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Outline

In this lecture:
o Key Idea of Variance-Reduced Methods
e SAG, SVRG, SAGA, SPIDER/SpiderBoost, SARAH, and PAGE

——

@ Convergence results
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Recap: Stochastic Gradient Descent

@ SGD Convergence Performace
» Constant step-size: SGD converges quickly to an approximation

so?
B

» Decreasing step-size: SGD converges slowly to exact solution

* Step-size s and batch size B, converges to a -error ball

@ Two “control knobs" to improve SGD convergence performance
> Decrease (gradually) step-sizes:

* Improves convergence accuracy
* Make convergence too slow

> Increase batch-sizes:

* Leads to faster rate of iterations
* Makes setting step-sizes easier
* But increases the iteration cost

@ Question: Could we achieve fast convergence rate with small batch-size?
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Stochastic Average Gradient (SAG)

1

T

Growing batch-size By, eventually requires O(NN) samples per iteration

Question: Can we achieve one sample per iteration and same iteration
complexity as deterministic first-order methods?

Answer: Yes, the first method was the stochastic average gradient (SAG)
method [Le Roux et al. 2012]

To understand SAG, it's insightful to view GD as performing the following
iteration in solving the finite-sum problem:

N
X X ok E Vi
k+1 — Xk T 77 k
Ni:l

where in each step we set v, = V f;(xy) for all i

SAG method: Only set vfc’“ = Vfi, (x) for randomly chosen i

> All other vfj are kept at their previous values (a lazy update approach)
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Stochastic Average Gradient (SAG)

@ One can think of SAG as having a memory:

where v is the gradient V f;(x;/) from the last k" where i is selected

@ In each iteration:

» Randomly choose one of the v’ and update it to the current gradient
> Take a step in the direction of the average of these v*
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Stochastic Average Gradient (SAG)

e Basic SAG algorithm (maintains g = S | v?):
» Set g = 0 and gradient approximation v =0 fori=1,...,N.
> while (1):
@ Sample ¢ from {1,2,...,N}
@ Compute Vf;(x)
Q@seg=g-v+Vfix)
Q v'=Vfi(x)

QO xt=x-3g
o lteration cost is O(d) (one sample)

@ Memory complexity is O(Nd)
» Could be less if the model is sparse _
» Could reduce to O(N) for linear models f;(x) = h(x ' &°):

Vi) = K OTE) X

scalar data

» But for neural networks, would still need to store all activations (typically
impractical)
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Stochastic Average Gradient (SAG)

@ The SAG algorithm:

N
X X ok E vi
k+1 — Xk — 77 k>
N i=1
where in each iteration, v;‘c"' = Vfi,.(x) for a randomly chosen iy

@ Unlike batching in SGD, use a “gradient” for every sample
> But the gradient might be out of date due to lazy update

e Intuition: vi — V f;(x*) at the same rate that x; — x*
> so the variance ||ex||? (“bad term”) converges linearly to 0
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Convergence Rate of SAG

Theorem 1 ([Le Roux et al. 2012])

If each V f; is L-Lipschitz continuous and f is strongly convex, with sy, = 1/16L,

SAG satisfies:
po 1)
E[f<Xk)_f*]:O((1_min{16_L’8_N}> )

@ Sample Complexity: Number of V f; evaluations to reach accuracy e:

» Stochastic: O((5(1/e)) )(g."— “condihM num’”
» Gradient: O(nf;)log(1/e))

> Nesterov: O(n log(1/€))
» SAG: O(max{n\,,/% log(1/€)) ‘:

o Note: L values are different between algorithms
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Stochastic Variance-Reduced Gradient (SVRG)

Idea: Get rid of memory by periodically computing full gradient
[Johnson&Zhang,'13]

@ Start with some x° = x¥ = x¢, where m i ameter. Let S = [T'/m/]
0

o fors=0,1,2,...,5 -1

> X8+17X sq‘ Ouwfa‘

» Vf(x® Zz 3 sz( °)
> fork—O, ,2, ..
* Uniformly plck a batch I, C {1,2,...
batch size |Ik|
* Letvit! =1 Zl 1[Vf1k( Xt = Vi, (%)) + VI(X)

* Xppl = k —spvit!

s+1 s+1

at random (with replacement), with

> X = x;,

o Output: Chose x, uniformly at random from {{x;*'}"

Convex settings: Convergence properties similar to SAG for suitable m
o Unbiased: E[vit!'] = Vf(x;t")
@ Theoretically m depends on L, i, and N (m :W works well empirically)
@ O(d) storage complexity (2B+1 gradients per iteration on average)
o Last step x5!

JKL (ECE@OSU) ECE 8101: Lecture 2-5 9/24

in outer loop can be randomly chosen from inner loop iterates



Convergence Rate of SVRG (Nonconvex)

o Consider finite-sum problem min,cga f(x) £ fvzl fi(x), where both f(-)

and f;(+) are nonconvex, differentiable, and L-smooth.

o Define a sequence {T';} with Ty, £ s — <22 — 21— 2¢; 152, where
parameters cx11 and By are TBD shortly.

Theorem 2 ([Reddi et al. '16])

Letc, =0,s.,=5>0, B =08>0, and

ck = ckr1(1+ 8B+ 2s2L?/B) + s2L3/B such that Ty, >0 fork =0,...,m — 1.
Let v = ming I'y. Also, let T' be a multiple of m. Then, the output x, of SVRG
satisfies:

B[V el < LU= = o)
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Theorem 2 ([Reddi et al. '16])

Letc,, =0, 8. =58>0, B =8>0, and

¢k = cry1(1+ 8B +282L?/B) + s®L3/B such that Ty, > 0 fork =0,..., m—1.
Let v = miny I'y.. Also, let T be a multiple of m. Then, the output x, of SVRG
satisfies:

B[V (xa)|2] < —(—T),y—f =of)
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SAGA (SAG Again?)

Basic SAGA algorithm [Defazio et al. 2014]: Similar in spirit to SAG
e Initialize xq; Create a table, containing gradients and v{, = V fi(xo)
@ In iterations £k =0,1,2,...:

@ Pick a random ij € {1,..., N} uniformly at random and compute V f;, (xx).
@ Update xj41 as follows: SAG - ‘AL/- (7‘["1(‘#) ’Vk- A—'ZV) :

N
i 1 i
Xk4+1 = Xk — Sk (Vflk (Xk) — ka +4 7N ,_E 1 Vk>

@ Update table entry v, 4% = Vfi(xk). Set all other Vi1 =V, i # g e,
other table entries remain the same
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SAGA (SAG Again?)

@ SAGA basically matches convergence rates of SAG (for both convex and
strongly convex cases), but the proof is simpler (due to unbiasedness)

@ Another strength of SAGA is that it can extend to composite problems:

mln — Z fi(x

where each f;(-) is L-smooth, and h is convex and non—smootf_keb t has a
i x)= 372 =
known proximal operator 3”"”(,“;651\ - ,1- W) {

. 0.

Xk+1 @h,sk{xk — Sk (Vfuc(xk Vil N Z‘%)}

But it is unknown whether SAG is convergent or not under proximal operator

g [9) = s (o5l
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SAGA Variance Reduction
@ Stochastic gradient in SAGA:

ik 1 a i
/qﬁ Vfi (xk) — (Vk N ;‘%)
lmuu'

X

Y

o Note: E[X] = Vf(x;) and E[Y] = 0 = we have an unbiased estimator

@ Note: X —Y — 0 as k — oo, since x; and xj_1 converges to some X, the
difference between the first two terms converges to zero. The last term
converges to gradient at stationarity, i.e., also zero

@ Thus, the overall {5 norm estimator (i.e., variance) decays to zero
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Comparisons between SAG, SVRG, and SAGA

A general variance reduction approach: Want to estimate E[X] ED(]

@ Suppose we can compute E[Y] for a r.v. Y that is highly correlated with X

@ Consider the estimator 6, as an approximation to E[X]:
0, = a(X —Y) +E[Y], for some a € (0,1]

@ Observations:

E[0.] = aE[X] + (1 — @)E[Y], i.e., a convex combination of E[X] and E[Y].
Standard VR: @ =1 and hence E[f.] = E[X]

Variance of 0,: Var(6,) = o?[Var(X) + Var(Y) — 2Cov(X,Y))

If Cov(X,Y) is large, variance of 6, is reduced compared to X

Letting o from 0 to 1, Var(X) 1 to max value while decreasing bias to zero

v

Yy vy VY

@ SAG, SVRG, and SAGA can be derived from this VR viewpoint:
> SAG: Let X = Vf;, (xx) and Y = vi*, o = 1/N (biased) | breg— V&
» SAGA: Let X = Vfi, (xx) and Y = v}¥, o = 1 (unbiased)
» SVRG: Let X = Vf;, (xx) and Y = V f;, (X) (unbiased) J=|
» Variance of SAG is 1/N? times of that of SAGA
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Comparisons between SAG, SVRG, and SAGA

o Update rules:
s 4
(SAG) X1 =%k — s (Vflk (xx) — ka]
P

(SAGA) Xgt1 =X — 8 &fik (xx) — v}f)—)» %Z vz]

rook=l
(SVRG) Xkt1 =Xk — S 6f¢k (xx) = Vfi, (x vaz 1

@ SVRG: x is not updated very step (only updated in the start of outer loops)
@ SAG & SAGA: Update Vfck in the table each time index 7, is picked
@ SVRG vs. SAGA:

> SVRG: Low memory cost, slower convergence (same convergence rate order)
» SAGA: High memory cost, (arguably) faster convergence

@ SAGA can be viewed as a midpoint between SAG and SVRG
1524



Stochastic Recursive Gradient Algorlthm (SARAH)

JElPtol) s <53 T Teg=0(cY

@ Sample complexity of GD, SGD SVRG, and SAGA for e-stationarity:

» GD and SGD require O(Ne~2) and O(e™*), respectively!

» B = 1: Both SVRG and SARAH guarantee only O(Ne2), same as GD

» B = Ni: Both SVRG and SAGA achieve O(N%e’g), N times better than

GD in terms of dependence on N
)( < e’ aTr—ﬁ owe)

° However the sample complexity lower bound is Q(v/ Ne?)

> There exist sample complexity order-optimal algorithms (e.g., SPIDER [Fang
et al. 2018] and PAGE [Li et al. 2020])

@ These order-optimal algorithms are variants of SARAH [Nguyen et al. 2017]
» Sample complexity for convex and strongly convex problems: O(N + 1/¢?)
and O((N + k) log(1/¢)), respectively (k = L/u, a single outer loop)
» Sample complexity for nonconvex problems: O(N 4 L?/e*) (step size
= O(1/L\/T), non-batching, a single outer loop)

IFor simplicity, we ignore all other parameters except N and ¢ here.
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Stochastic Recursive Gradient Algorithm (SARAH)

The SARAH algorithm:
@ Pick learning rate n > 0 and inner loop size m
o fors=0,1,2,...,5 -1

> xS'H =x°
s+1 __ 1 N ) s+1
> VO-H = ﬁ_';:i,:l vfigxo )
S S S
> X Xo NVo
» fork=1,2,....m—1

* Uniformly pick a batch I}, C {1,2,..., N} at random (with replacement), with

batch size |I| = B
1 . 1 . 1 1
* Let VZ+ = % que]k [Vflk (Xz+ ) - vfu\ (xitl)] + Vztl

=t oy
» x5 = sz with k& chosen uniformly at random from {0,1,...
o Output: Chose x, uniformly at random from {{x; ™}y 1o}
Comparison to SVRG (ignoring outer loop index s):
@ SVRG: vi, = Vi, (xx) —\V fi, (x0) + vo (unbiased)
o SARAH: vi, = Vi, (xx) AV fi, (xx—1) + vi—1\(biased)
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SPIDER/SpiderBoost

o SPIDER [Fang et al. 2018]: Provides the first sample complexity lower bound
and the first sample complexity order-optimal algorithm

>

>

>

@ SpiderBoost [Wang et al. 2018] [Wang et al. NeurlPS'19]:

>

>

>

SPIDER stands for “stochastic path-integrated differential estimator”
Lower boundX+/Ne~2) for small data regime N = O(L?(f(xo) — f*)e %)
SPIDER achieves sample complexity O(v/Ne~?)

However, requires very small step-size O(e{L}, poor convergence in practice

Original proof of SPIDER is technically too complex and hence hard to
generalize the method to composite optimization problems

2
Same algorithm, same sample complexity, but relax the step-size to O(1/L)

Simpler proof and can be generalized to composite optimization problems

Also works well with heavy-ball momentum
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SPIDER/SpiderBoost

The SpiderBoost Algorithm

o Pick learning rate s = 1/2L, epoch length T, starting point x¢, batch size B,
number of iteration T’
o fork=0,1,2,....,T -1
if £ mod m = 0 then
Compute full gradient v, = V f(xy)

else

Uniformly randomly pick I, C {1,..., N} (with replacement)

with |Ix] = B. Compute

1
Vi= g Z[vfi(xk) — Vfi(Xp—1)] + V-1
i€l
end if
Let Xk4+1 = Xk — SVg
end for

Output: x¢, where ¢ is picked uniformly at random from {0,...,T — 1}
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Probabilistic Gradient Estimator (PAGE)

o SPIDER/SpiderBoost: Sample complexity LB is for small data regime

e PAGE [Li et al. ICML'21]: Proved the lower bound Q(N + v/Ne~?2) without
any assumption on data set size N and provided a new order-optimal method

> A variant of SPIDER with random length of inner loop, making the algorithm
easier to analyze
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Probabilistic Gradient Estimator (PAGE)

The PAGE Algorithm

o Pick xq, step-size s, mini-batch sizes B and B’ < B, probabilities
{pk}tr>0 € (0,1], number of iterations T’

o Let go = % > icr Vfi(x0), where I is a random mini-batch with |I| =
o fork=0,1,2,...,T—1
Xi+1 = Xk — S8k,
g1 = {% Ziellk V fi(Xk+1), W.p. Dk,
8k + 57 Zie[{c Vfi(xpt+1) — Vfilxg)], w.p. 1—pg,

- (
where |I| = B and |I}| = B’ chwie 5= LHWB‘

end for
O

e Output: X7 chosen uniformly from {x;}%_, B“"‘

<70 "'b"' ,(ah.u.;: the séar. c.w.rh‘&)—’,
owe iy, " 0% F-E0)9
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Summary of Sample Complexity Results for VR Methods

Method References Sample Complexity
Lower Bound [Fang et al. NeurlPS'18] LAgmin{oe3,v/Ne 2}
GD NLAge™?
Ty

SGD (bnd. var.)

[Ghadimi & Lan, SIAM-JO'13]

LApmax{e 2,0

SGD (ubd. var.)

[Khaled & Richtarik, '20]

2
L F4A0 max{Ag, A}

SVRG (B =1) [Reddi et al. NeurlPS'16] NLAge 2
SVRG (B = [N3]) Reddi et al. NeurlPS'16 N3 LAge2
SAGA (B=1) Reddi et al. NeurlPS'16 NLAge 2
SAGA (B = [N3]) [Reddi et al. NeurlPS'16] N3 LAge2 )
SpiderBoost [Wang et al. NeurlPS'19] N%LAOe_2
SPIDER [Fang et al. NeurlPS'18] LAgmin{oe 3,/ Ne 2}
PAGE [Li et al. ICML'21] LAgmin{oe 3,v/Ne 2}

@ Notation: Ag = f(x0) — f*, Ax = % vazl(f* — f¥), 02 is a uniform bound for the
variance of stochastic gradient, B is batch size

@ All results are for finite-sum with L-smooth summands. Sample complexity means the

overall number of stochastic first-order oracle calls to find an e-stationary point
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Caveat of Variance-Reduced Methods
@ In deep neural networks training, VR methods work typically worse than SGD
or SGD+Momentum [Defazio & Bottou, NeurlPS'19]
» Bad behavior of VR methods with several widely used deep learning tricks
(e.g., batch normalization, data augmentation and dropout)

34|
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Next Class

First-Order Methods with Adaptive Learning Rates
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