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Outline

In this lecture:
o Key Idea of Distributed Optimization for Federated Learning
@ Representative Algorithms

@ Convergence Results
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Revisit the General Expectation Minimization Problem

irel]iélli f(x) = fé]iknd Eeup[f(x,€)]

@ The SGD method using mini-batch By, with |By| = By is:

Xk41 = Xk — 3

@ Key Insight: The “summation” in the mini-batched version of SGD implies a
decomposable structure that lends itself to distributed implementation!
» Each stochastic gradient V f(xx,&;) can be computed by a “worker” i
» By workers can compute such stochastic gradients in parallel
> A server collects the stochastic gradients returned by workers and aggregate

This insight is the foundation of Distributed Learning and Federated Learning )
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Distributed Learning in Data Center Setting

@ Distributed ML Systems @ Parameter Server-Worker (SW) Architecture

I Keras ¢
TensorFlow

Cafte O PyTorch 37

@ Time consuming { ‘)t

@ Resource intensive

Database for Training Dataset

& Parameter Server O Worker

|
Model | ImageClassfication peepSpeechZ
Dataset ResNet50 | LibriSpeech
System 8 GPUs [ 16 GPUs
Time 115 minutestT |\ 3-5 daysP,
=

[1] Miperf training results, https://mlperf.org/training-results-0-6|
[2] E. B. Dario Amodei, Rishita Anubhai, C. Case, J. Casper, B.
mandarin,” in Proc. of the 33th International Conference on Maciin; earn& (IEML), 2016.

en et al., "Deep speech 2: End-to-end spéeﬂ:h recognmon in english and
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Federated Learning System Architecture

Parameter Server

Client 1 Client 2 Client 3 Client m

b |
B i & B

Dataset 1 Dataset 2 Dataset 3 Dataset m
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Federated Learning (FL)

@ The term “federated learning” was first coined in 2016 (arXiv):

> “We term our approach Federated Learning, since the learning task is solved
by a loose federation of participating devices (which we refer to as clients)
which are coordinated by a central server.” [McMahan et al. AISTATS'17]

o Key motivations of FL:
» FL was first focused on mobile & edge devices collaborating to train a global
model and later became a general learning paradigm
> No need to transfer clients’ data to the server to preserve privacy

@ A very active ongoing research field with the following defining challenges:
» Dataset sizes are unbalanced across clients in general

Datasets are non-i.i.d. across clients in general

Could involve a massive number of client devices

Limited communication bandwidth between server and clients

Limited device availability (e.g., powered-off, charging, no wifi...)

vVYyVvVvyy

@ Two widely studied FL settings:

» Cross-device: Huge number of (unreliable) clients (e.g., mobile devices)
» Cross-silo: Small number of (relatively) reliable clients (hospitals, banks, etc.)
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Cross-Device Federated Learning

According to [Kairouz et al. arXiv-1912.04977]:

@ Total population: 105-10'° devices

Device selected per-round: 50-5000
e Total devices participated in training a model: 10°-107

@ Number of rounds for convergence: 500-10000

Wall-clock training time: 1-10 days

Data partition: By samples
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Cross-Silo Federated Learning

@ The number of clients is relatively small. Often reasonable to assume that
clients are available at all times

@ Relevant when a number of companies or organizations share incentive to
training a model based on their data, but cannot share data directly

o Data partition: Could be either by samples or by features
> Also referred to as “horizontal” and “vertical” FL in the literature, respectively
» By examples: Relevant in cross-silo FL when a single organization cannot
centralize their data
» By features: Relevant in cross-silo FL if data security/privacy is of higher
concerns (e.g., banks)

o Challenges:

> Incentive mechanisms: participants might be competitors; utility fairness
among clients (free-rider problem); dividing earning among participants, etc.
> Preserving privacy on different levels (clients, users, etc.)
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Applications of Federated Learning

@ Cross-device FL:

\O : =" - - a Hey Siri
S = P

v ey —

Google Gboard Apple QuickType Apple “Hey Siri”

> Google: Extensive use of cross-device FL in Gboard mobile keyboard, features on
Pixel phones, and Android Messages

> Apple: Use of cross-device FL in QuickType keyboard next word prediction and vocal
classifier for “Hey Siri”

> doc.ai uses cross-device FL for medical research, Snips uses cross-device FL for
hotword detection, etc.
@ Cross-silo FL:

» Financial risk prediction for reinsurance, pharmaceutical discovery, electronic health
record mining, medical data segmentation, smart manufacturing, etc.
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Typical Federated Training Process

@ Client selection:
> Server samples from a set of available clients (idle, on wi-fi, plugged in...)

Broadcast:
> The selected clients download the current model weights

o Client computation:
» Each selected client locally computes an update to the model by some
algorithm (e.g., SGD or variants) on the local data
» Potential additional processing: Privacy, compression, etc.

Aggregation:
» Server collects an aggregates of the updates from clients
» Potential additional processing: filtering for security, etc.

Model update:

» The server updates the global model based on aggregated updates
» Potential additional processing: additional scaling, momentum, extra data, etc.

JKL (ECE@OSU) ECE 8101: Lecture 3-1 10



Why Does Federated Learning Generate So Much Interest?

@ FL is inherently inter-disciplinary:

>

>

>

Machine learning

Distributed optimization techniques
Cryptography

Security

Differential privacy

Fairness

Compressed sensing

Crowd-sensing

Wireless networking

Economics

» Statistics
» May play a role in emerging technologies (Blockchains, Metarverse, ...)

@ Many of the hardest problems in FL are at the intersections of multiple areas
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Optimization Algorithms for Federated Learning

o Key differences between distributed optimization and FL:
» Non-i.i.d. and unbalanced datasets across clients
» Limited communication bandwith
» Unreliable and limited client device availability

e FedAvg Algorithm (aka Local SGD/parallel SGD): basic template of FL
» N: Num. of clients; M: Clients per round;
» T Total communication round; K: Num. of local steps per round

» At Server:

@ Initialize xg GMMALH«!‘ de\'? 0/
@ foreachroundt =1,2,...,7T do
St < (random set of M clients) ”’Q‘wl LR Dﬂ"l, i )
for each client 2 € St in parallel do b—u mu
1+ ClientUpdate(i, x*)

S TN, *igA

=

» ClientUpdate(i, x):

Q x0+x
@ for local step k =0,...,|[K — LMo L
Xi+1 ¢ X mm’for e~P; F
© Return xj to serve ‘{_.._.. ,Z 3 VT(’-‘[‘: )
X, 3 Li=-Ls Sk
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Convergence Results: FedAvg with I.1.D. Datasets

@ Mini-batch of data used for a client's local update is statistically identical to
a uniform sampling (with replacement) from the union of all clients’ datasets

@ Although unlikely in practice, i.i.d. case provides basic understanding for FL
@ For simplicity, assume for now M = N. Consider the problem:
. A L
ain, 1) % mip, Zfz

where f;(x) £ E¢,p, [Fi(x,&)] is nonconvex

@ Assumptions:
> Lesmooth: [V /:(x) — V£i(y)]| < Llix -y, vx, .
» Bounded gradient variance and gradient second moments:
E¢,p,[IVF(x,&) - Vfi(x)|?] < o?  Be;en, [HVF'(X,&)IIQ] < G? vx,i
» Unbiased stochastic gradient: G! VF( : ,51) with
Ecp, [GLE" Y] = Vi(x ™), Vi, where €11 2 [¢7],cqv) e
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Convergence Results: FedAvg with I.1.D. Datasets

To fix notation, we use the following equivalent code for FedAvg (also referred to
as Parallel Restarted SGD in [Yu et al. AAAI'19]):

@ Initialize x? =y € R™. Choose constant step-size s > 0 and synchronization
interval K >0
Q fort=1,...,7T do
Each client i observes stochastic gradient Gt of f;(-) at x!~
if t mod K = 0 then
C A1 N _t-1
ompute node average y = % > ;- X;
Each client 7 in parallel updates its local solution

1

xi =y —sG, Vi

else
Each client 7 in parallel updates its local solution:
t_ o t—1 t .
x; =x;  —sG;, Wi
end if
end for
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Convergence Results: FedAvg with I.1.D. Datasets

Theorem 1 ([Yu et al. AAAI'19])

Under the stated assumptions and if s € (0, %] then for all T > 1, then the
iterates {x;} generated by FedAvg satisfies:

—ZE[HW (KPS () - £) + ARG + o0

where f* is the optimal value of the FL problem.
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Theorem 1 ([Yu et al. AAAI'19])

Under the stated assumptions and if s € (0, 1], then for all T > 1, then the
iterates {x;} generated by FedAvg satisfies:

L
xt=1)12 20 * 27,2272 2
TZE[”W ||]<—( (%) = f*) + 4 K>G*L? + 507,

:-.Ot:“:)

where f* is the optimal value of the FL problem. iy
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Convergence Results: FedAvg with I.1.D. Datasets

Corollary 2 ([Yu et al. AAAI'19])

o Ifwelets= L\‘/; O(%r-)ég @-’rrzfz}:
T
_ tl 70 % E 2 ~2 1 2
TZ:: V&2 \/— )= I G K o

LJ—f’l——”‘“’
.‘O(f_) £€ o T= A/i"

o If we further let K <@/* 3/4 éC( )

- 0@
fZ IV € 2 (fR) = ) + =GP + —mo?
LR
[owy Py L Lot ] s. s,

&,Mf\u) ~T$LR .
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Federated Learning with Non-I.I.D. Datasets

o “Client drift” problem with non-i.i.d. datasets (figure from [Karimireddy et

client 1 @)vf [ client update

‘ server update

al. ICML'20])

[1 SGD update
I client drift

*
Bz" e opt.

Yo lient? [@ client opt.

@ Impose a limit on the number of local updates in FL with non-i.i.d. datasets
(different algorithmic designs in FL lead to different limits)
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What Do You Mean Exactly by Saying "Non-I.1.D" in FL?

@ Bounded difference between client and global gradients (e.g., [Yu et al. ICML
2019] or [Yang et al. ICLR'21]):

N
Z IVfix) = VIE)I* <0 or [IVfi(x) = VIx)|* < of

@ A unified bounded gradient dissimilarity (G, B)-BGD model [Karimireddy et
al. ICML20]:

1 N
¥ L IVE®IF <6+ B Vi)’
i=1

@ Bounded difference between client and global optimal values (e.g., [Li et al.,
ICLR20]):

N
_Zpifi* £T <0

i=1
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Convergence Results: FedAvg with Non-1.1.D. Datasets

Theorem 3 ([Yu et al. ICML'19] Momentum-less Version)

Under the stated assumptions and if s € (0, +] and K < GLS, then for all T > 1,
then the iterates {x;} generated by FedAvg satisfies:

1

T-1
2 L
=Y E[IVf(x —T(f(xo) — NSUQ + 45’ KG?L? E 9L252K2a?;,i
t=0

where f* is the optimal value of the FL problem.

N
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Convergence Results: FedAvg with Non-1.1.D. Datasets

Corollary 4 ([Yu et al. ICML'19])

o Ifwelet s = ‘/—g and K = 1, then for T > 36L>N
T—1
1 1 N
— E[|V =0(—)+0|=
7 2 A (\/NT) (T>
o If we let s = \/—g and let K = O(Z%), then for T > L2N:

TZ B[V /()2 = O (\/%)

t=0
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Next Class

Decentralized Consensus Optimization
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