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Outline

In this lecture:

Key Idea of First-Order Methods with Adaptive Learning Rates

AdaGrad, RMSProp, Adam, and AMSGrad

Convergence Results
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Motivation

Recall that SGD has two hyber-parameter “control knobs” for convergence

performance

I Step-size
I Batch-size

A significant issue in SGD and variance-reduced versions: Tuning parameters

I Time-consuming, particularly for training deep neural networks
I Thus, adaptive first-order methods have received a lot of attention

The most popular ones that spawn many variants:

I AdaGrad: [Duchi et al. JMLR’11]
I RMSProp: [Hinton, ’12]
I Adam: [Kingma & Ba, ICLR’15] (AMSGrad [Reddi et al. ICLR’18])
I All of these methods still depend on some hyper-parameters, but they are

more robust than other variants of SGD or variance-reduced methods
I One can find PyTorch implementations of these popular adaptive first-order

meth methods
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AdaGrad

AdaGrad stands for “adaptive gradient.” It is the first algorithm aiming to

remove the need for turning the step-size in SGD:

xk+1 = xk � s(�I+Diag{Gk})�
1
2gk,

where Gk =
Pk

t=1 gtg>
t , s is an initial learning rate, and � > 0 is a small

value to prevent from the division by zero (typically on the order of 10�8
)

Entry-wise version: (ak,i denotes the i-th entry of ak)

xk+1,i = xk,i �
skp

� +Gk,i
gk,i,

where Gk,i =
Pk

t=1(gk,i)2. Typically, sk = s, 8k.

AdaGrad can be viewed as a special case of SGD with an adaptively scaled

step-size (learning rate) for each dimension (feature).
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RMSProp

A major limitation of AdaGrad:

I Step-sizes could rapidly diminishing (particularly in dense settings), may get
stuck in saddle points in nonconvex optimization

RMSProp (root mean squared propagation)

I First appeared in Hinton’s Lecture 6 notes of the online course “Neural
Networks for Machine Learning.”

I Motivated by RProp [Igel & Hüsken, NC’00] (resolving the issue that gradients
may vary widely in magnitudes, only using the sign of the gradient)

I Unpublished (and being famous because of this! ,)
I Idea: Keep an exponential moving average of squared gradient of each weight

E[g2
k+1,i] = �E[g2

k,i] + (1� �)(rif(xk))
2,

xk+1,i = xk,i �
sk

(� + E[g2
k+1,i])

1
2

rif(xk).

RMSProp vs. AdaGrad

I AdaGrad: Keep a running sum of squared gradients
I RMSProp: Keep an exponential moving average of squared gradients
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Adam

Stands for adaptive momentum estimation

Motivated by RMSProp, also aims to address the limitation of AdaGrad

Algorithm: (gk , rf(xk))

mk,i = �1mk�1,i + (1� �1)gk,i, m̂k,i =
mk,i

1� (�1)k
,

vk,i = �2vk�1,i + (1� �2)(gk,i)
2, v̂k,i =

vk,i

1� (�2)2
,

xk+1,i = xk,i �
skp

v̂k,i + �
m̂k,i, i = 1, . . . , d.

Parameters:

I �1 2 [0, 1): momentum parameter (�1 = 0.9 by default, �1 = 0 ) RMSProp)
I �2 2 (0, 1): exponential average parameter (�2 = 0.999 in the original paper)

A flaw in convergence proof spotted by [Reddi et al. ICLR’18], leading to...
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AMSGrad

To see the flaw of Adam (and RMSProp), consider a more generic view of

adaptive methods: In each iteration k :

gk = rfk(xk)

mk = �k(g1, . . . ,gk), and Vk =  k(g1, . . . ,gk)

xk+1 = xk � skV
� 1

2
k mk

I SGD:
sk = s, �k(g1, . . . ,gk) = gk,  k(g1, . . . ,gk) = I

I AdaGrad:

sk = s, �k(g1, . . . ,gk) = gk, and  k(g1, . . . ,gk) = Diag(
kX

t=1

gk � gk)/k

I Adam (�1 = 0 reduces to RMSProp):

sk = 1/
p
k, �k = (1� �1)

Xk

t=1
�k�t
1 gt,

 k(g1, . . . ,gk) = (1� �2)Diag(
Xk

t=1
�k�t
2 gt � gt).
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AMSGrad

A key quantify of interest in adaptive methods:

�k+1 =
V

1
2
k+1

sk+1
�

V
1
2
k

sk

I Measure the change in the inverse of learning rate w.r.t. time
I Require �k ⌫ 0, 8k, to ensure “non-increasing” learning rates
I This is true for SGD and AdaGrad following their definitions
I However, this is not necessarily true for Adam and RMSProp

In [Reddi et al. ICLR’18], it was shown that for any �1,�2 2 [0, 1) such that

�1 <
p
�2, 9 a stochastic convex optimization problem for which Adam does

not converge to the optimal solution

Implying that Adam needs dimension-dependent �1 and �2, which defeats

the purpose of adaptive methods due to extensive parameter tuning!
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AMSGrad

Idea: Use a smaller learning rate and incorporate the intuition of slowly

decaying the e↵ect of past gradient as long as �k is positive semidefinite

The algorithm: In iteration k:

gk = rfk(xk)

mk = �1,kmk�1 + (1� �1,k)gk,

vk = �2vk�1 + (1� �2)gk � gk,

v̂k = max(v̂k�1,vk), and V̂k = Diag(v̂k)

xk+1 = xk � skV̂
� 1

2
k mk

Maintain the maximum of all vk until the present iteration and use the

maximum to ensure non-increasing learning rate (i.e., �k ⌫ 0, 8k)
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Convergence of Adaptive First-Order Methods

While faster convergence of adaptive methods over SGD has been widely

observed, their best-known convergence rate bounds so far are the same (or

even worse) than those of SGD

We adopt the proof in [Défossez et al. ’20] due to generality and simplicity

A unified formulation used in [Défossez et al. ’20] for AdaGrad and Adam

(0 < �2  1 and 0  �1 < �2):

mk,i = �1mk�1,i +rifk(xk�1),

vk,i = �2vk�1,i + (rifk(xk�1))
2,

xk,i = xk�1,i � sk
mk,ip
� + vk,i

,

I AdaGrad: �1 = 0, �2 = 1, and sk = s

I Adam: Take sk = s(1� �1)
q

1��k
2

1��2
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Convergence of Adaptive First-Order Methods

Consider a general expectation optimization problem

min
x2Rd

F (x) , min
x2Rd

E[f(x)]

Notation: For a given time horizon T 2 N, let ⌧T be a random index with

value in {0, . . . , T � 1} so that Pr[⌧T = j] / 1� �T�j
1

I �1 = 0: Sampling ⌧T uniformly in {0, . . . , T � 1} (note: no momentum)
I �1 > 0: The fast few 1

1��1
iterations are sampled relatively rarely and older

iterations are sampled approximately uniformly

Assumptions:

I F is bounded from below: F (x) � F ⇤, x 2 Rd

I `1 norm of stochastic gradients is uniformly bounded almost surely: 9✏ > 0
s.t. krf(x)k1  R�

p
✏ a.s.

I L-smoothness: krF (x)� F (y)k2  Lkx� yk2, 8x,y 2 Rd
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Convergence of Adaptive First-Order Methods

Theorem 1 (AdaGrad w/o Momentum)

Let the iterates {xk} be generated with �2 = 1, sk = s > 0, and �1 = 0. Then
for any T 2 N, we have:

E[krF (x⌧T )k
2]  2R

F (x0)� F ⇤

s
p
T

+
1p
T
(4dR2 + sdRL) ln

✓
1 +

TR2

✏

◆
.

Theorem 2 (Adam w/o Momentum (RMSProp))

Let the iterates {xk} be generated with �2 2 (0, 1), sk = s
q

1��k
2

1��2
with s > 0,

and �1 = 0. Then for any T 2 N, we have:

E[krF (x⌧T )k
2]  2R

F (x0)� F ⇤

sT
+ C

✓
1

T
ln

✓
1 +

R2

(1� �2)✏

◆
� ln(�2)

◆
,

where constant C , 4dR2
p
1��2

+ sdRL
1��2

.
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Proof. Step 1 : Establish correlation and btwn adpture dir
and true grad dir , sit. ensure enough descent.

Step 2:Start some "descent Lemma", > bud per-iterS
↳dent telescopto
For KEN and it [d]

= Ex-- . di.
,
we have :

Em [PFEm)·REM
where : Vi = P2Er , + (Pitpln+)

I =Eri -S~

=Em(ri] =Pr , i + E [ifrEnt))7]
.



IFornotetenampat LetGF) / gift.
#m

A

Note that g
and I are indep give f.Cell---tatk+ )·

A=m = GE27Ent 1.

Next
,
to bud B ,

we have .--U .

B =Gg-
+ )

=69 (a-b1 < 191+ 1b1.

So , (B)1691T,men
C absta

↑ For C :In S
Take and expectationa noting otI
#[c]

[R El



-

Also,= ,and R.

we have : Ery[C] +REm]
·

1.

2 For D :

"
Inef

Taking and expectation, and noting otVIg2 , we have

#[P]m]
Using the same argument as in (2) ,

we have :

Ep[D]-REM] 1.

Adding 12 and (3) yields :

EntlIBI]=R - I

(5)-

Plugging 157 and $1 inte 10) : I

Em[]=EBREm7.



Proof of Thm/ (AdaGrad).
Since F1) is L-smooth , from descent Lemma :

F(1b) F()-S4FRTMh+ Mall

l
-K

Take cond , exp w
. r-t . to (o) , --- , try (E-1) , and applying Lemmal.

Ec[Fl]1-1) -SFMTR151
.

Since the a.s. Lo bound on grad (Assupt ,
we have

#:R RE
XpV + g() .
I:FinFET (6)Thus ESPFE,+,i 2RV.

Plugging 161 into 157, we
have

:

#[FI]E FLERT)-*FLI+ RSR+EEMCIIRIR]

summing this ineg . for all KEST] , taking full expectation
and using -I , we have

ECFT] F(O)-FIR



To analyze (8) ., we first prove the following :

Lemma 2 (Sum of ratio w/ denominator take from history) :

suppose OCB2E1 ·
Consider a non-neg . seg Ear] ,

Let

bt .

Wehave2).

Proof . Since (n() is concave , we have #WIn(y) 1 (n() + \n(x)(y-x) = (n(x) +A

=> - (n (2) - In(y) -

Take z= othe
, y= otbe-at , Then , we

have :

-at(n(bt) - Inlthat
daf. ~ - InB2.

of Inctbz)-Inctpubt-1) . = In) - In)b)
t(n (8+bt-1).

Bonding last term (4) in RAS using Lemna 2. for each

dimension and reaoraging
terms

- arrives at the final result. A

Proof of Thmz (Adam w/ Momentum ,
a . k . a RMSProp) .

Recall Sp =s for some 32o . From L-smoothness

descent Lemma :



FER) -> FEE)-SpSFEUM (7).

From as , las bound on grad assumption :

=R =R
Thus

,Sp (8) ,

Taking cond , expectation wirt . fod----frE+ ) on both sides

of() ; applying Lemma 1 .

and 18) :

EMCF] =FLE-DFI+(ISR)-I] :
Note thatSp = summing the hey

above and taking full expectation :

EFFECT)]FRO-EIII
Applying Lemmaz .

and rearranging arrive at the

stated result. E



Convergence of Adaptive First-Order Methods

Theorem 3 (AdaGrad w/ Momentum)

Let the iterates {xk} be generated with �2 = 1, sk = s > 0, and �1 2 (0, 1).
Then for any T 2 N such that T > �1

1��1
, we have:

E[krF (x⌧T )k
2]  2R

p
T
F (x0)� F ⇤

sT̃
+

p
T

T̃
C ln

✓
1 +

TR2

✏

◆
.

where T̃ = T � �1

1��1
and C = sdRL+ 12dR2

1��1
+ 2s2dL2�1

1��1
.

Theorem 4 (Adam w/ Momentum)

Let {xk} be generated with �2 2 (0, 1), �1 2 [0,�2), and sk = s(1� �1)
q

1��k
2

1��2

with s > 0. Then for any T 2 N such that T > �1

1��1
, we have:

E[krF (x⌧T )k
2]  2R

F (x0)� F ⇤

sT
+ C

✓
1

T
ln

✓
1 +

R2

(1� �2)✏

◆
� ln(�2)

◆
,

where T̃ = T � �1

1��1
and C = sdRL(1��1)

(1� �1
�2

)(1��2)
+ 12dR2p1��1

(1� �1
�2

)3/2
p
1��2

+ 2s2dL2�1

(1� �1
�2

)(1��2)3/2
.
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Theoretical Understanding of Adaptive Methods

Pros:

I [Zhang et al. NeurIPS’20]: Adam performs better than SGD when stochastic
gradients are heavy-tailed since Adam does an “adaptive gradient clipping”

I [Zhang et al. NeurIPS’20]: Also shows that SGD can fail to converge under
heavy-tailed situations, while clipped-SGD can.

I [Goodfellow & Bengio, ’16]: Clipped-SGD works better than SGD in vicinity of
extremely steep cli↵s

I [Zhang et al. ICML’20]: Clipped-GD converges without L-smoothness (with
rate ✏�2 while GD may converge arbitrarily slower

Cons:

I [Wilson et al. NeurIPS’17]: While converging faster in general, adaptive
first-order methods does not have good test error and generalization
performances in the over-parameterized regime. Adaptive methods often
generalize significantly worse than SGD. So one may need to reconsider the
use of adaptive methods to train deep neural networks
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Limitations of Adaptive Methods

[Wilson et al. NeurIPS’17]: VGG+BN+Dropout network for CIFAR-10
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Next Class

Federated and Decentralized Optimization
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