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In this lecture:
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Convergence results
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Unbiased Stochastic Gradient

Random vector g̃ 2 Rn is a unbiased stochastic gradient if it can be written
as g̃ = g + n, where g is the true gradient and E[n] = 0

n can be interpreted as error in computing g, measurement noise, Monte
Carlo sampling errors, etc.

If f(·) is non-smooth, g̃ is a noisy unbiased subgradient at x if

f(z) � f(x) + (E[g̃|x])>(z� x), 8z

holds almost surely.
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Stochastic Gradient Descent Method

Consider minx2Rn f(x). Following standard GD, we should do:

xk+1 = xk � skE[g̃k|xk]

However, E[g̃k|xk] is di�cult to compute: Unknown distribution, too costly
to sample at each iteration k, etc.

Idea: Simply use a noisy unbiased subgradient to replace E[g̃k|xk]

The stochastic subgradient method works as follows:

xk+1 = xk � skg̃k

I xk is the k-th iterate
I g̃k is any noisy gradient of at xk, i.e., E[g̃k|xk] = rf(xk)
I sk is the step size
I Let f (k)

best , min
i=1,...,k

{f(xi)} and krf
(k)
bestk , min

i=1,...,k
{krf(xi)k}
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Historical Perspective

Also referred to as stochastic approximation in the literature, first introduced
by [Robbins, Monro ’51] and [Keifer, Wolfowitz ’52]

The original work [Robbins, Monro ’51] is motivated by finding a root of a
continuous function:

f(x) = E[F (x, ✓)] = 0,

where F (·, ·) is unknown and depends on a random variable ✓. But the
experimenter can take random samples (noisy measurements) of F (x, ✓)

Herbert Robbins Sutton Monro
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Historical Perspective

Robbins-Monro: xk+1 = xk + skY (xk, ✓), where:
I E[Y (x, ✓)|x = xk] = f(xk) is an unbiased estimator of f(xk)
I Robbins-Monro originally showed convergence in L

2 and in probability
I Blum later prove convergence is actually w.p.1. (almost surely)
I Key idea: Diminishing step-size provides implicit averaging of the observations

Robbins-Monro’s scheme can also be used in stochastic optimization of the
form f(x⇤) = minx E[F (x, ✓)] (equivalent to solving rf(x⇤) = 0)

Stochastic approximation, or more generally, stochastic gradient has found
applications in many areas

I Adaptive signal processing
I Dynamic network control and optimization
I Statistical machine learning
I Workhorse algorithm for training deep neural networks
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Assumptions and Step Size Rules

f
⇤ = infx f(xk) > �1, with f(x⇤) = f

⇤

E[kg̃kk22]  G
2, for all k

E[kx0 � x⇤k22]  R
2

Commonly used step-size strategies:

Constant step-size: sk = s, 8k

Step-size is square summable, but not summable

sk > 0, 8k,
1X

k=1

s
2
k < 1,

1X

k=1

sk = 1

Note: This is stronger than needed, but just to simplify proof
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Convergence of SGD (Convex)

Convergence in expectation:

lim
k!1

E[f (k)
best] = f

⇤

Convergence in probability: for any ✏ > 0,

lim
k!1

Pr{|f (k)
best � f

⇤| > ✏} = 0

Almost sure convergence

Pr
�

lim
k!1

f
(k)
best = f

⇤ = 1

See [Kushner, Yin ’97] for a complete treatment on convergence analysis
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Convergence in Expectation and Probability (Convex)

Proof Sketch:

Key quantity: Expected squared Euclidean distance to the optimal set. Let
x⇤ be any minimzer of f . We can show that

E[kxk+1 � x⇤k22|xk]  kxk � x⇤k22 � 2sk(f(xk)� f
⇤) + s

2
kE[kg̃kk22|xk]

which can further lead to

min
i=1,...,k

n
E[f(xi)]� f

⇤
o
 R

2 +G
2ksk2

2
Pk

i=1 si

The result mini=1,...,k E[f(xi)] ! f
⇤ simply follows from the divergent

step-size series rule
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Convergence in Expectation and Probability (Convex)

Jensen’s inequality and concavity of minimum yields

E[f (k)
best] = E[ min

i=1,...,k
f(xi)]  min

i=1,...,k
E[f(xi)]

Therefore, E[f (k)
best] ! f

⇤ (convergence in expectation)

Convergence in expectation also implies convergence in probability: By
Markov’s inequality, for any ✏ > 0,

Pr{f (k)
best � f

⇤ � ✏} 
E[f (k)

best � f
⇤]

✏
,

i.e., RHS goes to 0, which proves convergence in probability.
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Convergence Rate (Convex)

Classical diminishing step-sizes sk = ↵/k for some ↵ > 0:P
k sk = O(log(t)) and

P
k s

2
k = O(1). So convergence rate is O(1/ log(t))

Diminishing step-sizes sk = ↵/
p
k for some ↵ > 0:

P
k sk = O(

p
t) andP

k s
2
k = O(log(t)). So convergence rate is O(log(t)/

p
t) = Õ(1/

p
t)

Constant step-sizes sk = ↵ for some ↵ > 0:
P

k sk = k↵ and
P

k s
2
k = k↵

2.
So convergence rate is O(1/t) +O(↵)
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Convergence Rate (Strongly Convex)

Theorem 1 (Optimality Gap)

If f(·) is µ-strongly convex, then the SGD method with a constant step-size
sk = s < 2/µ satisfies:

E[kxk � x⇤k2]  (1� 2sµ)kkx0 � x⇤k2 + s�
2

2µ

Remark:

If �2 = 0 (GD), constant step-size s ) linear convergence to x⇤.

If �2
> 0, SGD with constant step-size s ) linear convergence to

s�2

2µ -neighborhood of x⇤
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Convergence Rate (Nonconvex) – Finite Sum

Consider the following finite-sum minimization

min
x2Rd

f(x) = min
x2Rd

1

N

NX

i=1

fi(x)

where N is typically large, e.g., empirical risk minimization (ERM) in ML

Consider using SGD to solve this problem under the following assumptions:
I f(·) is nonconvex and bounded from below

I rf is di↵erentiable with L-Lipschitz continuous gradients (L-smooth)

I E[krfi(x)k2]  �
2 for some �

2 and all x (bounded gradient, can be relaxed)
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Convergence Rate (Nonconvex) – Finite Sum

Theorem 2 (Stationarity Gap)

If the finite-sum problem f(·) is nonconvex, di↵erentiable, and L-smooth, then
the SGD method with step-sizes {sk} satisfies

min
k=0,1,...,t�1

{krf(xk)k22}  f(x0)� f
⇤

Pt�1
k=0 sk

+
L�

2

2

Pt�1
k=0 s

2
kPt�1

k=0 sk

.

Remark:

If �2 = 0, then a constant step-size yields an O(1/t) rate.

Classical diminishing step-sizes sk = ↵/k for some ↵ > 0:P
k sk = O(log(t)) and

P
k s

2
k = O(1). So convergence rate is O(1/ log(t))

Diminishing step-sizes sk = ↵/
p
k for some ↵ > 0:

P
k sk = O(

p
t) andP

k s
2
k = O(log(t)). So convergence rate is O(log(t)/

p
t) = Õ(1/

p
t)

Constant step-sizes sk = ↵ for some ↵ > 0:
P

k sk = k↵ and
P

k s
2
k = k↵

2.
So convergence rate is O(1/t) +O(↵)
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Convergence Rate (Nonconvex) - Finite Sum+Time Oracle

Theorem 3 ([Ghadimi & Lan ’13])

Suppose f(·) is L-smooth and has �-bounded gradients and it is known a priori
that the SGD algorithm will be executed for T iterations. Let sk = c/

p
T , where

c =

r
2(f(x0)� f⇤)

L�2
.

Then, the iterates of SGD satisfy

min
0tT�1

E[krf(xt)k2] 
r

2(f(x0)� f⇤)L

T
�.
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Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

Consider the following general expectation minimization problem

f(x) = E⇠[f(x, ⇠)],

where ⇠ is a random vaiable with distribution D.

Consider using SGD to solve this problem under the following assumptions:
I f(·) is nonconvex and bounded from below

I rf is di↵erentiable with L-Lipschitz continuous gradients (L-smooth)

I E⇠[f(x, ⇠)] = rf(x) and E⇠[kf(x, ⇠)�rf(x)k22]  �
2

A common approach in SGD: Rather than choosing one training sample
randomly at a time, use a larger random mini-batch of samples Bk, with
|Bk| = Bk. Then, gk = 1

Bk

PBk

i=1 rf(x, ⇠i). SGD becomes:

xk+1 = xk � skgk = xk � sk

Bk

BkX

i=1

rf(x, ⇠i),

where ⇠1, . . . , ⇠Bk are i.i.d. sampled from D
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Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

Theorem 4 (Stationarity Gap)

In the expectation minimization problem, supposed that f(·) is nonconvex,
di↵erentiable, and L-smooth. For any given ✏ > 0, then the SGD method with
mini-batch size Bk = B = max{1, 2�2

✏2 }, 8k, and step-sizes sk  1
2L , 8k, satisfies

E[krf(x̂t)k22] 
4L(f(x0)� f

⇤)

t
+

✏
2

2
, (1)

where x̂t is chosen uniformly at random from x0, . . . ,xt�1.Thus, Eq. (1) implies

that taking t = d 8L(f(x0)�f⇤)
✏2 e yields E[krf(x̂t)k22]  ✏

2.

Sample Complexity Bound:

t�1X

k=0

Bk =
2�2

✏2
t =

⇠
16L(f(x0)� f

⇤)�2

✏4

⇡
= O(✏�4)

Optimal up to constant factors (see [Arjevani et al. 2019] for lower bound)
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Mini-Batching SGD as Gradient Descent with Error

SGD with mini-batcch:

xk+1 = xk � sk

Bk

BkX

i=1

rf(x, ⇠i)

This can be viewed as a “gradient descent with error”

xk+1 = xk � sk(rf(xk) + ek)

, where ek is the di↵erence between approximation and true gradient

By setting sk = 1/L, it follows from descent lemma that

f(xk+1)  f(xk)�
1

2L
krf(xk)k2

| {z }
good

+
1

2L
kekk2

| {z }
bad
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Mini-Batching SGD as Gradient Descent with Error

SGD progress bound with sk = 1/L and error is:

f(xk+1)  f(xk)�
1

2L
krf(xk)k2

| {z }
good

+
1

2L
kekk2

| {z }
bad

Relationship between “error-free” rate and “with error” rate:
I If “error-free” rate is O(1/k), you maintain this rate if kekk2 = O(1/k)
I If “error-free” rate is O(⇢k), you maintain this rate if kekk2 = O(⇢k)
I If error goes to zero more slowly, error vanishing rate is the “bottleneck”

So, need to know how batch-size Bk a↵ects kekk2
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Mini-Batching SGD as Gradient Descent with Error

Sample with replacement:

E[kekk2] =
1

Bk
�
2
,

where �
2 is the variance of the stochastic gradient norm (i.e., doubling the

batch-size cuts the error in half)

Sample without replacement (from a dataset of size N):

E[kekk2] =
N �Bk

N � 1

1

Bk
�
2
,

i.e., driving error to zero as batch size approaches N

Growing batch-size:
I For O(⇢k) linear convergence: need Bk+1 = Bk/⇢

I For O(1/k) sublinear convergence: need Bk+1 = Bk + const.
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Mini-Batching SGD as Gradient Descent with Error

SGD with mini-batcch:

xk+1 = xk � sk

Bk

BkX

i=1

rf(x, ⇠i)

For a fixed Bk: sublinear convergence rate
I Fixed step-size: sublinear convergence to an error ball around a stationary

point
I Diminishing step-size: sublienar convergence to a stationary point

Can grow Bk to achieve faster rate:
I Early iterations: cheap SG iterations
I Later iterations: Use larger batch-sizes (no need to play with step-sizes)
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Next Class

Variance-Reduced First-Order Methods
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