gradient second moments:

Eωi→Pi [↑→F (x, ωi)↓→fi(x)↑2] ↔ ε2
, Eωi↑Di [↑→Fi(x, ωi)↑2] ↔ G2

, ↗x, i
↭ Unbiased stochastic gradient: Gt

i = →Fi(x
t↓1
i , ωti) with

Eωti→Di
[Gt

i|ω[t↓1]] = →fi(x
t↓1
i ), ↗i, where ω[t↓1] ↭ [ωεi ]i↑[N ],ε↑[t↓1]
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Convergence Results: FedAvg with I.I.D. Datasets

To fix notation, we use the following equivalent code for FedAvg (also referred to

as Parallel Restarted SGD in [Yu et al. AAAI’19]):

1 Initialize x0
i = ȳ ↓ Rm

. Choose constant step-size s > 0 and synchronization

interval K > 0
2 for t = 1, . . . , T do

Each client i observes stochastic gradient Gt
t of fi(·) at xt↓1

i
if t mod K = 0 then

Compute node average y ↭ 1
N

∑N
i=1 x

t↓1
i

Each client i in parallel updates its local solution

xt
i = ȳ → sGt

i, ↔i

else

Each client i in parallel updates its local solution:

xt
i = xt↓1

i → sGt
i, ↔i

end if

end for
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Convergence Results: FedAvg with I.I.D. Datasets

Theorem 1 ([Yu et al. AAAI’19])

Under the stated assumptions and if s ↓ (0, 1
L ], then for all T ↗ 1, then the

iterates {xt} generated by FedAvg satisfies:

1

T

T∑

t=1

E[↘↑f(x̄t↓1)↘2] ≃ 2

sT
(f(x̄0)→ f

↔) + 4s2K2
G

2
L
2 +

L

N
sε

2
,

where f
↔ is the optimal value of the FL problem.

JKL (ECE@OSU) ECE 8101: Lecture 3-1 15



Proof: FromL-smoothness and descent Lemma :

EffEt]= CHEM] +EPET (et-a+/] +Ellet- et+P]
(1)

We first bud the quadratic term :

=- =-
Therefore , Elet-et-11]=s ]
= 5E

add&subtract
mean of E E-PA-5]ELIIP]
=Elle-EEA]

(ECIIE+ ---EnlR] < #Clit----EM=Iill forrvZ can)
- REIN

=iC(]
↓+fi (1) (3)



Now
, for the cross term :

#DEFIT (at--1)] = - sEpfET .]
ster

. I aw

-SELE[fE]]
= - sE/fetT.A
= -E ab = EIIaI+ 1bIP-1a-b11%

a

=-E*I+F-1fty-
Plugging 131 and 141 into (1) :

#(E) ]sEfEH)]-EEE 117
-EE)-+(7)

.

fil)-P)/27 ELI---+Zuli]
<NICP+ --- Mn]
for rv. z. ---En

= t[fict) -4f)12] not nec . indep(
with n=N(K).
I
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-
Lemmal : (Client Drift) : Under FedAug , it holds that

Ellet-ai] = 45G2 ·

Proof. For + > 1
.

and it IN] · Recall FedArg calculates

client average It every kiters.

Consider the largest to+ sit. Ji
to

From the updates in FedArg :
=-s (5)

Recall : IEEE-
=-S (6).

Using (5) and 16)in (4) :

#LIT- =E
I Using (*) with n=2.
I

↑



22
45-
Proof of Then 1 :

With Lemma I , the descent lemma implies

Eff - ECfEt]-EE*I
- Et 11 + 23KG +E

Note that by picking set.

(8)- /fe)] -ZE
+114)

Dividey both sides of 197 by 2 and rearranging :

+]()(*-EffT]) +45E+
Summing over to [1 .T]

, dividing both sides by 7,

and using ECfET)13ft , we complete the proof.



Convergence Results: FedAvg with I.I.D. Datasets

Corollary 2 ([Yu et al. AAAI’19])

If we let s =
→
N

L
→
T
:

1

T

T∑

t=1

E[→↑f(x̄t↑1)→2] ↓ 2L↔
NT

(f(x̄0)↗ f
↓) + 4

N

T
K

2
G

2 +
1↔
NT

ω
2

If we further let K ↓ T 1/4

N3/4 :

1

T

T∑

t=1

E[→↑f(x̄t↑1)→2] ↓ 2L↔
NT

(f(x̄0)↗ f
↓) +

4↔
NT

G
2 +

1↔
NT

ω
2
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Federated Learning with Non-I.I.D. Datasets

“Client drift” problem with non-i.i.d. datasets (figure from [Karimireddy et

al. ICML’20])

Impose a limit on the number of local updates in FL with non-i.i.d. datasets

(di!erent algorithmic designs in FL lead to di!erent limits)
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What Do You Mean Exactly by Saying ”Non-I.I.D” in FL?

Bounded di!erence between client and global gradients (e.g., [Yu et al. ICML

2019] or [Yang et al. ICLR’21]):

1

N

N∑

i=1

→↑fi(x)↗↑f(x)→2 ↓ ω
2
G or →↑fi(x)↗↑f(x)→2 ↓ ω

2
G

A unified bounded gradient dissimilarity (G,B)-BGD model [Karimireddy et

al. ICML’20]:

1

N

N∑

i=1

→↑fi(x)→2 ↓ G
2 +B

2→↑f(x)→2

Bounded di!erence between client and global optimal values (e.g., [Li et al.,

ICLR’20]):

f
↓ ↗

N∑

i=1

pif
↓
i ↭ ! < ↘

JKL (ECE@OSU) ECE 8101: Lecture 3-1 18



Convergence Results: FedAvg with Non-I.I.D. Datasets

Theorem 3 ([Yu et al. ICML’19] Momentum-less Version)

Under the stated assumptions and if s ≃ (0, 1
L ] and K ↓ 1

6Ls , then for all T ⇐ 1,
then the iterates {xt} generated by FedAvg satisfies:

1

T

T↑1∑

t=0

E[→↑f(x̄t)→2] ↓ 2

sT
(f(x̄0)↗ f

↓) +
L

N
sω

2 + 4s2KG
2
L
2 + 9L2

s
2
K

2
ω
2
G,

where f
↓ is the optimal value of the FL problem.
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Convergence Results: FedAvg with Non-I.I.D. Datasets

Corollary 4 ([Yu et al. ICML’19])

If we let s =
→
N→
T

and K = 1, then for T ⇐ 36L2
N

1

T

T↑1∑

t=0

E[→↑f(x̄t)→2] = O

(
1↔
NT

)
+O

(
N

T

)

If we let s =
→
N→
T

and let K = O( T 1/4

N3/4 ), then for T ⇐ L
2
N :

1

T

T↑1∑

t=0

E[→↑f(x̄t)→2] = O

(
1↔
NT

)
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Next Class

Decentralized Consensus Optimization
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