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Outline

In this lecture:

Key Idea of Variance-Reduced Methods

SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE

Convergence results
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Recap: Stochastic Gradient Descent

SGD Convergence Performace
I Constant step-size: SGD converges quickly to an approximation

F Step-size s and batch size B, converges to a s�2

B -error ball

I Decreasing step-size: SGD converges slowly to exact solution

Two “control knobs” to improve SGD convergence performance
I Decrease (gradually) step-sizes:

F Improves convergence accuracy
F Make convergence too slow

I Increase batch-sizes:
F Leads to faster rate of iterations
F Makes setting step-sizes easier
F But increases the iteration cost

Question: Could we achieve fast convergence rate with small batch-size?
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Stochastic Average Gradient (SAG)

Growing batch-size Bk eventually requires O(N) samples per iteration

Question: Can we achieve one sample per iteration and same iteration
complexity as deterministic first-order methods?

Answer: Yes, the first method was the stochastic average gradient (SAG)
method [Le Roux et al. 2012]

To understand SAG, it’s insightful to view GD as performing the following
iteration in solving the finite-sum problem:

xk+1 = xk � sk

N

NX

i=1

vi
k

where in each step we set vi
k = rfi(xk) for all i

SAG method: Only set vik
k = rfik(xk) for randomly chosen ik

I All other vik
k are kept at their previous values (a lazy update approach)
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Stochastic Average Gradient (SAG)

One can think of SAG as having a memory:

2

6664

v1

v2

...
vN

3

7775
,

where vi is the gradient rfi(xk0) from the last k0 where i is selected

In each iteration:
I Randomly choose one of the vi and update it to the current gradient
I Take a step in the direction of the average of these vi

JKL (ECE@OSU) ECE 8101: Lecture 2-5 5 / 24

Lafit .



Stochastic Average Gradient (SAG)

Basic SAG algorithm (maintains g =
PN

i=1 v
i):

I Set g = 0 and gradient approximation vi = 0 for i = 1, . . . , N .
I while (1):

1 Sample i from {1, 2, . . . , N}
2 Compute rfi(x)
3 g = g � vi +rfi(x)
4 vi = rfi(x)
5 x+ = x� s

N g

Iteration cost is O(d) (one sample)

Memory complexity is O(Nd)
I Could be less if the model is sparse
I Could reduce to O(N) for linear models fi(x) = h(x>⇠i):

rfi(x) = h
0(x>⇠i)

| {z }
scalar

xi

|{z}
data

I But for neural networks, would still need to store all activations (typically
impractical)
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Stochastic Average Gradient (SAG)

The SAG algorithm:

xk+1 = xk � sk

N

NX

i=1

vi
k,

where in each iteration, vik
k = rfik(xk) for a randomly chosen ik

Unlike batching in SGD, use a “gradient” for every sample
I But the gradient might be out of date due to lazy update

Intuition: vi
k ! rfi(x⇤) at the same rate that xk ! x⇤

I so the variance kekk2 (“bad term”) converges linearly to 0
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Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each rfi is L-Lipschitz continuous and f is strongly convex, with sk = 1/16L,
SAG satisfies:

E[f(xk)� f
⇤] = O

 ✓
1�min

⇢
µ

16L
,

1

8N

�◆k
!

Sample Complexity: Number of rfi evaluations to reach accuracy ✏:
I Stochastic: O(Lµ (1/✏))
I Gradient: O(nL

µ log(1/✏))

I Nesterov: O(n
q

L
µ log(1/✏))

I SAG: O(max{n, L
µ } log(1/✏))

Note: L values are di↵erent between algorithms
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Stochastic Variance-Reduced Gradient (SVRG)
Idea: Get rid of memory by periodically computing full gradient
[Johnson&Zhang,’13]

Start with some x̃0 = x0
m = x0, where m is a parameter. Let S = dT/me

for s = 0, 1, 2, . . . , S � 1
I xs+1

0 = xs
m

I rf(x̃s) = 1
N

PN
i=1 rfi(x̃

s)
I for k = 0, 1, 2, . . . ,m� 1

F Uniformly pick a batch Ik ⇢ {1, 2, . . . , N} at random (with replacement), with
batch size |Ik| = B

F Let vs+1
k = 1

B

PB
i=1[rfik (x

s+1
k )�rfik (x̃

s)] +rf(x̃s)
F xk+1 = xk � skv

s+1
k

I x̃s+1 = xs+1
m

Output: Chose xa uniformly at random from {{xs+1
k }m�1

k=0 }S�1
s=0

Convex settings: Convergence properties similar to SAG for suitable m

Unbiased: E[vs+1
k ] = rf(xs+1

k )

Theoretically m depends on L, µ, and N (m = N works well empirically)

O(d) storage complexity (2B+1 gradients per iteration on average)

Last step x̃s+1 in outer loop can be randomly chosen from inner loop iterates
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Convergence Rate of SVRG (Nonconvex)

Consider finite-sum problem minx2Rd f(x) , 1
N

PN
i=1 fi(x), where both f(·)

and fi(·) are nonconvex, di↵erentiable, and L-smooth.

Define a sequence {�k} with �k , sk � ck+1sk
�k

� s
2
kL� 2ck+1s

2
k, where

parameters ck+1 and �k are TBD shortly.

Theorem 2 ([Reddi et al. ’16])

Let cm = 0, sk = s > 0, �k = � > 0, and
ck = ck+1(1 + s� + 2s2L2

/B) + s
2
L
3
/B such that �k > 0 for k = 0, . . . ,m� 1.

Let � = mink �k. Also, let T be a multiple of m. Then, the output xa of SVRG
satisfies:

E[krf(xa)k2] 
f(x0)� f

⇤

T�
.
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Proof : DefineR**If
Anahyue 1-Step Lyapunov drift:

TBD
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Plugging 14 and 131 into Ri to obtain :
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)
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]R
Note: R** = ECf()7E[fESH)]
R =E(f)] (sincet= ).

summing over all epochs : (S= [T/m)) .
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SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG

Initialize x0; Create a table, containing gradients and vi
0 = rfi(x0)

In iterations k = 0, 1, 2, . . .:

1 Pick a random ik 2 {1, . . . , N} uniformly at random and compute rfik (xk).

2 Update xk+1 as follows:

xk+1 = xk � sk

 
rfik (xk)� vik

k +
1
N

NX

i=1

vi
k

!

3 Update table entry v
ik+1
k = rfi(xk). Set all other v

i
k+1 = vi

k, i 6= ik, i.e.,
other table entries remain the same
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SAGA (SAG Again?)

SAGA basically matches convergence rates of SAG (for both convex and
strongly convex cases), but the proof is simpler (due to unbiasedness)

Another strength of SAGA is that it can extend to composite problems:

min
x

1

N

NX

i=1

fi(x) + h(x),

where each fi(·) is L-smooth, and h is convex and non-smooth, but has a
known proximal operator

xk+1 = proxh,sk

(
xk � sk

 
rfik(xk)� vik

k +
1

N

NX

i=1

vi
k

!)
.

But it is unknown whether SAG is convergent or not under proximal operator
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SAGA Variance Reduction

Stochastic gradient in SAGA:

rfik(xk)| {z }
X

�
 
vik
k � 1

N

NX

i=1

vi
k

!

| {z }
Y

Note: E[X] = rf(xk) and E[Y ] = 0 ) we have an unbiased estimator

Note: X � Y ! 0 as k ! 1, since xk and xk�1 converges to some x̄, the
di↵erence between the first two terms converges to zero. The last term
converges to gradient at stationarity, i.e., also zero

Thus, the overall `2 norm estimator (i.e., variance) decays to zero
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Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate E[X]

Suppose we can compute E[Y ] for a r.v. Y that is highly correlated with X

Consider the estimator ✓a as an approximation to E[X]:

✓↵ , ↵(X � Y ) + E[Y ], for some ↵ 2 (0, 1]

Observations:
I E[✓↵] = ↵E[X] + (1� ↵)E[Y ], i.e., a convex combination of E[X] and E[Y ].
I Standard VR: ↵ = 1 and hence E[✓↵] = E[X]
I Variance of ✓↵: Var(✓↵) = ↵

2[Var(X) + Var(Y )� 2Cov(X,Y )]
I If Cov(X,Y ) is large, variance of ✓↵ is reduced compared to X

I Letting ↵ from 0 to 1, Var(X) " to max value while decreasing bias to zero

SAG, SVRG, and SAGA can be derived from this VR viewpoint:
I SAG: Let X = rfik (xk) and Y = vik

k , ↵ = 1/N (biased)
I SAGA: Let X = rfik (xk) and Y = vik

k , ↵ = 1 (unbiased)
I SVRG: Let X = rfik (xk) and Y = rfik (x̃) (unbiased)
I Variance of SAG is 1/N2 times of that of SAGA
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Comparisons between SAG, SVRG, and SAGA

Update rules:

(SAG) xk+1 = xk � s

"
1

N
(rfik(xk)� vik

k ) +
1

N

NX

i=1

vi
k

#

(SAGA) xk+1 = xk � s

"
rfik(xk)� vik

k +
1

N

NX

i=1

vi
k

#

(SVRG) xk+1 = xk � s

"
rfik(xk)�rfik(x̃) +

1

N

NX

i=1

rfi(x̃)

#

SVRG: x̃ is not updated very step (only updated in the start of outer loops)

SAG & SAGA: Update vik
k in the table each time index ik is picked

SVRG vs. SAGA:
I SVRG: Low memory cost, slower convergence (same convergence rate order)
I SAGA: High memory cost, (arguably) faster convergence

SAGA can be viewed as a midpoint between SAG and SVRG
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Stochastic Recursive Gradient Algorithm (SARAH)

Sample complexity of GD, SGD, SVRG, and SAGA for ✏-stationarity:
I GD and SGD require O(N✏

�2) and O(✏�4), respectively1

I B = 1: Both SVRG and SARAH guarantee only O(N✏
�2), same as GD

I B = N
2
3 : Both SVRG and SAGA achieve O(N

2
3 ✏

�2), N
1
3 times better than

GD in terms of dependence on N

However, the sample complexity lower bound is ⌦(
p
N✏

�2)
I There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang

et al. 2018] and PAGE [Li et al. 2020])

These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
I Sample complexity for convex and strongly convex problems: O(N + 1/✏2)

and O((N + ) log(1/✏)), respectively ( = L/µ, a single outer loop)
I Sample complexity for nonconvex problems: O(N + L

2
/✏

4) (step size
s = O(1/L

p
T ), non-batching, a single outer loop)

1For simplicity, we ignore all other parameters except N and ✏ here.
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Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:

Pick learning rate ⌘ > 0 and inner loop size m

for s = 0, 1, 2, . . . , S � 1
I xs+1

0 = x̃s

I vs+1
0 = 1

N

PN
i=1 rfi(x

s+1
0 )

I xs+1
1 = xs+1

0 � ⌘vs+1
0

I for k = 1, 2, . . . ,m� 1
F Uniformly pick a batch Ik ⇢ {1, 2, . . . , N} at random (with replacement), with

batch size |Ik| = B
F Let vs+1

k = 1
B

P
i2Ik

[rfik (x
s+1
k )�rfik (x

s+1
k�1)] + vs+1

k�1

F xs+1
k+1 = xs+1

k � ⌘vs+1
k

I x̃s+1 = xs+1
k with k chosen uniformly at random from {0, 1, . . . ,m}

Output: Chose xa uniformly at random from {{xs+1
k }m�1

k=0 }S�1
s=0

Comparison to SVRG (ignoring outer loop index s):

SVRG: vk = rfik(xk)�rfik(x0) + v0 (unbiased)

SARAH: vk = rfik(xk)�rfik(xk�1) + vk�1 (biased)
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SPIDER/SpiderBoost

SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound
and the first sample complexity order-optimal algorithm

I SPIDER stands for “stochastic path-integrated di↵erential estimator”

I Lower bound O(
p
N✏

�2) for small data regime N = O(L2(f(x0)� f
⇤)✏�4)

I SPIDER achieves sample complexity O(
p
N✏

�2)

I However, requires very small step-size O(✏/L), poor convergence in practice

I Original proof of SPIDER is technically too complex and hence hard to
generalize the method to composite optimization problems

SpiderBoost [Wang et al. 2018] [Wang et al. NeurIPS’19]:

I Same algorithm, same sample complexity, but relax the step-size to O(1/L)

I Simpler proof and can be generalized to composite optimization problems

I Also works well with heavy-ball momentum
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SPIDER/SpiderBoost

The SpiderBoost Algorithm

Pick learning rate s = 1/2L, epoch length T , starting point x0, batch size B,
number of iteration T

for k = 0, 1, 2, . . . , T � 1
if k mod m = 0 then

Compute full gradient vk = rf(xk)
else

Uniformly randomly pick Ik ⇢ {1, . . . , N} (with replacement)
with |Ik| = B. Compute

vk =
1

B

X

i2Ik

[rfi(xk)�rfi(xk�1)] + vk�1

end if

Let xk+1 = xk � svk

end for

Output: x⇠, where ⇠ is picked uniformly at random from {0, . . . , T � 1}
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Probabilistic Gradient Estimator (PAGE)

SPIDER/SpiderBoost: Sample complexity LB is for small data regime

PAGE [Li et al. ICML’21]: Proved the lower bound ⌦(N +
p
N✏

�2) without
any assumption on data set size N and provided a new order-optimal method

I A variant of SPIDER with random length of inner loop, making the algorithm
easier to analyze
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Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

Pick x0, step-size s, mini-batch sizes B and B
0
< B, probabilities

{pk}k�0 2 (0, 1], number of iterations T

Let g0 = 1
B

P
i2I rfi(x0), where I is a random mini-batch with |I| = B

for k = 0, 1, 2, . . . , T � 1

xk+1 = xk � sgk,

gk+1 =

(
1
B

P
i2Ik

rfi(xk+1), w.p. pk,

gk + 1
B0

P
i2I0

k
[rfi(xk+1)�rfi(xk)], w.p. 1� pk,

where |Ik| = B and |I 0k| = B
0

end for

Output: x̂T chosen uniformly from {xk}Tk=1
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Summary of Sample Complexity Results for VR Methods

Method References Sample Complexity

Lower Bound [Fang et al. NeurIPS’18] L�0 min{�✏�3,
p
N✏�2}

GD NL�0✏�2

SGD (bnd. var.) [Ghadimi & Lan, SIAM-JO’13] L�0 max{✏�2,�2✏�4}
SGD (ubd. var.) [Khaled & Richtarik, ’20] L2�0

✏4
max{�0,�⇤}

SVRG (B = 1) [Reddi et al. NeurIPS’16] NL�0✏�2

SVRG (B = dN
2
3 e) [Reddi et al. NeurIPS’16] N

2
3 L�0✏�2

SAGA (B = 1) [Reddi et al. NeurIPS’16] NL�0✏�2

SAGA (B = dN
2
3 e) [Reddi et al. NeurIPS’16] N

2
3 L�0✏�2

SpiderBoost [Wang et al. NeurIPS’19] N
1
2 L�0✏�2

SPIDER [Fang et al. NeurIPS’18] L�0 min{�✏�3,
p
N✏�2}

PAGE [Li et al. ICML’21] L�0 min{�✏�3,
p
N✏�2}

Notation: �0 = f(x0)� f⇤, �⇤ = 1
N

PN
i=1(f

⇤ � f⇤
i ), �

2 is a uniform bound for the
variance of stochastic gradient, B is batch size

All results are for finite-sum with L-smooth summands. Sample complexity means the

overall number of stochastic first-order oracle calls to find an ✏-stationary point
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Caveat of Variance-Reduced Methods
In deep neural networks training, VR methods work typically worse than SGD
or SGD+Momentum [Defazio & Bottou, NeurIPS’19]

I Bad behavior of VR methods with several widely used deep learning tricks
(e.g., batch normalization, data augmentation and dropout)
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Next Class

First-Order Methods with Adaptive Learning Rates
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