ECE 8101: Nonconvex Optimization for Machine Learning

Lecture Note 2-3: Gradient Descent

Jia (Kevin) Liu

Associate Professor Department of Electrical and Computer Engineering The Ohio State University, Columbus, OH, USA

Autumn 2024

Outline

In this lecture:

- Convergence rate concept
- Gradient descent method
- Convergence performance of gradient descent
- Step size selection strategies

Iterative Algorithms for Optimization

We consider the following iterative algorithms:

 $\mathbf{x}_{k+1} = \mathbf{x}_k + s_k \mathbf{d}_k,$

where s_k is step-size, and \mathbf{d}_k is search direction depending on $(\mathbf{x}_k, \mathbf{x}_{k-1}, \ldots)$.

For now: assume f smooth, $f(\mathbf{x}_k)$ and $\nabla f(\mathbf{x}_k)$ is easy to evaluate

Complications from ML:

- Nonconvex f
- \bullet Nonsmooth f
- f not available (or too expensive to evaluate exactly)
- Only an estimate of $abla f(\mathbf{x}_k)$ is available
- A constraint $\mathbf{x} \in \Omega$ (usually a relatively simple Ω , e.g., ball, box, simplex...)
- Nonsmooth regularization, i.e., instead of $f(\mathbf{x})$, we want $\min f(\mathbf{x}) + \tau \psi(\mathbf{x})$

How to Evaluate the Speed of an Iterative Algorithm?

Definition 1 (Convergence rate)

A sequence $\{r_k\} \to r^*$ and $r_k \neq r^*$ for all k. The rate (or order) of convergence p is a nonnegative number satisfying

$$\limsup_{k \to \infty} \frac{\|r_{k+1} - r^*\|}{\|r_k - r^*\|^p} = \beta < \infty.$$

- Sublinear: p = 1 and $\beta = 1$ (e.g., O(1/k) rate, kind of slow but still OK) • Linear or geometric: p = 1 and $0 < \beta < 1$ (i.e., $||r_{k+1} - r^*|| \le \beta ||r_k - r^*||$
- for some $\beta \in (0, 1)$, or $||r_k r^*|| = O(\beta^k)$, which is quite fast) $\in \mathbb{B}^{\mathbb{F}} ||r_{k+1} \mathbb{P}^{\mathbb{F}} ||r_{k+1} \mathbb$
- Superlinear: p > 1 and $\beta < \infty$, or p = 1 and $\beta = 0$ (i.e., $\frac{\|r_{k+1} r^*\|}{\|r_k r^*\|} \to 0$, that's very fast!) Not only a contraction, Let also the rate of convergence
- Quadratic: p = 2 and $\beta < \infty$ ($||r_{k+1} r^*|| \le \beta ||r_k r^*||^2$, # of correct significant digits doubles per iteration. Rarely need anything faster than this!)

For
$$\varepsilon$$
- accuracy: Need $O(loglog(\varepsilon^{-1}))$ star. \leftarrow almost

Convergence Rates Comparisons

Convergence Rates Comparisons: Log-Scale

Gradient Descent

Back to the unconstrained optimization problem, with f smooth and convex:

 $\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$

Denote the optimal value as $f^* = \min_{\mathbf{x}} f(\mathbf{x}^*)$ and an optimal solution as \mathbf{x}^*

Gradient Descent

Choose initial point $\mathbf{x}_0 \in \mathbb{R}^n$. Repeat:

$$\mathbf{x}_k = \mathbf{x}_{k-1} - s_k \nabla f(\mathbf{x}_{k-1}), \quad k = 1, 2, 3, \dots$$

Stop if some stopping criterion is satisfied.

e.g., ||of12k) || ≤ 2.

Gradient Descent: Geometric Interpretation

Gradient descent is a first-order method: Consider the following quadratic Taylor approximation:

 $f(\mathbf{y}) \approx \underbrace{f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})}_{\text{FO-approx}} + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\top} \underbrace{\nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x})}_{\textbf{z}} + \delta(||\mathbf{y} - \mathbf{x}|)^{\textbf{z}}$ No, we replace Hessian $\nabla^2 f(\mathbf{x})$ by $\frac{1}{s} \mathbf{I}$ to obtain:

$$f(\mathbf{y}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \left[\frac{1}{2s} \|\mathbf{y} - \mathbf{x}\|^2\right]$$
 to proton the period by the set of the

Can be viewed as a linear approximation to f, with proximity term to \mathbf{x} weighted by $\frac{1}{2k}$. Choose next point $\mathbf{y} = \mathbf{x}^+$ to minimize this approximation:

$$x^{+} = x - s\nabla f(x)$$

> Quadratic from $q \cdot sat$ grad $\rightarrow 0$, solve for q
 $\nabla f(q) = 0 \rightarrow \nabla f(z) + \frac{1}{5}(q-z) \Rightarrow (q = z - s \nabla f(z))$

Gradient Descent: Geometric Interpretation

Questions:

- How to choose step sizes $\{s_k\}$?
- What is the according convergence rate? Or does it depend on $\{s_k\}$?

Strategy 1: Fixed Step Size

Simply set $s_k = s$ for all $k = 1, 2, 3, \ldots$

Limitations: May diverge if s is too large, Can be slow if s is too small.

Example: Consider $f(\mathbf{x}) = (10x_1^2 + x_2^2)/2$: \Rightarrow (\mathbf{x}_1^4 , $\mathbf{x}_{\mathbf{v}}^*$) = (0, 0)

Strategy 1: Fixed Step Size

Converges nicely when s is "just right." Same example, GD after 40 iterations:

Will be clear what we mean by "just right" in convergence rate analysis later

Convergence Rate Analysis (Convex): Fixed Step Size

Assume that f is convex & differentiable, with $dom(f) = \mathbb{R}^n$ and additionally $\begin{array}{c} & \mathcal{L} - smooth \\ \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|_2 \leq L \|\mathbf{y} - \mathbf{x}\|_2, \quad \forall \mathbf{x}, \mathbf{y} \end{array}$

If f is convex, differentiable, and L-smooth, gradient descent with fixed step size $s \le 1/L$ satisfies

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk},$$

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

• To get $f(\mathbf{x}_k) - f(\mathbf{x}^*) \leq \epsilon$, it takes $O(1/\epsilon)$ iterations.

Theorem 1 (Optimality Gap)

If f is convex, differentiable, and L-smooth, gradient descent with fixed step size $s \leq 1/L$ satisfies

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk}, = O(\mathbf{x})$$

i.e., gradient descent method has sublinear convergence rate O(1/k).

Proof Stop () Claim 24 Rf is Lipshitz. then descont lemma

$$f(y) \leq f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2} \|y-x\|^{2}, \forall x \cdot y \in [R^{n}. (1)$$
To show (i), we conside

$$f(y) = f(x) + \int_{0}^{1} \frac{f'(x+T(y-x))}{(x+T(y-x))} dx$$

$$= f(x) + \int_{0}^{1} \frac{f'(x+T(y-x))}{(x+T(y-x))^{T}(y-x)} dx \quad (chan rwle)$$

$$\int_{0}^{1} \frac{f'(x)}{(x+T(y-x))^{T}(y-x)} dx \quad (chan rwle)$$

$$= f(x) + \int_{0}^{1} \left[\nabla f(x+T(y-x)) \int_{0}^{1} \frac{f'(x+T(y-x))}{(x+T(y-x))} - \nabla f(x) \int_{0}^{1} \frac{f'(x-T(y-x))}{(y-x)} dx$$

$$= f(x) + \nabla f(x)^{T}(y-x) + \int_{0}^{1} \left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x-x)}{(y-x)} dx$$
By rearranging a takey also val on both soles

$$|f(y) - f(x) - \nabla f(x)^{T}(y-x)| = \left[\int_{0}^{1} \left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x-x)}{(y-x)} dx \right] dx$$

$$\leq \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

$$= \int_{0}^{1} \left[\left[\nabla f(x+T(y-x)) - \nabla f(x) \int_{0}^{1} \frac{f'(x)}{(y-x)} dx \right] dx$$

 $\leq \int_{0}^{1} L \tau \|y - x\|^{2} d\tau = L \|y - x\|^{2} \int_{0}^{1} \tau d\tau = \frac{1}{2} \|y - x\|^{2}$ (1) is proved = 1 Step (D): WTS " Descent property of 6D'. $\Xi_{k+1} = \Xi_k - S_k \mathbb{P}_{f}(\Xi_k)$ Plug this odd (1). $-S_k \mathbb{P}_{f}(\Xi_k) - S_k \mathbb{P}_{f}(\Xi_k)$ $f(\Xi_{k+1}) \leq f(\Xi_k) + \mathbb{P}_{f}(\Xi_k) \frac{||\Xi_{k+1} - \Xi_k||^2}{||\Xi_{k+1} - \Xi_k||^2}$ $= +(3k) - S \left[\nabla f(3k) \right]^{2} + \frac{LS}{2} \left[\pi f(3k) \right]^{2}$ General: $= f(\mathbf{x}_{k}) - s(l - \frac{Ls}{2}) \left\| \nabla f(\mathbf{x}_{k}) \right\|^{2} \qquad (2)$ starting pt. 20.00 Lyapunov. Stop @ Consider { [[Zk - Z* ||2] +=1 $V_{k} - V_{k+1} \leq -\delta_{k+1}$ check: 12k+1-2*11-112k-2*112 $V_1 - V_0 \leq -S_s$ $\geq \left\| \underline{x}_{k} - s \nabla f(\underline{x}_{k}) - \underline{x}^{*} \right\|^{2} - \left\| \underline{x}_{k} - \underline{x}^{*} \right\|^{2}$ V+-V, 5-20: $= \|\underline{x}_{k} - \underline{x}^{\dagger}\|^{2} - 2S \nabla_{t} (\underline{x}_{k})^{T} (\underline{x}_{k} - \underline{x}^{\star}) + s^{\dagger} \|\nabla_{t} (\underline{x}_{k})\|^{2} - \|\underline{x}_{k} - \underline{x}^{\star}\|^{2}$ $= -2SP(3k)^{T}(3k-3^{t}) + S^{2}[P+(3k)]^{T}$ Due to convexity: $f(\underline{z}^{*}) \ge f(\underline{z}_{k}) + \nabla f(\underline{z}_{k})^{T}(\underline{z}^{*} - \underline{z}_{k})$ $\Rightarrow f(\underline{z}_{k}) \le f(\underline{z}^{*}) + f(\underline{z}_{k})^{T}(\underline{z}_{k} - \underline{z}^{*}). \qquad (3)$

$$\begin{array}{l} \text{Pluggmy} (b) \quad \text{int} (b): \\ f(\underline{z}_{k+1}) \in f(\underline{z}_{k}^{k}) + \nabla f(\underline{z}_{k})^{T} (\underline{x}_{k} - \underline{z}^{k}) - S(1 - \frac{LS}{2}) || \nabla f(\underline{z}_{k}) ||^{2} \cdot (4) \\ f(\underline{z}_{k}) \in \end{array} \\ \text{Note that } S \in (0, \pm] : \text{Then } 0 \leq S \leq \frac{1}{2} \Rightarrow 0 \leq LS \leq 1. \\ \Rightarrow -\frac{1}{2} \leq -\frac{LS}{2} < 0 \Rightarrow \pm \leq |-\frac{LS}{2} \leq 1 \Rightarrow -S \leq -S(1 - \frac{LS}{2}) \leq -\frac{S}{2}. \\ \text{Using this in } (4): \\ f(\underline{z}_{k+1}) - f(\underline{z}^{k}) \leq \nabla f(\underline{z}_{k})^{T} (\underline{x}_{k} - \underline{z}^{k}) - \frac{S}{2} || \nabla f(\underline{z}_{k}) ||^{2} \\ \Rightarrow -2S \nabla f(\underline{z}_{k})^{T} (\underline{z}_{k} - \underline{z}^{k}) \leq -2S (f(\underline{z}_{k+1}) - f(\underline{z}^{k})) - S (|| Pf(\underline{z}_{k}) ||^{2} \\ \Rightarrow f(\underline{z}_{k+1}) - f(\underline{z}^{k}) \leq 2S \nabla f(\underline{z}_{k})^{T} (\underline{z}_{k} - \underline{z}^{k}) = S^{2} || \nabla f(\underline{z}_{k}) ||^{2} \\ \Rightarrow f(\underline{z}_{k+1}) - f(\underline{z}^{k}) \leq \frac{1}{2S} (|| \underline{z}_{k} - \underline{z}^{k} ||^{2} - || \underline{x}_{k+1} - \underline{z}^{k} ||^{2}) \\ \text{Stop } (\underline{0}: \text{ Summing } (S) \text{ from } (f_{k} k) \\ \leq \frac{1}{2S} (|| \underline{z}_{0} - \underline{x}^{k} ||^{2} - || \underline{z}_{k} - \underline{z}^{k} ||^{2}) \\ \leq \frac{1}{2S} (|| \underline{z}_{0} - \underline{x}^{k} ||^{2} - || \underline{z}_{k} - \underline{z}^{k} ||^{2}) \\ \text{Since } [f(\underline{z}_{k})^{T} (\underline{z}_{k} - \underline{z}^{k} ||^{2} - || \underline{z}_{k} - \underline{z}^{k} ||^{2}) \\ = (f(\underline{z}_{k}) - f(\underline{z}^{k})) \leq \frac{1}{2S} (|| \underline{z}_{0} - \underline{x}^{k} ||^{2} - || \underline{z}_{k} - \underline{z}^{k} ||^{2}) \\ \text{Constraint } result : O(\underline{z}^{k}) \text{ of } 6D^{n} \\ \text{Here } || \underline{z}_{k} - \underline{z}^{k} || \underline{z}_{k} - \underline{z}^{k} ||^{2} = 0 \\ \end{array}$$

Convergence Rate Analysis (Convex): Fixed Step Size

Proof Sketch.

• (Descent Lemma): ∇f is L-Lipschitz \Rightarrow

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2, \quad \forall \mathbf{x}, \mathbf{y}$$

• Plugging in $\mathbf{x}_{k+1} = \mathbf{x}_k - s \nabla f(\mathbf{x}_k)$ to obtain:

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \left(1 - \frac{Ls}{2}\right) s \|\nabla f(\mathbf{x}_k)\|_2^2$$

 \bullet Using the convexity of f and taking $0 < s \leq 1/L,$ and , we have

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}^*) + \nabla f(\mathbf{x}_k)^\top (\mathbf{x}_k - \mathbf{x}^*) - \frac{s}{2} \|\nabla f(\mathbf{x}_k)\|_2^2$$

= $f(\mathbf{x}^*) + \frac{1}{2s} (\|\mathbf{x}_k - \mathbf{x}^*\|_2^2 - \|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2^2)$

Convergence Rate Analysis (Convex): Fixed Step Size

• Summing over iterations & after telescoping:

$$\sum_{i=1}^{k} \left(f(\mathbf{x}_{i}) - f(\mathbf{x}^{*}) \right) \leq \frac{1}{2s} \left(\|\mathbf{x}_{0} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}_{k} - \mathbf{x}^{*}\|_{2}^{2} \right)$$
$$\leq \frac{1}{2s} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|_{2}^{2}$$

• Since $f(\mathbf{x}_k)$ is non-increasing, we have

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{1}{k} \sum_{i=1}^k \left(f(\mathbf{x}_i) - f(\mathbf{x}^*) \right) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{2sk}.$$

Convergence Rate Analysis (Nonconvex): Fixed Step Size

Assume that f is nonconvex & differentiable, and L-smooth

Theorem 2 (Stationarity Gap)

If f is nonconvex, differentiable, and L-smooth, then gradient descent with fixed step size $s \leq 1/L$ satisfies

$$\min_{t=0,\dots,k-1} \|\nabla f(\mathbf{x}_t)\|_2^2 \le \frac{2(f(\mathbf{x}_0) - f^*)}{sk}$$

i.e., gradient descent method has sublinear convergence rate O(1/k).

Remark:

• To get
$$\|\nabla f(\mathbf{x}_k)\|_2 \leq \epsilon$$
 for some k , it takes $O(\epsilon^{-2})$ iterations.

Theorem 2 (Stationarity Gap)

If f is nonconvex, differentiable, and L-smooth, then gradient descent with fixed step size $s \leq 1/L$ satisfies

$$\min_{t=0,\dots,k-1} \|\nabla f(\mathbf{x}_t)\|_2^2 \le \frac{2(f(\mathbf{x}_0) - f^*)}{sk}$$

i.e., gradient descent method has sublinear convergence rate O(1/k).

Proof. We know that:

$$f(\mathbb{X}_{k+1}) \leq f(\mathbb{X}_{k}) - s\left(1 - \frac{Ls}{2}\right) \||\mathbb{P}f(\mathbb{B}_{k})\|^{2} \implies$$

 $A(sv, o \leq s \in \frac{1}{2} \implies -s\left(1 - \frac{Ls}{2}\right) \leq -\frac{s}{2} \implies$
 $f(\mathbb{X}_{k+1}) - f(\mathbb{X}_{k}) \leq \frac{-s}{2} \||\mathbb{P}f(\mathbb{B}_{k})\|^{2} \qquad (1)$
Summing (1) from 0 to k-1.
 $f(\mathbb{X}_{k}) - f(\mathbb{X}_{0}) \leq -\frac{s}{2} \stackrel{\text{K-1}}{=} \||\mathbb{P}f(\mathbb{X}_{k})\|^{2} \leq -\frac{sk}{2} \min \left\||\mathbb{P}f(\mathbb{X}_{k})||^{2} \le \frac{sk}{2} \min \left\|\mathbb{P}f(\mathbb{X}_{k})||^{2} \le \frac{sk}{2} \min \left\|\mathbb{P}f(\mathbb{X}_{k})||^{2} \le \frac{sk}{2} \min \left\|\mathbb{P}f(\mathbb{P}f$

Strategy 2: Exact Line Search

Choose the step size s to do the "best" we can along the direction of $-\nabla f(\mathbf{x})$:

 $s = \arg \min_{t \ge 0} \frac{f(\mathbf{x} - t\nabla f(\mathbf{x}))}{dir fn}$ - $\nabla f(\mathbf{x}_{t+1})^{\mathsf{T}} \nabla f(\mathbf{x}_{t}) = -\nabla f(\mathbf{x}_{t} - \mathbf{f}) \nabla f(\mathbf{x}_{t})^{\mathsf{T}} \nabla f(\mathbf{x}_{t}) = 0$

• Usually it's too expensive to do this in each iteration.

Limitations:

• Can do 1-dim line search for s_k , taking minima of quadratic or cubic interpolations of f and ∇f at the last two values tried. Use brackets for reliability. Often finds suitable s_k within 3 attempts (see [Nocedal & Wright, 2006, Ch. 3])

Strategy 3: Inexact Line Search – Backtracking

One way to adaptively choose step size is to use backtracking line search

- First fix parameters $0 < \beta < 1$ and $0 < \alpha \le \frac{1}{2}$
- 2 At each iteration, start with s = 1, and while

 $f(\mathbf{x} - s\nabla f(\mathbf{x})) > f(\mathbf{x}) - \alpha s \|\nabla f(\mathbf{x})\|_2^2$

shink $s = \beta s$. Else, perform gradient descent update: $\mathbf{x}^+ = \mathbf{x} - s \nabla f(\mathbf{x})$

Remarks:

- Simple and tends to work well in practice (further simplification: just take $\alpha = \beta = 1/2$). But doesn't work for f nonsmooth
- Also referred to as Armijo's rule. Step size shrinking very aggressively
- Not checking the second Wolfe condition: the s_k thus identified is "within striking distance" of an s that's not too large

Backtracking Interpretation

Backtracking Example

Backtracking picks up roughly the right step size (12 outer iterations, 40 iterations in total):

Next Class

Stochastic Gradient Descent