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Outline

In this lecture:
@ Noisy unbiased gradient
@ Stochastic gradient method

@ Convergence results
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Unbiased Stochastic Gradient

@ Random vector g € R™ is a unbiased stochastic gradient if it can be written
He=g @l’\gvhere g is the true gradient and E[n] =0

@ n can be interpreted as error in computing g, measurement noise, Monte
Carlo sampling errors, etc.

e If f(-) is non-smooth, g is a noisy unbiased subgradient at x if

f(z) > f(x) + (E[g]x]) " (z —x), Vaz

holds almost surely. /“ ‘tb

oW X J‘(-) (oWex
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Stochastic Gradient Descent Method

o Consider minyegn f(x). Following standard GD, we should do:
-z =

Xp+1 = X — SEE[8r|Xk)

o However, E[g|xx] is difficult to compute: Unknown distribution, too costly
to sample at each iteration k, etc.

@ Idea: Simply use a noisy unbiased subgradient to replace E[g},|xx]
@ The stochastic subgradient method works as follows:
Xk+1 = Xk — Sk8k

» X is the k-th iterate
» g is any noisy gradient of at xy, i.e., E[gx|xx] = V f(xx)
> S is the step size

k . k .
> Let figh £ min {f(x;)} and [[VALD] £ min {VS(x)]}
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Historical Perspective

@ Also referred to as stochastic approximation in the literature, first introduced
by [Robbins, Monro '51] and [Keifer, Wolfowitz '52]

@ The original work [Robbins, Monro '51] is motivated by finding a root of a
continuous function: Vector-y

v
f(x) =E[F(x,0)] = 0,

where F'(-,-) is unknown and depends on a random variable 6. But the
experimenter can take random samples (noisy measurements) of F(x,0)

Herbert Robbins Sutton Monro
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Historical Perspective

@ Robbins-Monro: xp1+1 = xp + s Y (xx, 8), where:

E[Y (x,0)|x = xx] = f(xx) is an unbiased estimator of f(xx)

Robbins-Monro originally showed convergence in L? and in probability

Blum later prove convergence is actually w.p.1. (almost surely)

Key idea: Diminishing step-size provides implicit averaging of the observations

vVvyVvVvyy

@ Robbins-Monro's scheme can also be used in stochastic optimization of the
form f(x*) = miny E[F(x,6)] (equivalent to solving V f(x*) = 0)

@ Stochastic approximation, or more generally, stochastic gradient has found
applications in many areas
» Adaptive signal processing
» Dynamic network control and optimization
» Statistical machine learning
» Workhorse algorithm for training deep neural networks
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Assumptions and Step Size Rules

o f*=inf, f(xx) > —o0, with f(x*) = f*
o E[||gx]3] < G2, for all k

° E[fxo — x*[13] < R?

Commonly used step-size strategies:

o Constant step-size: s = s, Vk

nas

@ Step-size is square summable, but not summjﬂe
o0

Note: This is stronger than needed, but just to simplify proof
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Convergence of SGD (Convex)
A9“|"‘]""°+r‘

@ Convergence in expectation:

; (k) 1 _ px
kll)I{.loE[ best] - f

@ Convergence in probability: for any € > 0,
lim Pr{|f(k) —ff>€e =0
b5 00 best

@ Almost sure convergence

Pr{ lim f{ = [} =1

@ See [Kushner, Yin '97] for a complete treatment on convergence analysis
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Convergence in Expectation and Probability (Convex)

Proof Sketch:

o Key quantity: Expected squared Euclidean distance to the optimal set. Let
x* be any minimzer of f. We can show that

Efllxre1 = x13]xk] < llxe = x[13 — 2s5(f (k1) = £7) + spEll|&n 13 1xx]

@ which can further lead to

| ) R? 4+ G?||s)?
‘ mlgk{]E[f(Xi)] —f } = E

@ The result min;—; . x E[f(x;)] — f* simply follows from the divergent
step-size series rule
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Convergence in Expectation and Probability (Convex)

@ Jensen's inequality and concavity of minimum yields

E[fyek] = E[ min _f(x)] < min E[f(x,)

Therefore, E| égt] — f* (convergence in expectation)

@ Convergence in expectation also implies convergence in probability: By
Markov's inequality, for any € > 0,

(B) _ e
E
Pr{f), = " > ¢ < e =S,

€

i.e., RHS goes to 0, which proves convergence in probability. O
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° Classical d}%inishlng step- S|zes s = a/k for some o > 0:
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° D|m|n|sh|ng step-sizes s, = a/Vk for some o > 0: 3, 51, = O(\/E) and
S, 57 = O(log(t)). So convergence rate is O(log(t)//t) = O(1/+/1)

O(log(t)) and s7 = So convergence rate is O(1/log
f),) >k sk =0(). Vg (1/ ,*,((4)‘

)
ff

o Constant step-sizes s, = a for some a > 0: >, sp = kav and >, s3 = ka?.

So convergence rate is O(1/t) + O(«)
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Convergence Rate (Strongly Convex)

Theorem 1 (Optimality Gap)

If f(-) is u-strongly convex, then the SGD method with a constant step-size
sp = s < 2/ satisfies:

80'2

%12 %12
Elflxx —x*["] < (1~ 2s1)*[lx0 — x*||" + o

Remark:
e If 2 = 0 (GD), constant step-size s = linear convergence to x*.
@ If 02 > 0, SGD with constant step-size s = linear convergence to

%—neigh borhood of x*
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Convergence Rate (Nonconvex) — Finite Sum

o Consider the following finite-sum minimization

N
. o1
min f(x) = min = ; fi(%)
where N is typically large, e.g., empirical risk minimization (ERM) in ML

@ Consider using SGD to solve this problem under the following assumptions:
» f(-) is nonconvex and bounded from below

» Vf is differentiable with L-Lipschitz continuous gradients (L-smooth)
» E[||Vfi(x)]|?] < o? for some o2 and all x (bounded radlent can be relaxed)
e W 4y CAARE A P
o ke ot puloxed. E[ﬂv&(&u) “ﬂ“&’“j‘ ¥ [=feo “

"
SNR ";
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Convergence Rate (Nonconvex) — Finite Sum

Theorem 2 (Stationarity Gap)

If the finite-sum problem f(-) is nonconvex, differentiable, and L-smooth, then
the SGD method with step-sizes {s;} satisfies

}E 2 f(xo0) — f* LJQZ
oo, VA G0N} < S+ S5 S

Remark:
e If 02 =0, then a constant step-size yields an O(1/t) rate.
o Classical diminishing step-sizes s, = a/k for some a > 0:
>k sk = O(log(t)) and Y, s = O(1). So convergence rate is O(1/log(t))
o Diminishing step-sizes s; = a/V/k for some o > 0: 3, s = O(v/) and
>4 57 = O(log(t)). So convergence rate is O(log(t)/\/t) = O(1/\/t)
o Constant step-sizes s = a for some & > 0: >, s, = kav and Y, s = ka?.

So convergence rate is O(1/t) + O(«)
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Theorem 2 (Stationarity Gap)

If the finite-sum problem f(-) is nonconvex, differentiable, and L-smooth, then
the SGD method with step-sizes {s.} satisfies
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Convergence Rate (Nonconvex) - Finite Sum+Time Oracle

Theorem 3 ([Ghadimi & Lan "13])

Suppose f(-) is L-smooth and has o-bounded gradients and it is known a priori
that the SGD algorithm will be executed for T iterations. Let s = ¢/ VT, where

2(f(x0) = f*)
Lo? ’

CcC =

Then, the iterates of SGD satisfy

- 2 2(f(x0) — f*)L
Ogglg_lE[IIVf(xt)ll | <[ T
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Theorem 3 ([Ghadimi & Lan '13])

Suppose f(-) is L-smooth and has o-bounded gradients and it is known a priori
that the SGD algorithm will be executed for T iterations. Let s = ¢/\/T, where

2(f(x0) — f*)
Lo? '
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Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

o Consider the following general expectation minimization problem

f(x) =Eelf(x,6)],
where £ is a random vaiable with distribution D.

@ Consider using SGD to solve this problem under the following assumptions:
» f(+) is nonconvex and bounded from below

» Vf is differentiable with L-Lipschitz continuous gradients (L-smooth)
hA
> BN (6,6)] = V£(x) and E[[[Fx. &) - Vi(0)J2] < o
@ A common approach in SGD: Rather than choosing one training sample

randomly at a time, use a larger random mini-batch of samples By, with
|Bi| = By.. Then, g = Bik Zi’“l Vf(x,&). SGD becomes:

By
Sk
Xpyl = Xi — Sk8k = Xp — Be E Vf(x,&),
i=1

where &1,...,&p, are i.i.d. sampled from D
1622



Convergence Rate (Nonconvex) - General Expectation
Minimization with Batching

Theorem 4 (Stationarity Gap)

In the expectation minimization problem, supposed that f(-) is nonconvex,
differentiable, and L-smooth. For any given € > 0, then the SGD method with
mini-batch size Bj, = B = max{1, (f i Vk, and step-sizes s, < 5 L, Vk, satisfies

x0) — f* 62
BVl < L =E L B &

<

where X; is chosen uniformly at random from xy, w .,X¢—1.Thus, Eq. (1) implies
that taking t = [3LUCO=IDT yields B[[|V f(%,)[|3] < €2.

Sample Complexity Bound:

t—1

i, 22, st rer] g
k=0 ~

@ Optimal up to constant factors (see [Arjevani et al. 2019] for lower bound)
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Theorem 4 (Stationarity Gap)

In the expectation minimization problem, supposed that f(-) is nonconvex,
differentiable, and L-smooth. For any given ¢ > 0, then the SGD method with
mini-batch size By, = B = max{1, (3% ; Vk, and step-sizes sj. < 55, Vk, satisfies

E[|V £ (x)|2] < M

<
where X, is chosen uniformly at random from Xy, .

that taking t = [2L9=I7)) yields E[||Vf()"(,)||“] g €2
\

rrmf]', (D wTs . L)kw BF: B= f igr;’l) , U= heare
|9 cx)wT(!)l["[ 1<%
Nite . %L) ._LZ_VT (15:) . where §) 5, e di-d
Saw-r(u( 7-,—.,-,,‘, j)
EU[%O‘)-V:&(’(\“I"} IE[ ?i ("f‘;)“"ﬂ"w( ]
e[tk opeswf 1]
¢ L1 [P el]s) F ¢
[EY N 78 Z - \ —[
il Ed
Recall ~ Descod lemma

otun) € i)+ v¢uu (% )+ e 2, |
a&&d *ﬂl«

b e + e <4~ 30" e 20 oL a2

B

!"('p

é, (1)

Thus, Eq. (1) implies

—

T




P #Qi

uvellu,,)-g,,,""’i' e ?vll ("LM

o FY
= 450 s (g + 5 o -3 Gt~ 55 Bl "V
— .
Forchal —Young's Deag.  a7h < L fa) + 516"
! Cowex Co"l‘)n\.;u(’z;
Lv(XLuﬁr Srau MJXIOLM;,oue
Loy RxX = R
Pof (Corvex Corpugede ) - Tor & ffa = XK= RU §-=, +onl), ©hs
wnvaxmv]w,d'v. & the fn + Xel&(]i o, +w%,ulm
ot L X W e
£ )2 5§55 ) -2€X ]
> 2ek peX . <aars fO @)
LT

0 Feee) <20 — Sl 5 e~ G £ )5 1)

= e s I- b E | el sellfien- el
Soer 5,87y 9 msl.; s Lot wﬁ'ﬁuﬂ;k
S -(F Byt > [L@] -

Thoen, (2> HE0) < £1) ~ % [Be] + 5 r 150 — 3|
A f26) ~ < G klip:r}vfn

3



Elgo [2| <t =3 (1ol o) 5 B e sfrsol ]
b e

= Jxpn-% [M"j@u}" + 1[“%"’(}'&)\' |4‘;]
S E[%’Vjapjn ‘,@«]

A >

¢
<~

N I o A Vit e I A
—

’D»kw) bl expectetn o beth anlos, clmsw] S €3,

4% &) for L;o, 'f/( ve hate.

= £ (o0 - Effe0 )+ 5
£ - d‘i‘
4—L &h’(\”r) +_'
Mv) w*pufguﬂ"ﬂ""""",ﬂ’"mdnufvmfx —x)
e hawe EDPT&)“‘J 44,(&('50) f) 7%




Mini-Batching SGD as Gradient Descent with Error

@ SGD with mini-batcch:
s o
k
Xkt = Xk~ p- D OVIx&)
i=1

@ This can be viewed as a “gradient descent with error”
Xpy1 = Xk — 5, (Vf(xx) +ex)

, where ey, is the difference between approximation and true gradient

@ By setting s, = 1/L, it follows from descent lemma that

FOsien) < k) = 51 FOw+ 5 e
_—

good bad
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Mini-Batching SGD as Gradient Descent with Error

@ SGD progress bound with s, = 1/L and error is:

1 2 1 2
< I — c e .
flxis1) < Fer) = 52 IV eI + 57l
—_—— —
good bad
@ Relationship between “error-free” rate and “with error” rate:

> If “error-free” rate is O(1/k), you maintain this rate if |lex||> = O(1/k)
> If “error-free” rate is O(p"), you maintain this rate if |lex]|* = O(p")
> If error goes to zero more slowly, error vanishing rate is the “bottleneck”

@ So, need to know how batch-size By, affects ey
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Mini-Batching SGD as Gradient Descent with Error

@ Sample with replacement:

1
E =02
lexl) = 5-0*
where o2 is the variance of the stochastic gradient norm (i.e., doubling the

batch-size cuts the error in half)
@ Sample without replacement (from a dataset of size N):

o N-—DB; 1
Elllecl]) = 1 50"

i.e., driving error to zero as batch size approaches N

@ Growing batch-size:

» For O(p") linear convergence: need Byy1 = By/p
» For O(1/k) sublinear convergence: need Bjy1 = By + const.

JKL (ECE@OSU) ECE 8101: Lecture 2-4

20/22



Mini-Batching SGD as Gradient Descent with Error

@ SGD with mini-batcch:
s B
Xk+1 = X — B_]; ;Vf(xfi)

@ For a fixed By: sublinear convergence rate

» Fixed step-size: sublinear convergence to an error ball around a stationary
point
» Diminishing step-size: sublienar convergence to a stationary point

@ Can grow By, to achieve faster rate:

> Early iterations: cheap SG iterations
> Later iterations: Use larger batch-sizes (no need to play with step-sizes)
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Next Class

Variance-Reduced First-Order Methods
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