ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-3: Gradient Descent

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Convergence rate concept
- **•** Gradient descent method
- **Convergence performance of gradient descent**
- Step size selection strategies

Iterative Algorithms for Optimization

We consider the following iterative algorithms:

 $\mathbf{x}_{k+1} = \mathbf{x}_k + s_k \mathbf{d}_k$

where s_k is step-size, and \mathbf{d}_k is search direction depending on $(\mathbf{x}_k, \mathbf{x}_{k-1}, \ldots)$.

For now: assume f smooth, $f(\mathbf{x}_k)$ and $\nabla f(\mathbf{x}_k)$ is easy to evaluate

Complications from ML:

- Nonconvex *f*
- Nonsmooth *f*
- **•** *f* not available (or too expensive to evaluate exactly)
- Only an estimate of $\nabla f(\mathbf{x}_k)$ is available
- A constraint $\mathbf{x} \in \Omega$ (usually a relatively simple Ω , e.g., ball, box, simplex...)
- Nonsmooth regularization, i.e., instead of $f(\mathbf{x})$, we want $\min f(\mathbf{x}) + \tau \psi(\mathbf{x})$

How to Evaluate the Speed of an Iterative Algorithm?

Definition 1 (Convergence rate)

A sequence $\{r_k\} \to r^\ast$ and $r_k \neq r^\ast$ for all k . The rate (or order) of convergence p is a nonnegative number satisfying

$$
\limsup_{k \to \infty} \frac{\|r_{k+1} - r^*\|}{\|r_k - r^*\|^p} = \beta < \infty.
$$

- Sublinear: $p = 1$ and $\beta = 1$ (e.g., $O(1/k)$ rate, kind of slow but still OK)

Linear: $p = 1$ and $\beta = 1$ (e.g., $O(1/k)$ rate, kind of slow but still OK)

Linear or geometric: $p = 1$ and $0 < \beta \le 1$ (i.e., $||r_{k+1} r^*|| \le \$ ■ Linear or geometric: $p = 1$ and $0 < \beta < 1$ (i.e., $||r_{k+1} - r^*|| < \beta ||r_k - r^*||$ ative Algorithm?

te (or order) of convergence
 \therefore
 \therefore
 $k \ge \frac{1}{\ell} = O(\frac{1}{\ell})$ contracte
 $||r_{k+1} - r^*|| \le \beta ||r_k - r^*|$
 \therefore
 $\begin{bmatrix} \mathbf{f} & \mathbf{f} \\ \mathbf{f} & \mathbf{f} \end{bmatrix}$ is quite fast) $\le \mathbf{R}^T ||\mathbf{f}_{k+1} - \mathbf{f}^*||$ $\sum_{r=0}^{\infty}$ of slow put still OK)
 $\sum_{r=1}^{\infty}$ = O($\sum_{r=0}^{\infty}$) contraction, **اح**
- for some $\beta \in (0,1)$, or $||r_k r^*|| = O(\beta^k)$, which is quite fast) $\epsilon B^T ||r_{k+1} r_{k+1}|| \leq \epsilon$.
 Desired $\epsilon : c \beta^k \epsilon \Rightarrow k \geq c \log(\epsilon^r)$, Near $O(\log(\epsilon^r))$, iter, $\epsilon \beta^k ||r_{k+1} r_{k+1}||$ Desired ε : $C\beta^k \in \varepsilon \Rightarrow k \in \text{Clog}(\varepsilon^r)$. Need $O(k \cdot \gamma(\varepsilon^r))$
- Superlinear: $p > 1$ and $\beta < \infty$, or $p = 1$ and $\beta = 0$ (i.e., $\frac{||r_{k+1}-r^*||}{||r_{k}-r^*||} \to 0$, that's very fast!) **Not only a contraction, Let also the rate of conver
Quadratic:** $p = 2$ **and** $\beta < \infty$ **(||r_{k+1}-r^*|| \le \beta ||r_k r** that's very fast!) Not only a contraction, but also the rate of convergence $-\frac{r^2}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
- Quadratic: $p = 2$ and $\beta < \infty$ ($||r_{k+1} r^*|| \leq \beta ||r_k r^*||^2$, # of correct significant digits doubles per iteration. Rarely need anything faster than this!) For e -accuracy: Need $o(\log \log(e^{-1}))$ iter. \leftarrow almost const.

Convergence Rates Comparisons

Convergence Rates Comparisons: Log-Scale

Gradient Descent

Back to the unconstrained optimization problem, with *f* smooth and convex:

 $\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$

Denote the optimal value as $f^* = \min_{\mathbf{x}} f(\mathbf{x}^*)$ and an optimal solution as \mathbf{x}^*

Gradient Descent

Choose initial point $\mathbf{x}_0 \in \mathbb{R}^n$. Repeat:

$$
\mathbf{x}_k = \mathbf{x}_{k-1} - s_k \nabla f(\mathbf{x}_{k-1}), \quad k = 1, 2, 3, \dots
$$

Stop if some stopping criterion is satisfied.

e. g. /f) 11 ⁼ ^E

 $\|\underline{x}_{k+1} - \underline{x}_{k}\| \in \underline{\epsilon}$.

Gradient Descent: Geometric Interpretation

Gradient descent is a first-order method: Consider the following quadratic Taylor approximation: Tayle 50 - **appor**x

 $f(\mathbf{y}) \approx \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x})}_{T} + \frac{1}{2}(\mathbf{y} - \mathbf{x})^\top \underbrace{\nabla^2 f(\mathbf{x})}_{T}(\mathbf{y} - \mathbf{x})$ cent: Geometric Interpretation

s a first-order method: Consider the following quadratic

So - **order**

So - **order**

So - **order**
 $f(x) + \nabla f(x)^{\top}(y - x) + \frac{1}{2}(y - x)^{\top} \nabla^2 f(x)(y - x) +$

ssian $\nabla^2 f(x)$ by $\frac{1}{s}I$ to obta $\frac{f(x) + \nabla f(x)^\top (y - x)}{\overline{\mathbf{F}} \mathbf{0} - \mathbf{a P} \mathbf{P} \mathbf{X}}$ + (11-21) $\frac{\nabla f(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x}) + \frac{1}{2}(\mathbf{y}-\mathbf{x})^{\top} \nabla^2 f(\mathbf{x})}{\mathbf{F}^2 f(\mathbf{x}) \text{ by } \frac{1}{s} \mathbf{I} \text{ to obtain: } \frac{1}{s}$ example to the following quadratic Taylor
 $f(x) = \frac{1}{\sqrt{\frac{1}{s}}\sqrt{\frac{1}{\sqrt{\frac{1}{s}}\sqrt{\frac{1}{s}}}}}}$ where $\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{s}}\sqrt{\frac{1}{s}}}}}}$ where $\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{s}}\sqrt{\frac{1}{s}}}}}}$ where $\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{s}}\sqrt{\frac{1}{s}}}}}}$ where

No, we replace Hessian $\nabla^2 f(\mathbf{x})$ by $\frac{1}{s}\mathbf{I}$ to obtain:

$$
f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + \theta (\mathbf{y} - \mathbf{x})^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x})
$$
\n
$$
= \frac{1}{2} \mathbf{I} \mathbf{I}
$$
\n
$$
f(\mathbf{y}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{1}{2s} ||\mathbf{y} - \mathbf{x}||^2 \quad \text{for each } \mathbf{y}
$$
\n
$$
\text{a linear approximation to } f, \text{ with proximity term to } \mathbf{x} \text{ weight}
$$
\n
$$
\mathbf{x} \text{ point } \mathbf{y} = \mathbf{x}^+ \text{ to minimize this approximation.}
$$

Can be viewed as a linear approximation to f , with proximity term to x weighted by $\frac{1}{2}$. Choose next point $y = x^+$ to minimize this approximation:

$$
f(\mathbf{y}) \approx \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x})}_{\text{power}}
$$
\n
$$
\overbrace{f(\mathbf{y}) = \mathbf{y} - \mathbf{y} \mathbf{y} \mathbf{y}}^{\text{power}}
$$
\n
$$
\overbrace{f(\mathbf{y}) = \mathbf{y} \mathbf{y}}^{\text{power}}
$$
\n
$$
\overbrace{f(\mathbf{y}) = \mathbf{y} \mathbf{y}}^{\text{power}}
$$
\n
$$
\overbrace{f(\mathbf{y}) = \mathbf{y} \mathbf{y}}^{\text{power}}
$$
\n
$$
\mathbf{x}^+ = \mathbf{x} - s \nabla f(\mathbf{x})
$$
\n
$$
\mathbf{x}^+ = \mathbf{x} - s \nabla f(\mathbf{x})
$$
\n
$$
\mathbf{y} = \mathbf{y} \mathbf{y} \mathbf{y}
$$
\n
$$
\mathbf{y} = \mathbf{y} \mathbf{y}
$$

Questions:

- \bullet How to choose step sizes $\{s_k\}$?
- What is the according convergence rate? Or does it depend on *{sk}*?

Strategy 1: Fixed Step Size

Simply set $s_k = s$ for all $k = 1, 2, 3, \ldots$.

Limitations: May diverge if *s* is too large, Can be slow if *s* is too small.

Simply set $s_k = s$ for all $k = 1, 2, 3, ...$
Limitations: May diverge if s is too large, Can be slow if s is too
Example: Consider $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$: $\Rightarrow (\mathbf{x}_1^{\ell}, \mathbf{x}_2^{\ell}) \geq (0, 0)$.

Strategy 1: Fixed Step Size

Converges nicely when *s* is "just right." Same example, GD after 40 iterations:

Will be clear what we mean by "just right" in convergence rate analysis later

Convergence Rate Analysis (Convex): Fixed Step Size

Assume that f is convex & differentiable, with $dom(f) = \mathbb{R}^n$ and additionally $\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|_2 \le L \|\mathbf{y} - \mathbf{x}\|_2, \quad \forall \mathbf{x}, \mathbf{y}$ l -smooth.

That is, ∇f is Lipschitz continuous with constant $L > 0$ (*L*-Lipschitz continuous) Theorem 1 (Optimality Gap) Rate Analysis (Convex):

shows & differentiable, with dom
 $||\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})||_2 \le L||\mathbf{y} - \mathbf{x}||_2$

chitz continuous with constant L

is Lp ort : all \rightarrow st, lkq

simality Gap)

rentiable, and L-smooth, gradient The state of is convex & different
 $\frac{\|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|}{\|\mathbf{y}\| \|\mathbf{y}\|}$

t is, ∇f is Lipschitz continuous
 $\mathbf{h} \cdot \mathbf{b} \in \mathbb{R}^n \cdot \mathbf{h}$ is $\mathbf{h} \cdot \mathbf{b}$ and $\mathbf{v} \cdot \mathbf{b}$

eorem 1 (Optimality G \sqrt{a} $\sqrt{2}$ sot. (they-hear) $\sqrt{2}$ (14-31) is, ∇f is Lipschitz continuous with
 $\vec{v} \cdot \vec{v}$ is \vec{v} $\$

If f is convex, differentiable, and *L*-smooth, gradient descent with fixed step size $s \leq 1/L$ *satisfies*

$$
f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk},
$$

i.e., gradient descent method has sublinear convergence rate O(1*/k*)*.*

Remark:

• To get $f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \epsilon$, it takes $O(1/\epsilon)$ iterations.

Theorem 1 (Optimality Gap)

If f is convex, differentiable, and L-smooth, gradient descent with fixed step size $s \leq 1/L$ satisfies

$$
f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk}, \, \textbf{= } \textbf{O}(\frac{1}{k})
$$

i.e., gradient descent method has sublinear convergence rate $O(1/k)$.

$$
\begin{array}{ll}\n\text{Proof. Step ①. Calculate: How a base of the image.} \\
\int (4) &= \int (3) + \sqrt{12} \int^{1} (4-3) + \frac{1}{2} [4-3]^{2} + 3 \times 4 \text{ e} (R^{n} \quad (1) \\
\int (0) &= \int (2) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (4) &= \int (8) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (8) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (8) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (8) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (2) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (2) + \int_{0}^{1} \int^{1} (8+11/4-3) \, dx \\
\int (2) &= \int (2) + \int_{0}^{1} (2) \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \, dx \\
\int (2) &= \int_{0}^{1} \int_{0}^{1} (2) \, dx \\
\
$$

 $S\int_{0}^{1}LC ||y-x||^{2}dx = L ||y-x||^{2} \int_{0}^{1} \tau d\tau = \frac{L}{2} ||y-x||^{2}$ U) is proved Step 1 : WTS "Descent property of 6D"
3ptl = 2p-Sk&f(2p) Plug this orto (1).
-Scetch) -Scetch -Scetch) $f(x_{k+1}) \leq f(x_k) + \frac{-s_k x_i^2(x_k)}{(x_{k+1} - x_k) + \frac{L}{2} ||x_{k+1} - x_k||^2}$ = $f(s_k) - S [v f (x_k)]^2 + \frac{Ls}{2} |f f (x_k)|^2$ General: = $f(x_k) - s(1-\frac{Ls}{2}) |[\nabla f(x_k)]^2$ stoofing pt. Zo = byppunov. stop \odot : Consider $\{||z_k - z^*||^2\}_{k=1}^w$ $V_k - V_{k-1} \le -\delta_{k-1}$ $\text{cheb} \quad \| \mathbf{1}_{\mathbf{b}+1} - \mathbf{1}_{\mathbf{b}}^{\mathsf{H}} \|^2 - \| \mathbf{1}_{\mathbf{b}} - \mathbf{1}_{\mathbf{b}}^{\mathsf{H}} \|^2$ $V_1 - V_0 \le -S_0$ $= || z_{k} - s z_{1}(z_{k}) - z_{1}' || - || z_{k} - z_{1}' ||^{2}$ $V_{k} - V_{p} \leq -\sum_{i=0}^{k-1} \delta_{i}$ = $|z_1z_2|^2$ = 25 x (cz, T (z x x) + 5 | 12 (cz,) = - | x = x 1] Due to convertity: $+(z^*)+z(z_k)+z(z_k)^T(z^*z_k)$
 $\Rightarrow f(z_k) \le f(z^*) + (z_k)^T (z_k - z^*)$ (3) $= -257(3k)^{7}(3k-3^{4})+5[7+3k]$

Plugging (3) a-t+ (2) :
\n
$$
\int (2t_{1} + 1) \le \int x_{2}^{k} + \frac{1}{2} (x_{1} + 1) \le (x_{2} - x_{1} - 1) \le (1 - \frac{16}{2}) \left\| \frac{1}{2} (x_{1} - 1) \right\|^{2} (2t_{1}) \le (4)
$$
\n
$$
\int (2t_{1} + 1) \le \int x_{2}^{k} \le 0 \Rightarrow \frac{1}{2} \le 1 \Rightarrow 0 \le 1 \le 1
$$
\n
$$
\Rightarrow -\frac{1}{2} \le -\frac{15}{2} \le 0 \Rightarrow \frac{1}{2} \le -\frac{15}{2} \le 1 \Rightarrow -5 \le -5 \left(1 - \frac{15}{2} \right) \le -\frac{5}{2}
$$
\n
$$
\int (2t_{1} + 1) - \int (2t_{1} + 1) \le \nabla \left| (2t_{1} + 1) \right|^{2} (2t_{2} - 1) \le \int (2t_{1} + 1) \le \int (2t_{
$$

Convergence Rate Analysis (Convex): Fixed Step Size

Proof Sketch.

 \bullet (Descent Lemma): ∇f is *L*-Lipschitz \Rightarrow

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2, \quad \forall \mathbf{x}, \mathbf{y}
$$

• Plugging in $\mathbf{x}_{k+1} = \mathbf{x}_k - s \nabla f(\mathbf{x}_k)$ to obtain:

$$
f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \left(1 - \frac{Ls}{2}\right)s\|\nabla f(\mathbf{x}_k)\|_2^2
$$

• Using the convexity of f and taking $0 < s \leq 1/L$, and, we have

$$
f(\mathbf{x}_{k+1}) \le f(\mathbf{x}^*) + \nabla f(\mathbf{x}_k)^\top (\mathbf{x}_k - \mathbf{x}^*) - \frac{s}{2} \|\nabla f(\mathbf{x}_k)\|_2^2
$$

= $f(\mathbf{x}^*) + \frac{1}{2s} (\|\mathbf{x}_k - \mathbf{x}^*\|_2^2 - \|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2)$

Convergence Rate Analysis (Convex): Fixed Step Size

• Summing over iterations & after telescoping:

$$
\sum_{i=1}^{k} (f(\mathbf{x}_i) - f(\mathbf{x}^*)) \le \frac{1}{2s} (||\mathbf{x}_0 - \mathbf{x}^*||_2^2 - ||\mathbf{x}_k - \mathbf{x}^*||_2^2)
$$

$$
\le \frac{1}{2s} ||\mathbf{x}_0 - \mathbf{x}^*||_2^2
$$

• Since $f(\mathbf{x}_k)$ is non-increasing, we have

$$
f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \frac{1}{k} \sum_{i=1}^k \big(f(\mathbf{x}_i) - f(\mathbf{x}^*)\big) \leq \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk}.
$$

Convergence Rate Analysis (Nonconvex): Fixed Step Size

Assume that *f* is nonconvex & differentiable, and *L*-smooth

Theorem 2 (Stationarity Gap)

If f is nonconvex, differentiable, and *L*-smooth, then gradient descent with fixed *step size* $s \leq 1/L$ *satisfies*

$$
\min_{t=0,\dots,k-1} \|\nabla f(\mathbf{x}_t)\|_2^2 \le \frac{2(f(\mathbf{x}_0) - f^*)}{sk}
$$

i.e., gradient descent method has sublinear convergence rate O(1*/k*)*.*

Remark:

• To get
$$
\|\nabla f(\mathbf{x}_k)\|_2 \leq \epsilon
$$
 for some k, it takes $O(\epsilon^{-2})$ iterations.

Theorem 2 (Stationarity Gap)

If f is nonconvex, differentiable, and L -smooth, then gradient descent with fixed step size $s \leq 1/L$ satisfies

$$
\min_{t=0,\ldots,k-1} \|\nabla f(\mathbf{x}_t)\|_2^2 \le \frac{2(f(\mathbf{x}_0) - f^*)}{sk}
$$

i.e., gradient descent method has sublinear convergence rate $O(1/k)$.

Part: We know that:

\n
$$
\frac{1}{2}k+1 = \frac{1}{2}k + 1
$$
\n
$$
\frac{1}{2}k+1 = \frac{1}{2}k + 1
$$
\nNow, $0 < s \in \frac{1}{k} \Rightarrow -s(1-\frac{15}{2}) \le -\frac{s}{2}$

\n
$$
\frac{1}{2}k+1 = \frac{1}{2}k + 1
$$
\nFrom (1) from 0 to k-1:

\n
$$
\frac{1}{2}k + 1 = \frac{1}{2}k + 1
$$
\n
$$
\frac{1}{2}k + 1 = \frac{1}{2}k + 1
$$
\nLet $t^* = \frac{1}{2}k + 1$ and t^*

Strategy 2: Exact Line Search

Choose the step size *s* to do the "best" we can along the direction of $-\nabla f(\mathbf{x})$:

 $s = \arg \min_{t \geq 0} \frac{f(\mathbf{x} - t \nabla f(\mathbf{x}))}{\mathbf{d} \cdot \mathbf{r}}$ $- 8 + (4+1)^{7} 8 + (4+1) = -8 + (8+12) 8 + 17$

Usually it's too expensive to do this in each iteration.

Limitations:

Can do 1-dim line search for *sk*, taking minima of quadratic or cubic interpolations of f and ∇f at the last two values tried. Use brackets for reliability. Often finds suitable *s^k* within 3 attempts (see [Nocedal & Wright, 2006, Ch. 3])

Strategy 3: Inexact Line Search – Backtracking

One way to adaptively choose step size is to use backtracking line search

- **1** First fix parameters $0 < \beta < 1$ and $0 < \alpha \leq \frac{1}{2}$
- 2 At each iteration, start with $s = 1$, and while

 $f(\mathbf{x} - s\nabla f(\mathbf{x})) > f(\mathbf{x}) - \alpha s \|\nabla f(\mathbf{x})\|_2^2$

shink $s = \beta s$. Else, perform gradient descent update: $\mathbf{x}^+ = \mathbf{x} - s\nabla f(\mathbf{x})$ $\sum_{k=1}^{n}$

Remarks:

- Simple and tends to work well in practice (further simplification: just take $\alpha = \beta = 1/2$). But doesn't work for f nonsmooth
- Also referred to as Armijo's rule. Step size shrinking very aggressively
- Not checking the second Wolfe condition: the *s^k* thus identified is "within striking distance" of an *s* that's not too large

Backtracking Interpretation

Backtracking Example

Backtracking picks up roughly the right step size (12 outer iterations, 40 iterations in total):

Next Class

Stochastic Gradient Descent