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Outline

In this lecture:

Convergence rate concept

Gradient descent method

Convergence performance of gradient descent

Step size selection strategies
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Iterative Algorithms for Optimization

We consider the following iterative algorithms:

xk+1 = xk + skdk,

where sk is step-size, and dk is search direction depending on (xk,xk�1, . . .).

For now: assume f smooth, f(xk) and rf(xk) is easy to evaluate

Complications from ML:

Nonconvex f

Nonsmooth f

f not available (or too expensive to evaluate exactly)

Only an estimate of rf(xk) is available

A constraint x 2 ⌦ (usually a relatively simple ⌦, e.g., ball, box, simplex...)

Nonsmooth regularization, i.e., instead of f(x), we want min f(x) + ⌧ (x)
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How to Evaluate the Speed of an Iterative Algorithm?

Definition 1 (Convergence rate)

A sequence {rk} ! r
⇤ and rk 6= r

⇤ for all k. The rate (or order) of convergence p

is a nonnegative number satisfying

lim sup
k!1

krk+1 � r
⇤k

krk � r⇤kp = � < 1.

Sublinear: p = 1 and � = 1 (e.g., O(1/k) rate, kind of slow but still OK)

Linear or geometric: p = 1 and 0 < � < 1 (i.e., krk+1 � r
⇤k  �krk � r

⇤k
for some � 2 (0, 1), or krk � r

⇤k = O(�k), which is quite fast)

Superlinear: p > 1 and � < 1, or p = 1 and � = 0 (i.e., krk+1�r⇤k
krk�r⇤k ! 0,

that’s very fast!)

Quadratic: p = 2 and � < 1 (krk+1 � r
⇤k  �krk � r

⇤k2, # of correct
significant digits doubles per iteration. Rarely need anything faster than this!)
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Convergence Rates Comparisons
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Convergence Rates Comparisons: Log-Scale
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Gradient Descent

Back to the unconstrained optimization problem, with f smooth and convex:

min
x2Rn

f(x)

Denote the optimal value as f⇤ = minx f(x⇤) and an optimal solution as x⇤

Gradient Descent
Choose initial point x0 2 Rn. Repeat:

xk = xk�1 � skrf(xk�1), k = 1, 2, 3, . . .

Stop if some stopping criterion is satisfied.
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Gradient Descent: Geometric Interpretation

Gradient descent is a first-order method: Consider the following quadratic Taylor
approximation:

f(y) ⇡ f(x) +rf(x)>(y � x) +
1

2
(y � x)>r2

f(x)(y � x)

No, we replace Hessian r2
f(x) by 1

sI to obtain:

f(y) ⇡ f(x) +rf(x)>(y � x) +
1

2s
ky � xk2

Can be viewed as a linear approximation to f , with proximity term to x weighted
by 1

2s . Choose next point y = x+ to minimize this approximation:

x+ = x� srf(x)
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Gradient Descent: Geometric Interpretation

x+ = argminy f(x) +rf(x)>(y � x) + 1
2sky � xk22

Questions:

How to choose step sizes {sk}?
What is the according convergence rate? Or does it depend on {sk}?
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Strategy 1: Fixed Step Size

Simply set sk = s for all k = 1, 2, 3, . . ..

Limitations: May diverge if s is too large, Can be slow if s is too small.

Example: Consider f(x) = (10x2
1 + x

2
2)/2:

8 iterations 100 iterations
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Strategy 1: Fixed Step Size

Converges nicely when s is “just right.” Same example, GD after 40 iterations:

Will be clear what we mean by “just right” in convergence rate analysis later
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Convergence Rate Analysis (Convex): Fixed Step Size

Assume that f is convex & di↵erentiable, with dom(f) = Rn and additionally

krf(y)�rf(x)k2  Lky � xk2, 8x,y

That is, rf is Lipschitz continuous with constant L > 0 (L-Lipschitz continuous)

Theorem 1 (Optimality Gap)

If f is convex, di↵erentiable, and L-smooth, gradient descent with fixed step size
s  1/L satisfies

f(xk)� f(x⇤)  kx0 � x⇤k22
2sk

,

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

To get f(xk)� f(x⇤)  ✏, it takes O(1/✏) iterations.
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Plugging (3) into (2) :
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Convergence Rate Analysis (Convex): Fixed Step Size

Proof Sketch.

(Descent Lemma): rf is L-Lipschitz )

f(y)  f(x) +rf(x)>(y � x) +
L

2
ky � xk22, 8x,y

Plugging in xk+1 = xk � srf(xk) to obtain:

f(xk+1)  f(xk)�
✓
1� Ls

2

◆
skrf(xk)k22

Using the convexity of f and taking 0 < s  1/L, and , we have

f(xk+1)  f(x⇤) +rf(xk)
>(xk � x⇤)� s

2
krf(xk)k22

= f(x⇤) +
1

2s

�
kxk � x⇤k22 � kxk+1 � x⇤k22

�
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Convergence Rate Analysis (Convex): Fixed Step Size

Summing over iterations & after telescoping:

kX

i=1

�
f(xi)� f(x⇤)

�
 1

2s

�
kx0 � x⇤k22 � kxk � x⇤k22

�

 1

2s
kx0 � x⇤k22

Since f(xk) is non-increasing, we have

f(xk)� f(x⇤)  1

k

kX

i=1

�
f(xi)� f(x⇤)

�
 kx0 � x⇤k22

2sk
.
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Convergence Rate Analysis (Nonconvex): Fixed Step Size

Assume that f is nonconvex & di↵erentiable, and L-smooth

Theorem 2 (Stationarity Gap)

If f is nonconvex, di↵erentiable, and L-smooth, then gradient descent with fixed
step size s  1/L satisfies

min
t=0,...,k�1

krf(xt)k22  2(f(x0)� f
⇤)

sk

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

To get krf(xk)k2  ✏ for some k, it takes O(✏�2) iterations.
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Strategy 2: Exact Line Search

Choose the step size s to do the “best” we can along the direction of �rf(x):

s = argmin
t�0

f(x� trf(x))

Limitations:

Usually it’s too expensive to do this in each iteration.
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Strategy 3: Inexact Line Search

Seek sk that satisfies Wolfe conditions:

“Su�cient decrease” in f :

f(xk+1) = f(xk � skrf(xk))  f(xk)� c1skkrf(xk)k2, (0 < c1 ⌧ 1)

“Not zigzagging too badly”:

�rf(xk+1)
>rf(xk)  �c2krf(xk)k2, (c1 < c2 < 1)

Main features:

Can show that accumulation points x̄ of {xk} are stationary: rf(x̄) = 0
(thus minimizer if f is convex)

Can do 1-dim line search for sk, taking minima of quadratic or cubic
interpolations of f and rf at the last two values tried. Use brackets for
reliability. Often finds suitable sk within 3 attempts (see [Nocedal & Wright,
2006, Ch. 3])
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Strategy 3: Inexact Line Search – Backtracking

One way to adaptively choose step size is to use backtracking line search
1 First fix parameters 0 < � < 1 and 0 < ↵  1

2

2 At each iteration, start with s = 1, and while

f(x� srf(x)) > f(x)� ↵skrf(x)k22

shink s = �s. Else, perform gradient descent update:

x+ = x� srf(x)

Remarks:

Simple and tends to work well in practice (further simplification: just take
↵ = � = 1/2). But doesn’t work for f nonsmooth

Also referred to as Armijo’s rule. Step size shrinking very aggressively

Not checking the second Wolfe condition: the sk thus identified is “within
striking distance” of an s that’s not too large
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Backtracking Interpretation

f(x)� ↵skrf(x)k22

s = 0

f(x� srf(x))

s0

s

f(x)� skrf(x)k22
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Backtracking Example

Backtracking picks up roughly the right step size (12 outer iterations, 40
iterations in total):
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Next Class

Stochastic Gradient Descent
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