ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-5: Variance-Reduced First-Order Methods

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Key Idea of Variance-Reduced Methods
- SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE
- Convergence results

Recap: Stochastic Gradient Descent

• SGD Convergence Performace

- Constant step-size: SGD converges quickly to an approximation
 - * Step-size s and batch size B, converges to a $\frac{s\sigma^2}{B}$ -error ball
- Decreasing step-size: SGD converges slowly to exact solution
- Two "control knobs" to improve SGD convergence performance
 - Decrease (gradually) step-sizes:
 - ★ Improves convergence accuracy
 - ★ Make convergence too slow
 - Increase batch-sizes:
 - * Leads to faster rate of iterations
 - Makes setting step-sizes easier
 - ★ But increases the iteration cost

• Question: Could we achieve fast convergence rate with small batch-size?

- Growing batch-size B_k eventually requires O(N) samples per iteration
- Question: Can we achieve one sample per iteration and same iteration complexity as deterministic first-order methods?
- Answer: Yes, the first method was the stochastic average gradient (SAG) method [Le Roux et al. 2012]
- To understand SAG, it's insightful to view GD as performing the following iteration in solving the finite-sum problem:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^{N} \mathbf{v}_k^i$$

where in each step we set $\mathbf{v}_k^i =
abla f_i(\mathbf{x}_k)$ for all i

- SAG method: Only set $\mathbf{v}_k^{i_k} =
 abla f_{i_k}(\mathbf{x}_k)$ for randomly chosen i_k
 - All other $\mathbf{v}_k^{i_k}$ are kept at their previous values (a lazy update approach)

• One can think of SAG as having a memory:

where \mathbf{v}^i is the gradient $\nabla f_i(\mathbf{x}_{k'})$ from the last k' where i is selected

- In each iteration:
 - Randomly choose one of the vⁱ and update it to the current gradient
 - Take a step in the direction of the average of these vⁱ

- Basic SAG algorithm (maintains $\mathbf{g} = \sum_{i=1}^{N} \mathbf{v}^{i}$):
 - Set $\mathbf{g} = \mathbf{0}$ and gradient approximation $\mathbf{v}^i = \mathbf{0}$ for $i = 1, \dots, N$.
 - while (1):

Sample
$$i$$
 from $\{1, 2, \ldots, N\}$

- **2** Compute $\nabla f_i(\mathbf{x})$
- $\mathbf{3} \mathbf{g} = \mathbf{g} \mathbf{v}^i + \nabla f_i(\mathbf{x})$

b
$$\mathbf{v}^i = \nabla f_i(\mathbf{x})$$

b $\mathbf{x}^+ = \mathbf{x} - \frac{s}{N}\mathbf{g}$

- Iteration cost is O(d) (one sample)
- Memory complexity is O(Nd)
 - Could be less if the model is sparse
 - Could reduce to O(N) for linear models $f_i(\mathbf{x}) = h(\mathbf{x}^\top \boldsymbol{\xi}^i)$:

$$\nabla f_i(\mathbf{x}) = \underbrace{h'(\mathbf{x}^\top \boldsymbol{\xi}^i)}_{\text{scalar}} \underbrace{\mathbf{x}^i}_{\text{data}}$$

 But for neural networks, would still need to store all activations (typically impractical)

• The SAG algorithm:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^N \mathbf{v}_k^i,$$

where in each iteration, $\mathbf{v}_k^{i_k} =
abla f_{i_k}(\mathbf{x}_k)$ for a randomly chosen i_k

- Unlike batching in SGD, use a "gradient" for every sample
 - But the gradient might be out of date due to lazy update

• Intuition: $\mathbf{v}_k^i \to \nabla f_i(\mathbf{x}^*)$ at the same rate that $\mathbf{x}_k \to \mathbf{x}^*$

▶ so the variance $||\mathbf{e}_k||^2$ ("bad term") converges linearly to 0

Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each ∇f_i is L-Lipschitz continuous and f is strongly convex, with $s_k = 1/16L$, SAG satisfies:

$$\mathbb{E}[f(\mathbf{x}_k) - f^*] = O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^k\right)$$

- Sample Complexity: Number of ∇f_i evaluations to reach accuracy ϵ : condition mun?
 - Stochastic: $O(\frac{h}{4}(1/\epsilon))$
 - Gradient: $O(n_{\mu} \log(1/\epsilon))$
 - Nesterov: $O(n\sqrt{\frac{4}{\mu}}\log(1/\epsilon))$
 - SAG: $O(\max\{n, \mathcal{A}\} \log(1/\epsilon))$

• Note: L values are different between algorithms

Stochastic Variance-Reduced Gradient (SVRG) Idea: Get rid of memory by periodically computing full gradient [Johnson&Zhang,'13]

- Start with some $\tilde{\mathbf{x}}^0 = \mathbf{x}_m^0 = \mathbf{x}_0$, where m is a parameter. Let $S = \lceil T/m \rceil$
- for $s = 0, 1, 2, \dots, S 1$ • $\mathbf{x}_0^{s+1} = \mathbf{x}_m^s$ • $\mathbf{x}_{i=1}^{N} \nabla f_i(\mathbf{\tilde{x}}^s)$ • for $k = 0, 1, 2, \dots, m - 1$ • Uniformly pick a batch $I_k \subset \{1, 2, \dots, N\}$ at random (with replacement), with batch size $|I_k| = B$ • Let $\mathbf{v}_k^{s+1} = \frac{1}{B} \sum_{i=1}^{B} |\nabla f_{i_k}(\mathbf{x}_k^{s+1}) - \nabla f_{i_k}(\mathbf{\tilde{x}}^s)| + \nabla f(\mathbf{\tilde{x}}^s)$ • $\mathbf{\tilde{x}}_{k+1}^{s+1} = \mathbf{x}_k^{s-1} - s_k \mathbf{v}_k^{s+1}$
- Output: Chose \mathbf{x}_a uniformly at random from $\{\{\mathbf{x}_k^{s+1}\}_{k=0}^{m-1}\}_{s=0}^{S-1}$

Convex settings: Convergence properties similar to SAG for suitable \boldsymbol{m}

- Unbiased: $\mathbb{E}[\mathbf{v}_k^{s+1}] = \nabla f(\mathbf{x}_k^{s+1})$
- Theoretically m depends on L, μ , and N ($m = \mathbf{N}$ works well empirically)
- O(d) storage complexity (2B+1 gradients per iteration on average)
- $\bullet\,$ Last step $\tilde{\mathbf{x}}^{s+1}$ in outer loop can be randomly chosen from inner loop iterates

Convergence Rate of SVRG (Nonconvex)

- Consider finite-sum problem $\min_{\mathbf{x}\in\mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$, where both $f(\cdot)$ and $f_i(\cdot)$ are nonconvex, differentiable, and *L*-smooth.
- Define a sequence $\{\Gamma_k\}$ with $\Gamma_k \triangleq s_k \frac{c_{k+1}s_k}{\beta_k} s_k^2L 2c_{k+1}s_k^2$, where parameters c_{k+1} and β_k are TBD shortly.

Theorem 2 ([Reddi et al. '16])

Let $c_m = 0$, $s_k = s > 0$, $\beta_k = \beta > 0$, and $c_k = c_{k+1}(1 + s\beta + 2s^2L^2/B) + s^2L^3/B$ such that $\Gamma_k > 0$ for k = 0, ..., m - 1. Let $\gamma = \min_k \Gamma_k$. Also, let T be a multiple of m. Then, the output \mathbf{x}_a of SVRG satisfies:

$$\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \le \frac{f(\mathbf{x}_0) - f^*}{T\gamma} \cdot \texttt{=O(f)}$$

Theorem 2 ([Reddi et al. '16])

Let $c_m = 0$, $s_k = s > 0$, $\beta_k = \beta > 0$, and $c_k = c_{k+1}(1 + s\beta + 2s^2L^2/B) + s^2L^3/B$ such that $\Gamma_k > 0$ for $k = 0, \dots, m-1$. Let $\gamma = \min_k \Gamma_k$. Also, let T be a multiple of m. Then, the output \mathbf{x}_a of SVRG satisfies:

$$\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \le \frac{f(\mathbf{x}_0) - f^*}{T\gamma} \cdot = O(+)$$

Proof: Define
$$R_{k}^{sti} \triangleq \mathbb{E}\left[\left(\left(\mathbb{Z}_{k}^{sti}\right)^{+} + C_{k}^{sti}\right)^{T_{k}} + C_{k}^{sti}\right]^{2}\right]$$

Auchyze (-step Cympunion detet; $R_{k+1}^{sti} - R_{k}^{sti} \leq -\Gamma_{k}^{sti}\left\|\mathbb{P}\left(\mathbb{Z}_{k}^{sti}\right)\right\|^{2}\right]$
 $\Rightarrow \mathbb{E}\left[\left\|\nabla_{f}(\mathbb{Z}_{k}^{sti})\right\|^{2}\right] \leq \frac{R_{k+1}^{sti} - R_{k}^{sti}}{\Gamma_{k}} \leq \frac{R_{k+1}^{sti} - R_{k}^{sti}}{\mathbb{P}_{k}^{sti} - R_{k}^{sti}} \leq \frac{L^{2}}{\mathbb{P}_{k}^{sti}} + \frac{L^{2}$

$$\mathbb{E}\left[f(\mathbf{x}_{k+1}^{sti})\right] \leq \mathbb{E}\left[f(\mathbf{x}_{k}^{sti}) + \nabla f(\mathbf{x}_{k}^{sti})^{\mathsf{T}}\left(\mathbf{x}_{k+1}^{sti} - \mathbf{x}_{k}^{sti}\right) + \frac{1}{2}\left\|\mathbf{x}_{k+1}^{sti} - \mathbf{x}_{k}^{sti}\right\|\right]$$

$$\leq \mathbb{E}\left[f(\mathbf{x}_{k}^{st}) - s_{k}\left[\mathbb{P}f(\mathbf{x}_{k}^{sti})\right]^{2} + \frac{Ls_{k}^{2}}{2}\left[|\mathbf{Y}_{k}^{sti}||^{2}\right]\right]$$
(2)

Next, we will bind
$$\mathbb{E}\left[\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right]$$

 $\mathbb{E}\left[\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right] \xrightarrow{\text{add}_{\mathbf{x}}} \mathbb{E}\left[\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1} - \underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right]$
 $= \mathbb{E}\left[\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1}\|^{2} + \|\underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right] + 2\langle \underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\rangle$
 $= \mathbb{E}\left[\|\underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1}\|^{2} + \|\underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right] + 2\langle \underline{x}_{k+1}^{s+1} - \underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\rangle$
 $= \mathbb{E}\left[s_{k}^{s}\|\underline{y}_{k}^{s+1}\|^{2} + \|\underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right] + 2s_{k}\mathbb{E}\left[\langle -\nabla f(\underline{x}_{k}^{s+1}), \underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\rangle\right]$
 $Fachel - Yang Ing.$
 $\leq \mathbb{E}\left[s_{k}^{s}\|\underline{y}_{k}^{s+1}\|^{2} + \|\underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right] + 2s_{k}\left[\frac{1}{2}\mathbb{E}\left[\nabla f(\underline{x}_{k}^{s+1})\|^{2} + \frac{1}{2}\|\underline{x}_{k}^{s+1} - \underline{x}_{k}^{s}\|^{2}\right]$
(a)

(%)

$$\begin{split} & \text{Plugging (2) and (3) who } \mathbb{R}_{k+1}^{s+1} \text{ to obtain.} \\ & \text{R}_{k+1}^{sy1} = \mathbb{E}\left[\int ||\mathbf{z}_{k+1}^{s+1}|| + c_{k+1} ||\mathbf{z}_{k+1}^{s+1} - \mathbf{\hat{z}}^{s}||^{2}\right] \\ & \leq \mathbb{E}\left[\int ||\mathbf{z}_{k+1}^{s+1}|| - s_{k} ||\mathbf{y}_{+}(\mathbf{z}_{k}^{s+1})||^{2} + \frac{Ls_{k}}{2} ||\mathbf{y}_{k}^{s+1}||^{2}\right] \\ & + \mathbb{E}\left[c_{k+1}s_{k}^{s}||\mathbf{y}_{k}^{s+1}||^{2} + (c_{k+1} ||\mathbf{x}_{k+1}^{s+1} - \mathbf{\hat{z}}_{s}||^{2}\right] \\ & + 2c_{k+1}s_{k} \mathbb{E}\left[\frac{1}{2p_{k}} ||\mathbf{y}_{+}(\mathbf{z}_{k}^{s+1})||^{2} + \frac{p_{k}}{2} ||\mathbf{z}_{k}^{s+1} - \mathbf{\hat{z}}_{s}^{s}||^{2}\right] \\ & = \mathbb{E}\left[\int ||\mathbf{z}_{k}^{s+1}||^{2}\right] - (s_{k} - \frac{c_{k+1}s_{k}}{p_{k}}) \mathbb{E}\left[||\mathbf{v}_{+}(\mathbf{z}_{k}^{s+1})||^{2}\right] + (\frac{Ls_{k}}{2} + c_{k+1}s_{k}^{s})\mathbb{E}\left[||\mathbf{u}_{k}^{s+1}||^{2}\right] \\ & + (c_{k+1} + c_{k+1}s_{k}p_{k}) \mathbb{E}\left[||\mathbf{v}_{+}(\mathbf{z}_{k}^{s+1})||^{2}\right] + (\frac{Ls_{k}}{2} + c_{k+1}s_{k}^{s})\mathbb{E}\left[||\mathbf{u}_{k}^{s+1}||^{2}\right] \\ & + (c_{k+1} + c_{k+1}s_{k}p_{k}) \mathbb{E}\left[||\mathbf{v}_{+}(\mathbf{z}_{k}^{s+1})||^{2}\right] + \frac{2L^{2}}{B} \mathbb{E}\left[||\mathbf{z}_{k}^{s+1} - \mathbf{\tilde{z}}^{s}||^{2}\right] \\ & \text{A} \frac{c(a_{k+1}}{2} - \mathbb{E}\left[||\mathbf{u}_{k}^{s+1}||^{2}\right] \leq 2\mathbb{E}\left[||\mathbf{v}_{+}(\mathbf{z}_{k}^{s+1})||^{2}\right] + \frac{2L^{2}}{B} \mathbb{E}\left[||\mathbf{z}_{k}^{s+1} - \mathbf{\tilde{z}}^{s}||^{2}\right] \\ & \text{Note.} \quad \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] = \mathbb{E}\left[s_{k}^{s+1} + \mathbb{V}\left(|\mathbf{\tilde{z}}^{s}\right)\right] \\ & \text{Trom} \quad de_{1} \cdot e_{1} \cdot s_{1} \times e_{1} + \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}| + \mathbb{V}\left(|\mathbf{\tilde{z}}^{s}\right)||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}| + \mathbb{V}\left(|\mathbf{z}_{k}^{s+1}|| + \mathbb{V}\left(|\mathbf{z}_{k}^{s+1}||\right)||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] = \mathbb{E}\left[s_{k}^{s+1} + \mathbb{V}\left(|\mathbf{z}_{k}^{s+1}|| + \mathbb{V}\left(|\mathbf{z}_{k}^{s+1}||\right)||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] = \mathbb{E}\left[s_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[s_{k}^{s+1}||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] \\ & = \mathbb{E}\left[||\mathbf{z}_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[s_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[s_{k}^{s+1}||^{2}\right] + \mathbb{E}\left[s_{k}^{s+1}||^{2}\right] \\ & = \mathbb{E}\left[s_{$$

 $\leq 2 \mathbb{E} \left[\left\| \nabla_{f} (\mathbb{Z}_{k}^{\text{HI}}) \right\|^{2} \right] + 2 \mathbb{E} \left[\left\| \underline{\mathbb{S}}_{k}^{\text{SH}} - \mathbb{E} \left[\mathcal{S}_{k}^{\text{SH}} \right] \right\|^{2} \right] \left(\leq n \mathbb{E} \left[\left\| \underline{\mathbb{S}}_{k}^{\text{SH}} - \left\| \underline{\mathbb{S}}_{k}^{\text{SH}} \right] \right\|^{2} \right]$ $= \mathcal{L}\left[\left\|\nabla_{\mathbf{x}}\left(\mathbf{x}_{k}^{\mathsf{str}}\right)\right\|^{2} + \frac{2}{B^{2}} \mathbb{E}\left[\left\|\sum_{i \in J_{k}}\left(\nabla_{\mathbf{x}_{k}}\left(\mathbf{x}_{k}^{\mathsf{str}}\right) - \nabla_{\mathbf{x}_{k}}\left(\mathbf{x}_{k}^{\mathsf{str}}\right) - \mathbb{E}\left[\mathcal{S}_{k}^{\mathsf{str}}\right]\right)\right\|^{2}\right]$ $\leq 2 \mathbb{E} \left[\left\| \mathbb{P}_{f}^{(\underline{x}_{k}^{s+1})} \right\|^{2} + \frac{2}{B^{2}} \mathbb{E} \left[\sum_{i \in I_{k}}^{\mathcal{F}} \left\| \mathbb{V}_{f_{i}}^{(\underline{x}_{k}^{s+1})} - \mathbb{V}_{f_{i}}^{(\underline{x}_{k}^{s+1})} \right\|^{2} \right] \\ \leq L \left\| \underline{x}_{k}^{s+1} - \underline{\hat{x}}^{s} \right\|$ $\leq 2 \mathbb{E} \left[\left\| \mathbb{P}_{f}(\mathbb{X}_{k}^{s+1}) \right\|^{2} + \frac{2}{B^{2}} \cdot \mathbb{R} \left[\mathbb{E} \left[\left\| \mathbb{X}_{k}^{s+1} - \mathbb{X}^{s} \right\|^{2} \right] \right]$ having the clowing in (4): $\mathsf{R}_{k+1}^{\mathsf{str}} \leq \mathbb{E}\left[f\left(\underline{\mathbf{x}}_{k}^{\mathsf{str}}\right)\right] - \left(\mathbf{s}_{k} - \frac{\mathbf{c}_{\mathsf{str}}}{\mathbf{\beta}_{k}} - \mathbf{s}_{k}^{\mathsf{st}}\right) - 2\mathbf{c}_{\mathsf{str}}\mathbf{s}_{k}^{\mathsf{str}}\right) \mathbb{E}\left[\left\|\mathbf{z}_{k}^{\mathsf{str}}\right\|$ + $\left[q_{kH} \left(1 + s_{k} \beta_{k} + \frac{2 s_{k}^{2} L^{2}}{B} \right) + \frac{s_{k} L^{2}}{B} \right] T \left[\left\| \mathbf{x}_{k}^{s_{H}} - \hat{\mathbf{x}}^{s} \right\|^{2} \right] \right]$ $\leq \mathsf{R}_{\mathsf{k}}^{\mathsf{stri}} - \underbrace{\left(\mathsf{s}_{\mathsf{k}}^{*} - \frac{\mathsf{q}_{\mathsf{k}}}{\mathsf{p}_{\mathsf{k}}} - \mathsf{s}_{\mathsf{k}}^{*}\mathsf{L} - 2\mathsf{c}_{\mathsf{k}}\mathsf{n}\,\mathsf{s}_{\mathsf{k}}^{*}\right) \mathbb{E}\left[\left\|\nabla f(\mathsf{x}_{\mathsf{k}}^{\mathsf{stri}})\right\|^{2}\right]$ $\Rightarrow \mathbb{E}\left[\left\|\mathbb{P}\left(\mathbf{X}_{k}^{\text{sti}}\right)\right\|^{2}\right] \leq \frac{\mathbb{R}_{k}}{\Gamma_{k}} - \mathbb{R}_{k+1}^{\text{sti}}$ To complete the proof. Since sk= S VK, Using (2) and telescopping,

 $\sum_{k=0}^{m-1} \mathbb{E}\left[\left\|\mathbb{P}^{*}_{1}(\mathbf{x}_{k})\right\|^{2}\right] \leq \frac{\mathcal{R}_{0}^{*}-\mathcal{R}_{m}}{\mathcal{F}}$ Note: $R_m^{st1} = \mathbb{E}[f(\mathbb{Z}_m^{st1})] \stackrel{def}{=} \mathbb{E}[f(\mathbb{Z}_m^{st1})]$ $R_0^{stl} = \overline{I} \left[f(\overline{x}^s) \right] \quad (snce \quad \overline{x}^{stl} = \overline{x}^s).$ Summing over all epochs (S=[7/m]) $\frac{1}{T}\sum_{s=0}^{s=1} \overline{E}\left[\left\|\mathcal{P}_{f}(\underline{x}_{k}^{st1})\right\|^{2}\right] \leq \frac{J(\underline{x}^{\circ}) - f^{*}}{Ts} \quad (\text{ note } : \underline{\widehat{x}^{\circ}} = \underline{x}_{o}).$ Complexity (IFO): Let $s = \frac{\mu_0}{(LN^{d})}$, where $\mu_0 \in [0, 1)$ and $d \in (0, 1]$ $\beta = L/N^{\frac{1}{2}}$, $m = \lfloor N^{\frac{3}{2}/(\frac{1}{2}\mu_0)} \rfloor$. Then, \exists const. No, N>0. s.t. we have N> V and $\mathbb{E}\left[\left\|\mathbb{V}_{f}(\mathbb{X}_{n})\right\|^{2}\right] \leq \frac{LN^{\alpha}(f(\mathbb{X}_{0}) - f^{\alpha})}{T^{2}} \leq \varepsilon \qquad S = \lceil T/m \rceil$ $T \ge \frac{LN^{d}(f(x_0) - f^{*})}{N \in \mathbb{N}} \qquad N = \frac{N}{m} N = \frac{N}{m} \cdot \frac{N}{m$ $\frac{2m+N}{m} = 2\pm \frac{N}{m} = 2\pm \frac{3}{10}N^{-\frac{3}{2}}$ $\frac{L(f|S)-f^{*})}{V\varepsilon} \cdot N^{d} (2+3\mu_{0}N^{1-\frac{2}{2}}) = C\left(M^{d}+N^{1-\frac{2}{2}}\right)/\varepsilon.$ $= \begin{cases} O(N^{1-\frac{2}{2}}/\epsilon) & \forall \ k \leq \frac{2}{3} \\ O(N^{k}/\epsilon) & \forall \ k > \frac{2}{3} \end{cases}$ So, $\alpha = \frac{2}{3} \Rightarrow IFO complexity: O(N + N^{\frac{2}{3}} \Delta_0 \varepsilon^{-1})$

SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

- Initialize \mathbf{x}_0 ; Create a table, containing gradients and $\mathbf{v}_0^i =
 abla f_i(\mathbf{x}_0)$
- In iterations $k = 0, 1, 2, \ldots$:
 - Pick a random i_k ∈ {1,..., N} uniformly at random and compute $\nabla f_{i_k}(\mathbf{x}_k)$.
 Update \mathbf{x}_{k+1} as follows:
 SAG: $\int_{\mathbf{V}} \left(\mathcal{P} f_{i_k}(\mathbf{x}_k) \mathcal{V}_{k-1} + \mathcal{Z} \mathcal{V} \right)$.

$$\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right)$$

3 Update table entry $\mathbf{v}_{k+1}^{i_k} = \nabla f_i(\mathbf{x}_k)$. Set all other $\mathbf{v}_{k+1}^i = \mathbf{v}_k^i$, $i \neq i_k$, i.e., other table entries remain the same

SAGA (SAG Again?)

- SAGA basically matches convergence rates of SAG (for both convex and strongly convex cases), but the proof is simpler (due to unbiasedness)
- Another strength of SAGA is that it can extend to composite problems:

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) + h(\mathbf{x}),$$

where each $f_i(\cdot)$ is *L*-smooth, and *h* is convex and non-smooth, but has a known proximal operator $\mathbf{x}_{k+1} = \left(\operatorname{prox}_{h,s_k} \left\{ \mathbf{x}_k - s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right) \right\}.$

But it is unknown whether SAG is convergent or not under proximal operator $prox_{1,\lambda}(y) = arg_{2}^{min} (f(x) + \frac{1}{2\lambda} \|x - y\|^{2})$

SAGA Variance Reduction

• Stochastic gradient in SAGA:

$$\nabla f'_{s}$$
 $\underbrace{\nabla f_{i_k}(\mathbf{x}_k)}_{X} - \underbrace{\left(\mathbf{v}_k^{i_k} - \frac{1}{N}\sum_{i=1}^{N}\mathbf{v}_k^i\right)}_{Y}$

• Note: $\mathbb{E}[X] = \nabla f(\mathbf{x}_k)$ and $\mathbb{E}[Y] = 0 \Rightarrow$ we have an unbiased estimator

Note: X − Y → 0 as k → ∞, since x_k and x_{k-1} converges to some x̄, the difference between the first two terms converges to zero. The last term converges to gradient at stationarity, i.e., also zero

• Thus, the overall ℓ_2 norm estimator (i.e., variance) decays to zero

Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate $\mathbb{E}[X]$

- $\bullet\,$ Suppose we can compute $\mathbb{E}[Y]$ for a r.v. Y that is highly correlated with X
- Consider the estimator θ_a as an approximation to $\mathbb{E}[X]$:

 $\theta_{\alpha} \triangleq \alpha(X - Y) + \mathbb{E}[Y]$, for some $\alpha \in (0, 1]$

• Observations:

- $\mathbb{E}[\theta_{\alpha}] = \alpha \mathbb{E}[X] + (1 \alpha) \mathbb{E}[Y]$, i.e., a convex combination of $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- Standard VR: $\alpha = 1$ and hence $\mathbb{E}[\theta_{\alpha}] = \mathbb{E}[X]$
- ► Variance of θ_{α} : $\operatorname{Var}(\theta_{\alpha}) = \alpha^{2} [\operatorname{Var}(X) + \operatorname{Var}(Y) 2\operatorname{Cov}(X, Y)]$
- If Cov(X, Y) is large, variance of θ_{α} is reduced compared to X
- Letting α from 0 to 1, $Var(X) \uparrow$ to max value while decreasing bias to zero

• SAG, SVRG, and SAGA can be derived from this VR viewpoint:

- ▶ SAG: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \mathbf{v}_k^{i_k}$, $\alpha = 1/N$ (biased) $\int b^{\epsilon_k} \mathbf{r} \cdot \mathbf{v}^{\ell_k} \mathbf{r} \cdot \mathbf{v}^{\ell_k}$
- SAGA: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \mathbf{v}_k^{i_k}$, $\alpha = 1$ (unbiased)
- SVRG: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \nabla f_{i_k}(\tilde{\mathbf{x}})$ (unbiased)
- Variance of SAG is 1/N² times of that of SAGA

ED

Comparisons between SAG, SVRG, and SAGA

• Update rules: (SAG) $\mathbf{x}_{k+1} = \mathbf{x}_k - s \left[\frac{1}{N} (\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k}) + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right]$ (SAGA) $\mathbf{x}_{k+1} = \mathbf{x}_k - s \left[(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k}) + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right]$ (SVRG) $\mathbf{x}_{k+1} = \mathbf{x}_k - s \left[(\nabla f_{i_k}(\mathbf{x}_k) - \nabla f_{i_k}(\mathbf{\tilde{x}})) + \frac{1}{N} \sum_{i=1}^N \nabla f_i(\mathbf{\tilde{x}}) \right]$

• SVRG: $\tilde{\mathbf{x}}$ is not updated very step (only updated in the start of outer loops)

- SAG & SAGA: Update $\mathbf{v}_k^{i_k}$ in the table each time index i_k is picked
- SVRG vs. SAGA:
 - SVRG: Low memory cost, slower convergence (same convergence rate order)
 - SAGA: High memory cost, (arguably) faster convergence
- SAGA can be viewed as a midpoint between SAG and SVRG

Stochastic Recursive Gradient Algorithm (SARAH) $\int_{\mathcal{T}} \mathbb{E} \left[\ln f(\cdot) \right]^{2} = \int_{\mathcal{T}} \frac{\mathcal{C}}{\mathcal{C}} = \mathcal{O}(\mathcal{C}^{4}).$

- Sample complexity of GD, SGD, SVRG, and SAGA for ϵ -stationarity:
 - \blacktriangleright GD and SGD require $O(N\epsilon^{-2})$ and $O(\epsilon^{-4}),$ respectively^1
 - ▶ B = 1: Both SVRG and SARAH guarantee only $O(N\epsilon^{-2})$, same as GD
 - $B = N^{\frac{2}{3}}$: Both SVRG and SAGA achieve $O(N^{\frac{2}{3}}\epsilon^{-2})$, $N^{\frac{1}{3}}$ times better than GD in terms of dependence on N

$\Rightarrow \| [p_{f(\bar{x})} \|^{2} \in \frac{C}{T} \in \epsilon^{2} \Rightarrow T \approx \frac{C}{\epsilon^{2}} \Rightarrow 0 (W \epsilon^{2})$

- \bullet However, the sample complexity lower bound is $\Omega(\sqrt{N}\epsilon^{-2})$
 - There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang et al. 2018] and PAGE [Li et al. 2020])
- These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
 - Sample complexity for convex and strongly convex problems: O(N + 1/ε²) and O((N + κ) log(1/ε)), respectively (κ = L/μ, a single outer loop)
 - Sample complexity for nonconvex problems: $O(N + L^2/\epsilon^4)$ (step size $s = O(1/L\sqrt{T})$, non-batching, a single outer loop)

¹For simplicity, we ignore all other parameters except N and ϵ here.

Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

• Pick learning rate $\eta > 0$ and inner loop size m

• for
$$s = 0, 1, 2, ..., S - 1$$

• $\mathbf{x}_0^{s+1} = \tilde{\mathbf{x}}^s$
• $\mathbf{v}_0^{s+1} = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(\mathbf{x}_0^{s+1})$
• $\mathbf{x}_1^{s+1} = \mathbf{x}_0^{s+1} - \eta \mathbf{v}_0^{s+1}$
• for $k = 1, 2, ..., m - 1$
* Uniformly pick a batch $I_k \subset \{1, 2, ..., N\}$ at random (with replacement), with batch size $|I_k| = B$
* Let $\mathbf{v}_k^{s+1} = \frac{1}{B} \sum_{i \in I_k} [\nabla f_{i_k}(\mathbf{x}_k^{s+1}) - \nabla f_{i_k}(\mathbf{x}_{k-1}^{s+1})] + \mathbf{v}_{k-1}^{s+1}$
* $\mathbf{x}_i^{s+1} = \mathbf{x}_i^{s+1} - \eta \mathbf{v}_i^{s+1}$

* $\mathbf{x}_{k+1} - \mathbf{x}_k - \eta \mathbf{v}_k$ • $\tilde{\mathbf{x}}^{s+1} = \mathbf{x}_k^{s+1}$ with k chosen uniformly at random from $\{0, 1, \dots, m\}$

• Output: Chose \mathbf{x}_a uniformly at random from $\{\{\mathbf{x}_{\iota}^{s+1}\}_{\iota=0}^{m-1}\}_{\iota=0}^{S-1}$

Comparison to SVRG (ignoring outer loop index s):

- SVRG: $\mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \nabla f_{i_k}(\mathbf{x}_0) + \mathbf{v}_0$ (unbiased) SARAH: $\mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \nabla f_{i_k}(\mathbf{x}_{k-1}) + \mathbf{v}_{k-1}$ (biased)

SPIDER/SpiderBoost

- SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound and the first sample complexity order-optimal algorithm
 - SPIDER stands for "stochastic path-integrated differential estimator"
 - Lower bound $\sqrt{N}\epsilon^{-2}$ for small data regime $N = O(L^2(f(\mathbf{x}_0) f^*)\epsilon^{-4})$
 - SPIDER achieves sample complexity $O(\sqrt{N}\epsilon^{-2})$
 - ▶ However, requires very small step-size $O(\epsilon/L)$, poor convergence in practice
 - Original proof of SPIDER is technically too complex and hence hard to generalize the method to composite optimization problems
- SpiderBoost [Wang et al. 2018] [Wang et al. NeurIPS'19]:
 - Same algorithm, same sample complexity, but relax the step-size to O(1/L)
 - Simpler proof and can be generalized to composite optimization problems
 - Also works well with heavy-ball momentum

2

SPIDER/SpiderBoost

The SpiderBoost Algorithm

- Pick learning rate s = 1/2L, epoch length T, starting point \mathbf{x}_0 , batch size B, number of iteration T
- for $k = 0, 1, 2, \dots, T-1$ if $k \mod m = 0$ then Compute full gradient $\mathbf{v}_k = \nabla f(\mathbf{x}_k)$ else

Uniformly randomly pick $I_k \subset \{1, \ldots, N\}$ (with replacement) with $|I_k| = B$. Compute

$$\mathbf{v}_{k} = \frac{1}{B} \sum_{i \in I_{k}} [\nabla f_{i}(\mathbf{x}_{k}) - \nabla f_{i}(\mathbf{x}_{k-1})] + \mathbf{v}_{k-1}$$

end if

Let $\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{v}_k$

end for

Output: \mathbf{x}_{ξ} , where ξ is picked uniformly at random from $\{0, \ldots, T-1\}$

Probabilistic Gradient Estimator (PAGE)

- SPIDER/SpiderBoost: Sample complexity LB is for small data regime
- PAGE [Li et al. ICML'21]: Proved the lower bound $\Omega(N + \sqrt{N}\epsilon^{-2})$ without any assumption on data set size N and provided a new order-optimal method
 - A variant of SPIDER with random length of inner loop, making the algorithm easier to analyze

Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

- Pick \mathbf{x}_0 , step-size s, mini-batch sizes B and B' < B, probabilities $\{p_k\}_{k \ge 0} \in (0, 1]$, number of iterations T
- Let $\mathbf{g}_0 = \frac{1}{B} \sum_{i \in I} \nabla f_i(\mathbf{x}_0)$, where I is a random mini-batch with |I| = B• for $k = 0, 1, 2, \dots, T - 1$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{g}_k,$$

$$\mathbf{g}_{k+1} = \begin{cases} \frac{1}{B} \sum_{i \in I_k} \nabla f_i(\mathbf{x}_{k+1}), & \text{w.p. } p_k, \\ \mathbf{g}_k + \frac{1}{B'} \sum_{i \in I'_k} [\nabla f_i(\mathbf{x}_{k+1}) - \nabla f_i(\mathbf{x}_k)], & \text{w.p. } 1 - p_k, \end{cases}$$

$$\mathbf{e} \mid L \mid = B \text{ and } \mid L' \mid = B' \qquad \text{chowse} \quad \boldsymbol{\varsigma} = \underbrace{\left\{ \begin{array}{c} \mathbf{f}_k \\ \mathbf{f}_k$$

where $|I_k| = B$ and $|I'_k| = B'$ end for

• **Output:** $\hat{\mathbf{x}}_T$ chosen uniformly from $\{\mathbf{x}_k\}_{k=1}^T$

IFO complexity O(N+N)

$$B' \leq JB. , P_k = \frac{B'}{B'+B}.$$

then the iter complexity of $PAG_{1}B': O\left(\frac{2A_0I}{E^2}\left(1+JE\right)\right)$

Summary of Sample Complexity Results for VR Methods

Method	References	Sample Complexity	
Lower Bound	[Fang et al. NeurIPS'18]	$L\Delta_0 \min\{\sigma \epsilon^{-3}, \sqrt{N}\epsilon^{-2}\}$	
GD		$NL\Delta_0\epsilon^{-2}$	
SGD (bnd. var.)	[Ghadimi & Lan, SIAM-JO'13]	$L\Delta_0 \max\{\epsilon^{-2}, \sigma^2 \epsilon^{-4}\}$	
SGD (ubd. var.)	[Khaled & Richtarik, '20]	$\frac{L^2\Delta_0}{\epsilon^4}\max\{\Delta_0,\Delta_*\}$	
SVRG $(B=1)$	[Reddi et al. NeurIPS'16]	$NL\Delta_0\epsilon^{-2}$	1
SVRG $(B = \lceil N^{\frac{2}{3}} \rceil)$	[Reddi et al. NeurIPS'16]	$N^{\frac{2}{3}}L\Delta_0\epsilon^{-2}$	Ļ
SAGA $(B=1)$	[Reddi et al. NeurIPS'16]	$NL\Delta_0\epsilon^{-2}$	
SAGA $(B = \lceil N^{\frac{2}{3}} \rceil)$	[Reddi et al. NeurIPS'16]	$N^{\frac{2}{3}}L\Delta_0\epsilon^{-2}$)
SpiderBoost	[Wang et al. NeurIPS'19]	$N^{\frac{1}{2}}L\Delta_0\epsilon^{-2}$	
SPIDER	[Fang et al. NeurIPS'18]	$L\Delta_0 \min\{\sigma \epsilon^{-3}, \sqrt{N} \epsilon^{-2}\}$	an N
PAGE	[Li et al. ICML'21]	$L\Delta_0 \min\{\sigma \epsilon^{-3}, \sqrt{N}\epsilon^{-2}\}$] ""

- Notation: $\Delta_0 = f(\mathbf{x}_0) f^*$, $\Delta_* = \frac{1}{N} \sum_{i=1}^N (f^* f_i^*)$, σ^2 is a uniform bound for the variance of stochastic gradient, B is batch size
- All results are for finite-sum with *L*-smooth summands. Sample complexity means the overall number of stochastic first-order oracle calls to find an *e*-stationary point

Caveat of Variance-Reduced Methods

- In deep neural networks training, VR methods work typically worse than SGD or SGD+Momentum [Defazio & Bottou, NeurIPS'19]
 - Bad behavior of VR methods with several widely used deep learning tricks (e.g., batch normalization, data augmentation and dropout)

Next Class

First-Order Methods with Adaptive Learning Rates