ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-5: Variance-Reduced First-Order Methods

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Key Idea of Variance-Reduced Methods
- SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE :
| Key Idea of Variance-Reduced Methods
| SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE
| Convergence results
|
- Convergence results

Recap: Stochastic Gradient Descent

• SGD Convergence Performace

- \triangleright Constant step-size: SGD converges quickly to an approximation
	- \star Step-size *s* and batch size *B*, converges to a $\frac{s\sigma^2}{B}$ -error ball
- **Decreasing step-size: SGD converges slowly to exact solution**
- Two "control knobs" to improve SGD convergence performance
	- \triangleright Decrease (gradually) step-sizes:
		- \star Improves convergence accuracy
		- \star Make convergence too slow
	- \blacktriangleright Increase batch-sizes:
		- \star Leads to faster rate of iterations
		- \star Makes setting step-sizes easier
		- \star But increases the iteration cost

Question: Could we achieve fast convergence rate with small batch-size?

Growing batch-size B_k eventually requires $O(N)$ samples per iteration $\frac{1}{2}$

↓

- Question: Can we achieve one sample per iteration and same iteration complexity as deterministic first-order methods?
- Answer: Yes, the first method was the stochastic average gradient (SAG) method [Le Roux et al. 2012]
- To understand SAG, it's insightful to view GD as performing the following iteration in solving the finite-sum problem:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^N \mathbf{v}_k^i
$$

where in each step we set $\mathbf{v}_k^i = \nabla f_i(\mathbf{x}_k)$ for all i

- SAG method: Only set $\mathbf{v}_k^{i_k} = \nabla f_{i_k}(\mathbf{x}_k)$ for randomly chosen i_k
	- \blacktriangleright All other $\mathbf{v}_k^{i_k}$ are kept at their previous values (a lazy update approach)

• One can think of SAG as having a memory:

where \mathbf{v}^i is the gradient $\nabla f_i(\mathbf{x}_{k})$ from the last k' where *i* is selected

- **o** In each iteration:
	- **Example 2** Randomly choose one of the v^i and update it to the current gradient
	- \blacktriangleright Take a step in the direction of the average of these \mathbf{v}^i

- Basic SAG algorithm (maintains $\mathbf{g} = \sum_{i=1}^{N} \mathbf{v}^{i}$):
	- \blacktriangleright Set $\mathbf{g} = \mathbf{0}$ and gradient approximation $\mathbf{v}^i = \mathbf{0}$ for $i = 1, \ldots, N$.

$$
\blacktriangleright \text{ while } (1):
$$

\n- **6** Sample *i* from
$$
\{1, 2, \ldots, N\}
$$
\n- **6** Compute $\nabla f_i(\mathbf{x})$
\n- **7** $\mathbf{g} = \mathbf{g} - \mathbf{v}^i + \nabla f_i(\mathbf{x})$
\n- **8** $\mathbf{v}^i = \nabla f_i(\mathbf{x})$
\n- **9** $\mathbf{x}^+ = \mathbf{x} - \frac{s}{N} \mathbf{g}$
\n

- Iteration cost is $O(d)$ (one sample)
- Memory complexity is $O(Nd)$
	- \triangleright Could be less if the model is sparse
	- ▶ Could reduce to $O(N)$ for linear models $f_i(\mathbf{x}) = h(\mathbf{x}^\top \boldsymbol{\xi}^i)$:

$$
\nabla f_i(\mathbf{x}) = \underbrace{h'(\mathbf{x}^\top \boldsymbol{\xi}^i)}_{\text{scalar}} \underbrace{\mathbf{x}^i}_{\text{data}}
$$

 \triangleright But for neural networks, would still need to store all activations (typically impractical)

• The SAG algorithm:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{s_k}{N} \sum_{i=1}^N \mathbf{v}_k^i,
$$

where in each iteration, $\mathbf{v}_k^{i_k} = \nabla f_{i_k}(\mathbf{x}_k)$ for a randomly chosen i_k

- Unlike batching in SGD, use a "gradient" for every sample
	- \triangleright But the gradient might be out of date due to lazy update
- Intuition: $\mathbf{v}_k^i \rightarrow \nabla f_i(\mathbf{x}^*)$ at the same rate that $\mathbf{x}_k \rightarrow \mathbf{x}^*$
	- ▶ so the variance $||e_k||^2$ ("bad term") converges linearly to 0

Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each ∇f_i *is L*-Lipschitz continuous and f *is strongly convex, with* $s_k = 1/16L$, *SAG satisfies:*

$$
\mathbb{E}[f(\mathbf{x}_k) - f^*] = O\left(\left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8N}\right\}\right)^k\right)
$$

- Sample Complexity: Number of ∇f_i evaluations to reach accuracy ϵ :
	- \blacktriangleright Stochastic: $O(\frac{n}{\rho}(1/\epsilon))$
	- \blacktriangleright Gradient: $O(n\frac{p}{\omega}\log(1/\epsilon))$
	- **P** Nesterov: $O(n\sqrt{\frac{A}{\mu}}\log(1/\epsilon))$
	- \blacktriangleright SAG: $O(\max\{n, \frac{\mathbf{\varrho}}{\boldsymbol{\mu}}\} \log(1/\epsilon))$

condition num?

• Note: *L* values are different between algorithms

Stochastic Variance-Reduced Gradient (SVRG) Idea: Get rid of memory by periodically computing full gradient [Johnson&Zhang,'13]

Start with some $\tilde{\mathbf{x}}^0 = \mathbf{x}_m^0 = \mathbf{x}_0$, where *m* is a parameter. Let $S = \lceil T/m \rceil$
for $s = 0, 1, 2, \ldots, S-1$

for *s* = 0*,* 1*,* 2*,...,S* 1 ^I x*^s*+1 ⁰ = x*^s m* ^I ^r*f*(x˜*^s*) ⁼ ¹ *N* P*^N ⁱ*=1 ^r*fi*(x˜*^s*) ^I for *^k* = 0*,* ¹*,* ²*,...,m* ¹ ^F Uniformly pick a batch *I^k* ⇢ *{*1*,* 2*,...,N}* at random (with replacement), with batch size *|Ik|* = *B* ^F Let v*s*+1 *^k* ⁼ ¹ *B* P*B ⁱ*=1[r*fi^k* (x*s*+1 *^k*) ^r*fi^k* (x˜*s*)] + ^r*f*(x˜*s*) ^F ^x*k*+1 ⁼ ^x*^k ^sk*v*s*+1 *k* ^I x˜*^s*+1 = x*^s*+1 *m* -ExasampleofSti Stl st -

Output: Chose \mathbf{x}_a uniformly at random from $\{\{\mathbf{x}_k^{s+1}\}_{k=0}^{m-1}\}_{s=0}^{S-1}$

Convex settings: Convergence properties similar to SAG for suitable *m*

- Unbiased: $\mathbb{E}[\mathbf{v}_k^{s+1}] = \nabla f(\mathbf{x}_k^{s+1})$
- Theoretically m depends on L , μ , and N $\left(m = \stackrel \leftarrow \bigwedge\limits N$ works well empirically)
- \bullet $O(d)$ storage complexity (2B+1 gradients per iteration on average)
- Last step $\tilde{\mathbf{x}}^{s+1}$ in outer loop can be randomly chosen from inner loop iterates

Convergence Rate of SVRG (Nonconvex)

- Consider finite-sum problem $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \triangleq \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$, where both $f(\cdot)$ and $f_i(\cdot)$ are nonconvex, differentiable, and *L*-smooth.
- Define a sequence ${\{\Gamma_k\}}$ with $\Gamma_k \triangleq s_k \frac{c_{k+1}s_k}{\beta_k} s_k^2L 2c_{k+1}s_k^2$, where parameters c_{k+1} and β_k are TBD shortly.

Theorem 2 ([Reddi et al. '16])

Let $c_m = 0$, $s_k = s > 0$, $\beta_k = \beta > 0$, and $c_k = c_{k+1}(1 + s\beta + 2s^2L^2/B) + s^2L^3/B$ *such that* $\Gamma_k > 0$ *for* $k = 0, \ldots, m-1$ *.* Let $\gamma = \min_k \Gamma_k$ *. Also, let T be a multiple of m. Then, the output* x_a *of SVRG satisfies:*

$$
\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \leq \frac{f(\mathbf{x}_0) - f^*}{T\gamma} = \mathsf{O}\left(\frac{1}{\mathsf{T}}\right)
$$

$$
\mathbb{E}[\|\nabla f(\mathbf{x}_a)\|^2] \le \frac{f(\mathbf{x}_0) - f^*}{T\gamma} = O\left(\frac{1}{\mathsf{T}}\right)
$$

Theorem 2 ([Reddi et al. '16])
\nLet
$$
c_m = 0
$$
, $s_k = s > 0$, $\beta_k = \beta > 0$, and
\n $c_k = c_{k+1}(1+s\beta+2s^2L^2/B)+s^2L^3/B$ such that $\Gamma_k > 0$ for $k = 0,...,m-1$.
\nLet $\gamma = \min_k \Gamma_k$. Also, let T be a multiple of m . Then, the output x_a of $SVRG$
\nsatisfies:
\n
$$
\mathbb{E}[\|\nabla f(x_a)\|^2] \leq \frac{f(x_0) - f^*}{T\gamma} = O(\frac{1}{T})
$$
\n**Proof**
\n
$$
\mathbb{P}[\|\nabla f(x_a)\|^2] \leq \frac{f(x_0) - f^*}{T\gamma} = O(\frac{1}{T})
$$
\n**Proof**
\n
$$
\mathbb{P}[\|\nabla f(x_a)\|^2] \leq \frac{f(x_0) - f^*}{T\gamma} = O(\frac{1}{T})
$$
\n**Proof**
\n
$$
\mathbb{P}[\|\nabla f(x_a^{\text{int}})\|^2] \leq \frac{g(x_0) - f^*}{T} = \frac{g(x_0) - f^*}{
$$

Consider
$$
\mathbb{E}[f(\mathbf{x}_{kk}^{st+1})] = \text{Since } f(\mathbf{x}_{kk}^{st+1}) = \mathbf{x}_{k}^{st} \mathbf{x}_{k}^{st} = \mathbf{x}_{k}^{
$$

$$
\leq E\left[\left|\left(\xi_{\mathfrak{l}}^{\mathfrak{K}^+}\right)-s_{\mathfrak{l}}\left(\mathbb{F}\left(\xi_{\mathfrak{l}}^{\mathfrak{K}^+}\right)\right)\right|^2+\frac{L s_{\mathfrak{l}}^2}{2}\left\|\Psi_{\mathfrak{l}}^{\mathfrak{K}^+}\right\|^2\right] \qquad \qquad (2)
$$

Theorem 2 ([Reddi et al. '16])
\nLet
$$
c_m = 0
$$
, $s_k = s > 0$, $\beta_k = \beta > 0$, and
\n $c_k = c_{k+1}(1+s)\beta + 2s^2L^2/B + s^2L^3/B$ such that $\Gamma_k > 0$ for $k = 0,...,m-1$.
\nLet $\gamma = \min_k \Gamma_k$. Also, let T be a multiple of m . Then, the output x_a of $SVRG$
\nsatisfies:
\n
$$
\mathbb{E}[\|\nabla f(x_a)\|^2] \leq \frac{f(x_b - f)}{T\gamma} = O\left(\frac{f}{T}\right)
$$
\n
$$
\mathbb{R} \mathbb{E}[\sqrt{f(x_a^* + f)}] \leq \frac{f(x_b - f)}{T} = O\left(\frac{f}{T}\right)
$$
\n
$$
\mathbb{E}[\|\nabla f(x_a^*)\|^2] \leq \frac{f(x_b - f)}{T} = O\left(\frac{f}{T}\right)
$$
\n
$$
\mathbb{E}[\|\nabla f(x_a^*)\|^2] \leq \frac{f(x_b - f)}{T} = \frac{f(x_b - f)}{T
$$

(3)

$$
P(\mu_{\eta_{1}}\eta_{1})\varphi_{1}(\mu_{\eta_{1}}\eta_{1}) = \frac{1}{2}\sum_{i=1}^{n} \left[\frac{1}{2}(\sum_{j=1}^{n+1} + c_{j+1}|\sum_{j=1}^{n+1} - \sum_{j=1}^{n}|\sum_{j=1}^{n+1}|\sum_{j=1}^{n+1}|\sum_{j=1}^{n+1}|\sum_{j=1}^{n}|\sum_{j=1}^{n+1
$$

 $\leq 2 E \left[\left\| \nabla f(\mathbf{z}_{k}^{s+t}) \right\|^2 \right] + 2 E \left[\underbrace{\left\| \underline{\mathbf{S}}_{k}^{s+t} - \mathbb{E} \left[\delta_{k}^{s+t} \right] \right\|^2}_{\leq n E [|\mathbf{z}_{1}^{t+1} - \|\mathbf{z}_{n}\|^2]} \right]$
= $2 E \left[\left\| \nabla f(\mathbf{z}_{k}^{s+t}) \right\|^2 \right] + 2 E \left[\underbrace{\left\| \underline{\mathbf{S}}_{k}^{s+t} - \mathbb{E} \left[\delta_{k}^{s+t} \right]$ $E[||x|^{k+1}||] + \frac{1}{k^2} E[|\sum_{i \in I_k} (\nabla f_i|^2 + \nabla f_i |)^{-k}$ $f_{i}(\tilde{x}^s) - E(\delta_k^{s+1})$ $\leq 2 \mathbb{E} \Big[\|\nabla_{1}^{1}(\mathbf{z}_{k}^{st_1})\|^{2} \Big] + 2 \mathbb{E} \Big[\underbrace{\|\underline{\mathbf{s}}_{k}^{st_1} - \mathbb{E} \left[\delta_{k}^{st_1} \right] \|^2}_{= 2 \mathbb{E} \Big[\|\nabla_{1}^{1}(\mathbf{z}_{k}^{t_1})\|^{2} \Big] + \frac{2}{\beta^{2}} \mathbb{E} \Big[\Big\| \sum_{i \in \mathcal{I}_{k}} \langle \nabla_{1,1}^{1}(\mathbf{z}_{k}^{t_1}) - \nabla_{1$ (ndep omean ru
Ellan +znll⁰] $E[\|\mathbf{x}\|^2 + \mathbf{1} \cdot \mathbf{1}\|$ $\leq 2 E \left[||\nabla_{1}^{L}(\mathbf{z}_{k}^{k+1})||^{2} + 2 E \left[\underbrace{||\mathbf{S}_{k}^{s+1} - \mathbf{E}[\mathbf{S}_{k}^{s+1}]||^{2}}_{\leq nE} \right] \right]$
 $= 2 E \left[||\nabla_{1}^{L}(\mathbf{z}_{k}^{k+1})||^{2} \right] + \frac{2}{b^{2}} E \left[\left\| \sum_{i \in I_{k}} (\nabla_{1,i}^{L}(\mathbf{z}_{k}^{k+1}) - \nabla_{1,i}^{L}(\tilde{\mathbf{z}}^{s}) - E[\$ Using the claim in (4) : $\frac{1}{4}$ $S \geq E[||P|(\mathbb{Z}_{k}^{(r)})|| + \frac{2}{\beta_{s}} \cdot R L^{r}E[||\mathbb{Z}_{k}^{(s)} - \tilde{\mathbb{Z}}^{s}||^{2}]$
 $\mathbb{Z}_{k}^{(r)} = \frac{1}{\beta_{k-1}} \sum_{k=1}^{n} \frac{1}{\beta_{k-1}} \sum_{k=1}^{n} \frac{1}{\beta_{k-1}} \sum_{k=1}^{n} \frac{1}{\beta_{k-1}} \sum_{k=1}^{n} \frac{1}{\beta_{k-1}} \sum_{k=1}^{n} \frac{1}{\beta_{k-1}} \sum_{k=1}^{n$ 】
】 9 the clown \ln (4)
 $\leq \sqrt{L} \left[\frac{1}{2} (3R^{31}) \right] - \left(4 - \frac{2H(5)}{P_{E}} - 2L - 2G_{M1}S_{B}^{2} \right) \frac{1}{L} \left[|(7 + 3R^{31})| + 2H(1)S_{B}^{2} \right] + \left(4H(1 + 3R^{31}) + \frac{2H(1)}{B} \right) + \frac{2H(1)}{B} \frac{1}{D} \frac{1}{L} \left[\left| 3R^{31} - \frac{2}{3} \right|^{2} \right]$ $\frac{1}{c_k}$ $\frac{11}{C_{k}}\left(\frac{c_{k+1} (1 + c_{k}p_{k} + \frac{2s_{k}L}{B}) + \frac{1}{B}}{c_{k}}\right) \frac{1}{E} \left[\frac{1}{2} + \frac{2s_{k+1}}{B}\right]^{2}}{(\frac{1}{2} + \frac{1}{B})^{2}}$
 $\leq R_{k}^{8H} - \frac{1}{2} \frac{c_{k+1}c_{k}}{B_{k}} - \frac{1}{2} \frac{1}{E}\left[\frac{1}{2} + \frac{1}{2} \frac{1}{E}\right]^{2}}{(\frac{1}{2} + \frac{1}{2} \frac{1}{$ $\Rightarrow \mathbb{E}\big[\|\mathbf{r}(\mathbf{x}^{\mathrm{st}}_{\mathbf{r}})\|^2\big] \leq \frac{R_{\mathbf{r}}^2 - R_{\mathbf{r}}^2}{P_{\mathbf{r}}}$ To complete the proof: Since $s_k = s$, UK, Using ω and telescoping;

Note $\sum_{k=0}^{m-1} \mathbb{E} \left[|| \nabla \left| (x_k) ||^2 \right| \right] \leq \frac{R_0^{\cdots} - R_m^{\cdots}}{r}$ $R_{m}^{5t_1} = \mathbb{E}[f(\mathbb{Z}_{m}^{5t_1})] \stackrel{def}{=} \mathbb{E}[f(\mathbb{Z}^{5t_1})]$ $R_0^{2H} = E[f(\hat{\alpha}_B^H)] = E[f(\hat{\alpha}^{H})]$
 $R_0^{2H} = E[f(\hat{\alpha}^{S})]$ (snice $\hat{\alpha}^{SH} = \hat{\alpha}^{S}$) $R_0^2 = \frac{1}{2} [f(\zeta^3)]$ (suce $\zeta_{\rm max}$)
Summary over all epochs: $(S = \lceil 7/m \rceil)$ $\frac{\sum_{k=0}^{M-1} \mathbb{E}\left[\left\| \mathbb{V}^k_1(\mathbf{x}_k) \right\|^2 \right] \leq \frac{R_0^{S_{11}} - R_m^{S_{11}}}{S}$

When, $R_m^{in} = \mathbb{E}\left[\left\{ (\mathbf{x}_m^{in}) \right\} \frac{d\mathbf{y}}{2} \right] \mathbb{E}\left[\left\{ \tilde{\mathbf{G}}^{(n)} \right\} \right]$
 $R_0^{S_{11}} = \mathbb{E}\left[\left\{ (\tilde{\mathbf{x}}_m^{in}) \right\} \right] \mathbb{E$ [6] Complexity (IFO) : Let $s = M^3/(LN^4)$, where $\mu_0 \in (0,1)$ and $\alpha \in (0,1]$
 $\beta = L/N^{\frac{14}{3}}$, $m = [N^{3\frac{1}{12}}/(3\mu_0)]$. Then, \exists

conort. μ_0 , $\nu > 0$. s.t. we have $\nu > \frac{\nu}{LN^d}$ and
 $\mathbb{E} [||\nabla f(\mathcal{L}_0)||^2] \leq \frac{LN^d(f(\mathcal{L}_0) - f^d)}{TV} \le$ $B = L/N^{\frac{\alpha}{2}}$, $m = \lfloor N^{3\alpha/2}/(3\mu_0) \rfloor$. Then, \exists $const.$ μ_0 , $\nu > 0$, s.f. N $(\frac{3\mu_0}{2})$. Then $\frac{1}{\mu_0}$
we have $\gamma > \frac{\nu}{LN^d}$ and Const. Mo, $\nu > 0$. s.t. we have $\nu > \frac{\nu}{L N^{\alpha}}$ or
 $\mathbb{E} \left[\left\| \nabla f(\mathbb{X}_{\alpha}) \right\|^2 \right] \leq \frac{L N^{\alpha} (f(\mathbb{X}_{0}) - f^{\alpha})^2}{T \nu} \leq \varepsilon$ S= $\lceil \tau/m \rceil$ $T \geq \frac{L N^d (f(x_0) - f^*)}{\nu \varepsilon} N \frac{N}{m} N \frac{N}{m} N \frac{N}{m} \cdot N \cdot N \cdot N$ - $\frac{1}{T}$ $V\epsilon$.
 $2m+N = 2+Nm =$ $2+3\mu$ o N $\frac{1-2\pi}{2}$ $\frac{2m+N}{m}=2+\frac{N}{m}=2+3\mu_{0}N^{-\frac{26}{5}}T$
 $\frac{L(HS)+f^{*}}{VC}\cdot N^{\alpha}(2+3\mu_{0}N^{-\frac{26}{5}})=C(M^2+N^{\frac{1-\frac{1}{5}}{2}})/\epsilon$ $\frac{2m + N}{m} = 2+$
L($f(x) = f^{k}$). N^{d} (ν $2f$ 3/40 N $\left(\frac{x^2}{2} \right) = C \left(M^2 + N \right)$
 \Rightarrow $50 (N^2 \epsilon) = \frac{1}{2}$
 $= \frac{50 (N^2 \epsilon) + 4 \epsilon^2}{2}$
 $= \frac{50 (N^2 \epsilon) + 4 \epsilon^2}{2}$ So, $\alpha = \frac{2}{3}$ => IFO complexity: $O(N + N^{\frac{2}{3}}\Delta_0 \epsilon^4)$ $\frac{N}{2} = 2 + \frac{N}{m} = 2 + 3\mu_0 N^{-\frac{26}{5}}$
 $\frac{N^{\alpha}(2 + 3\mu_0 N^{-\frac{26}{5}}) = C(M^2 + N^{-\frac{16}{5}})}{C(N^4/\epsilon) + N^{-\frac{2}{5}}}$
 $= \begin{cases} 0 (N^4/\epsilon) & \frac{1}{N} \frac{2}{3} \\ 0 (N^4/\epsilon) & \frac{2}{3} \end{cases}$
 $\frac{2}{3} \Rightarrow \text{TPO} \text{ computating : } O(N + N^{\frac{2}{3}}\Delta_0 \epsilon^{\frac{1}{3}})$

SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

- Initialize \mathbf{x}_0 ; Create a table, containing gradients and $\mathbf{v}_0^i = \nabla f_i(\mathbf{x}_0)$
- **•** In iterations $k = 0, 1, 2, \ldots$:
	- **1** Pick a random $i_k \in \{1, ..., N\}$ uniformly at random and compute $\nabla f_{i_k}(\mathbf{x}_k)$. **2** Update x_{k+1} as follows: SAG : $\frac{1}{N}(\overline{v}_{1a}^{f}(s)) - V_{\mu} + \Sigma v$

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i \right)
$$

3 Update table entry $\mathbf{v}_{k+1}^{i_k} = \nabla f_i(\mathbf{x}_k)$. Set all other $\mathbf{v}_{k+1}^i = \mathbf{v}_k^i$, $i \neq i_k$, i.e., other table entries remain the same

SAGA (SAG Again?)

- SAGA basically matches convergence rates of SAG (for both convex and strongly convex cases), but the proof is simpler (due to unbiasedness)
- Another strength of SAGA is that it can extend to composite problems:

$$
\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x}) + h(\mathbf{x}),
$$

where each $f_i(\cdot)$ is *L*-smooth, and *h* is convex and non-smooth, but has a known proximal operator $\mathbf{x}_{k+1} = \left(\text{prox}_{h, s_k} \right)$ \tilde{f} $\mathbf{x}_k - s_k$ $\sqrt{ }$ $\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N}$ *N* X *N i*=1 \mathbf{v}_k^i \setminus -smooth, and h is convex and non-smooth, but h

ator
 approximation
 $\mathcal{L}(\mathbf{x}_k) = \begin{cases} \mathbf{0} & \mathbf{0} \neq \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{cases}$
 $\mathbf{x}_k = s_k \left(\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k} + \frac{1}{N} \sum_{k=1}^{N} \mathbf{v}_k^{i_k} \right)$. th, and h is convex and non-smooth, by
generative than : if $h(z) = \begin{cases} 0 & \text{if } z \in D \\ \infty & \text{if } z \in D \end{cases}$ $\left(\widetilde{\text{prox}}_{h,s_k}\right)$

But it is unknown whether SAG is convergent or not under proximal operator ut it is unknown whether SAG is convergent or n
 $\text{prox}_{f, \lambda} (y) = \text{argmin}_{x} (f(x) + \frac{1}{2\lambda} \|x - y\|^2)$

SAGA Variance Reduction

• Stochastic gradient in SAGA:

$$
\nabla f(s) = \underbrace{\nabla f_{i_k}(\mathbf{x}_k)}_{\text{with used}} - \underbrace{\left(\mathbf{v}_k^{i_k} - \frac{1}{N} \sum_{i=1}^N \mathbf{v}_k^i\right)}_{Y}
$$

• Note: $\mathbb{E}[X] = \nabla f(\mathbf{x}_k)$ and $\mathbb{E}[Y] = 0 \Rightarrow$ we have an unbiased estimator

• Note: $X - Y \rightarrow 0$ as $k \rightarrow \infty$, since x_k and x_{k-1} converges to some \bar{x} , the difference between the first two terms converges to zero. The last term converges to gradient at stationarity, i.e., also zero

• Thus, the overall ℓ_2 norm estimator (i.e., variance) decays to zero

Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate $\mathbb{E}[X]$

- \bullet Suppose we can compute $\mathbb{E}[Y]$ for a r.v. Y that is highly correlated with X
- Consider the estimator θ_a as an approximation to $\mathbb{E}[X]$:

 $\theta_{\alpha} \triangleq \alpha(X - Y) + \mathbb{E}[Y]$, for some $\alpha \in (0, 1]$

Observations:

- \blacktriangleright $\mathbb{E}[\theta_\alpha] = \alpha \mathbb{E}[X] + (1 \alpha) \mathbb{E}[Y]$, i.e., a convex combination of $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- Standard VR: $\alpha = 1$ and hence $\mathbb{E}[\theta_{\alpha}] = \mathbb{E}[X]$
- \triangleright Variance of θ_{α} : Var $(\theta_{\alpha}) = \alpha^2$ [Var $(X) + \text{Var}(Y) 2\text{Cov}(X, Y)$]
- If $Cov(X, Y)$ is large, variance of θ_{α} is reduced compared to X
- **Example 1** Letting α from 0 to 1, $\text{Var}(X) \uparrow$ to max value while decreasing bias to zero

SAG, SVRG, and SAGA can be derived from this VR viewpoint:

- I SAG: Let *X* = $\nabla f_{i_k}(\mathbf{x}_k)$ and *Y* = $\mathbf{v}_k^{i_k}$, $\alpha = 1/N$ (biased) $\int \mathbf{F} \cdot \mathbf{S} \cdot d\mathbf{G}$.
► SAGA: Let *X* = ∇f_i . (x_i) and *Y* = \mathbf{v}^{i_k} . $\alpha = 1$ (unbiased) $\int \mathbf{F} \cdot \mathbf{S} \cdot d\mathbf{G}$.
- ▶ SAGA: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \mathbf{v}_k^{i_k}$, $\alpha = 1$ (unbiased)
- \blacktriangleright SVRG: Let $X = \nabla f_{i_k}(\mathbf{x}_k)$ and $Y = \nabla f_{i_k}(\tilde{\mathbf{x}})$ (unbiased) \downarrow
- \blacktriangleright Variance of SAG is $1/N^2$ times of that of SAGA

 $E[X]$

Comparisons between SAG, SVRG, and SAGA

· Update rules: $({}SAG)$ $x_{k+1} = x_k - s$ $\int_{N}^{R} (\nabla f_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k}) + \frac{1}{N}$ X *N i*=1 \mathbf{v}_k^i 1 (XA) $x_{k+1} = x_k - s$ $\sqrt{ }$ $\mathbf{r}(\mathbf{r}_{i_k}(\mathbf{x}_k) - \mathbf{v}_k^{i_k}) + \frac{1}{N}$ *N* X *N i*=1 \mathbf{v}_k^i 1 $(XVRG)$ $x_{k+1} = x_k - s$ $\left[\oint f_{i_k}(\mathbf{x}_k) - \nabla f_{i_k}(\tilde{\mathbf{x}}) \right] + \frac{1}{N}$ X *N* $\sum_{i=1} \nabla f_i(\tilde{\mathbf{x}})$ $\begin{array}{ccc} \star = & & \cdot & \cdot & \cdot \\ & & \cdot & \cdot & \cdot \\ & & \cdot & \cdot & \cdot \\ & & & \cdot & \cdot \end{array}$ ↓& $e^{\alpha t}$ $\left(\!\hat{\nabla} f_{i_k}(\mathbf{x}_k)-\mathbf{v}_{k}^{i_k}\right)$ $\nabla f_{i_k}(\mathbf{x}_k) - \nabla f_{i_k}(\tilde{\mathbf{x}})$

 \bullet SVRG: $\tilde{\mathbf{x}}$ is not updated very step (only updated in the start of outer loops)

- SAG & SAGA: Update $\mathbf{v}_k^{i_k}$ in the table each time index i_k is picked
- SVRG vs. SAGA:
	- \triangleright SVRG: Low memory cost, slower convergence (same convergence rate order)
	- \triangleright SAGA: High memory cost, (arguably) faster convergence
- SAGA can be viewed as a midpoint between SAG and SVRG

Stochastic Recursive Gradient Algorithm (SARAH) $L_{\mathcal{L}}[L_{\mathcal{L}}(0,0)]^{T} \leq \frac{C}{\sqrt{T}} \leq \varepsilon^{2} \Rightarrow T \geq \frac{C}{\varepsilon^{4}} = O(\varepsilon^{4})$

- \bullet Sample complexity of GD, SGD, SVRG, and SAGA for ϵ -stationarity:
	- \blacktriangleright GD and SGD require $O(N\epsilon^{-2})$ and $O(\epsilon^{-4})$, respectively¹
	- \blacktriangleright $B=1$: Both SVRG and SARAH guarantee only $O(N\epsilon^{-2})$, same as GD
- \blacktriangleright $B = N^{\frac{2}{3}}$: Both SVRG and SAGA achieve $O(N^{\frac{2}{3}}\epsilon^{-2}),$ $N^{\frac{1}{3}}$ times better than GD in terms of dependence on *N* $\begin{pmatrix} \n\cdot & B = N^{\frac{2}{3}}: \text{Both SVRG and SAGA achieve } O(\n\text{GD in terms of dependence on } N\n\end{pmatrix}$
 $\left|\n\begin{pmatrix} \n\mathbf{q} \cdot \mathbf{q} \cdot \mathbf{g} \n\end{pmatrix}\n\right| \leq \frac{C}{\mathbf{q}} \leq \epsilon^2 \Rightarrow \mathbf{T} \approx \frac{C}{\epsilon^2} \Rightarrow 0 \quad (\mathbf{M} \mathbf{g}^2)$

- However, the sample complexity lower bound is $\Omega(\sqrt{N}\epsilon^{-2})$
	- \triangleright There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang] et al. 2018] and PAGE [Li et al. 2020])
- These order-optimal algorithms are variants of SARAH Meguyen et al. 2017
	- **Sample complexity for convex and strongly convex problems:** $O(N + 1/\epsilon^2)$ and $O((N + \kappa) \log(1/\epsilon))$, respectively $(\kappa = L/\mu)$, a single outer loop)
	- \blacktriangleright Sample complexity for nonconvex problems: $O(N + L^2/\epsilon^4)$ (step size $s = O(1/L\sqrt{T})$, non-batching, a single outer loop)

¹For simplicity, we ignore all other parameters except N and ϵ here.

Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

• Pick learning rate $\eta > 0$ and inner loop size m

\n- \n For
$$
s = 0, 1, 2, \ldots, S - 1
$$
\n
\n- \n $\mathbf{x}_{0}^{s+1} = \tilde{\mathbf{x}}^{s}$ \n
\n- \n $\mathbf{v}_{0}^{s+1} = \frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(\mathbf{x}_{0}^{s+1})$ \n
\n- \n $\mathbf{x}_{1}^{s+1} = \mathbf{x}_{0}^{s+1} - \eta \mathbf{v}_{0}^{s+1}$ \n
\n- \n $\mathbf{r}_{0}^{s+1} = \mathbf{x}_{0}^{s+1} - \eta \mathbf{v}_{0}^{s+1}$ \n
\n- \n $\mathbf{r}_{0}^{s+1} = \mathbf{x}_{0}^{s+1} - \eta \mathbf{v}_{0}^{s+1}$ \n
\n- \n $\mathbf{x}_{1}^{s+1} = \frac{1}{N} \sum_{i \in I_{k}} [\nabla f_{i_{k}}(\mathbf{x}_{k}^{s+1}) - \nabla f_{i_{k}}(\mathbf{x}_{k-1}^{s+1})] + \mathbf{v}_{k-1}^{s+1}$ \n
\n- \n $\mathbf{x}_{k+1}^{s+1} = \mathbf{x}_{k}^{s+1} - \eta \mathbf{v}_{k}^{s+1}$ \n
\n- \n $\tilde{\mathbf{x}}^{s+1} = \mathbf{x}_{k}^{s+1}$ with k chosen uniformly at random from $\{0, 1, \ldots, m\}$ \n
\n- \n $\text{Output: Choose } \mathbf{x}_{a}$ uniformly at random from $\{\{\mathbf{x}_{k}^{s+1}\}_{k=0}^{m-1} \}$ and $S=0$ \n
\n- \n Comparison to SVRG (ignoring outer loop index s):\n
\n- \n $\text{SVRG: } \mathbf{v}_{k} = \nabla f_{i_{k}}(\mathbf{x}_{k}) - \nabla f_{i_{k}}(\mathbf{x}_{0}) + \mathbf{v}_{0}$ (unbiased)\n
\n- \n $\text{SVR$

Comparison to SVRG (ignoring outer loop index *s*):

- $\mathsf{SVRG}\colon \mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \bigtriangledown f_{i_k}(\mathbf{x}_0) + \mathbf{v}_0 \big(\text{unbiased}\big)$
- $\mathsf{SARAH:}\ \mathbf{v}_k = \nabla f_{i_k}(\mathbf{x}_k) \ \sqrt{\nabla f_{i_k}(\mathbf{x}_{k-1})} + \mathbf{v}_{k-1}$ (biased)

SPIDER/SpiderBoost

- SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound and the first sample complexity order-optimal algorithm ovides the first sorder-optimal and single small data regimplexity $O(\sqrt{N}\epsilon^{-1})$
step-size $O(\epsilon/L)$
	- ▶ SPIDER stands for "stochastic path-integrated differential estimator"
	- ► SPIDER stands for stochastic path-integrated differential estimator
► Lower bound $\Omega(\sqrt{N}\epsilon^{-2})$ for <u>small data regime</u> $N = O(L^2(f(\mathbf{x}_0) f^*)\epsilon^{-4})$ small data regin
small data regin
plexity $O(\sqrt{N} \epsilon$
step-size $O(\epsilon/L)$
fechnically too c
	- SPIDER achieves sample complexity $O(\sqrt{N}\epsilon^{-2})$
	- \blacktriangleright However, requires very small step-size $O(\epsilon/L)$, poor convergence in practice
	- Original proof of SPIDER is technically too complex and hence hard to generalize the method to composite optimization problems
- SpiderBoost [Wang et al. 2018] [Wang et al. NeurIPS'19]:
	- \triangleright Same algorithm, same sample complexity, but relax the step-size to $O(1/L)$
	- \triangleright Simpler proof and can be generalized to composite optimization problems
	- \blacktriangleright Also works well with heavy-ball momentum

2

SPIDER/SpiderBoost

The SpiderBoost Algorithm

- Pick learning rate $s = 1/2L$, epoch length *T*, starting point x_0 , batch size *B*, number of iteration *T*
- for $k = 0, 1, 2, \ldots, T-1$ if $k \mod m = 0$ then Compute full gradient $\mathbf{v}_k = \nabla f(\mathbf{x}_k)$ else

Uniformly randomly pick $I_k \subset \{1, \ldots, N\}$ (with replacement) with $|I_k| = B$. Compute

$$
\mathbf{v}_k = \frac{1}{B} \sum_{i \in I_k} [\nabla f_i(\mathbf{x}_k) - \nabla f_i(\mathbf{x}_{k-1})] + \mathbf{v}_{k-1}
$$

end if

Let $\mathbf{x}_{k+1} = \mathbf{x}_k - s\mathbf{v}_k$

end for

Output: x_{ξ} , where ξ is picked uniformly at random from $\{0,\ldots,T-1\}$

Probabilistic Gradient Estimator (PAGE)

- SPIDER/SpiderBoost: Sample complexity LB is for small data regime
- PAGE [Li et al. ICML'21]: Proved the lower bound $\Omega(N + \sqrt{N} \epsilon^{-2})$ without any assumption on data set size *N* and provided a new order-optimal method
	- \triangleright A variant of SPIDER with random length of inner loop, making the algorithm easier to analyze

Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

- Pick x_0 , step-size *s*, mini-batch sizes *B* and $B' < B$, probabilities ${p_k}_{k>0} \in (0,1]$, number of iterations *T*
- Let $\mathbf{g}_0 = \frac{1}{B} \sum_{i \in I} \nabla f_i(\mathbf{x}_0)$, where *I* is a random mini-batch with $|I| = B$ • for $k = 0, 1, 2, \ldots, T-1$

x*k*+1 = x*^k s*g*k,* g*k*+1 = (¹ *B* P *ⁱ*2*I^k* ^r*fi*(x*k*+1)*,* w.p. *^pk,* g*^k* + ¹ *B*0 P *i*2*I*⁰ *k* [r*fi*(x*k*+1) r*fi*(x*k*)]*,* w.p. 1 *pk*, choose s=) . B= N N

where $|I_k| = B$ and $|I'_k| = B'$ end for

Output: $\hat{\mathbf{x}}_T$ chosen uniformly from $\{\mathbf{x}_k\}_{k=1}^T$

 Z Focomplexty:

Prove
$$
S = \frac{1}{L(1+BR/B)}
$$

\n $B' \leq \sqrt{B}$

\n $P_{k} = \frac{B'}{B'+B}$

\nThen the *iter* complexity T

\nPROOF: $O(\frac{2\Delta_{k}}{E}(\frac{1}{1+\frac{E}{B}}))$

Summary of Sample Complexity Results for VR Methods

- Notation: $\Delta_0 = f(\mathbf{x}_0) f^*,$ $\Delta_* = \frac{1}{N} \sum_{i=1}^N (f^* f^*_i)$, σ^2 is a uniform bound for the variance of stochastic gradient, *B* is batch size
- All results are for finite-sum with *L*-smooth summands. Sample complexity means the overall number of stochastic first-order oracle calls to find an ϵ -stationary point

Caveat of Variance-Reduced Methods

- In deep neural networks training, VR methods work typically worse than SGD or SGD+Momentum [Defazio & Bottou, NeurIPS'19]
	- \triangleright Bad behavior of VR methods with several widely used deep learning tricks (e.g., batch normalization, data augmentation and dropout)

Next Class

First-Order Methods with Adaptive Learning Rates