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Recap the Very First Lecture

Mathematical optimization problem:

Minimize f0(x)

subject to fi(x)  0, i = 1, . . . ,m

x = [x1, . . . , xN ]> 2 RN : decision variables

f0 : RN ! R: objective function

fi : RN ! R, i = 1, . . . ,m: constraint fucntions

Solution or optimal point x
⇤ has the smallest value of f0 among all vectors that

satisfy the constraints

Watershed between Problem Hardness: Convexity
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Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima

Formally: Let D be the feasible domain defined by the constraints. If x 2 D
satisfies the following local condition: 9 d > 0 such that for all y 2 D satisfying
kx� yk2  d, we have f0(x)  f0(y). ) f0(x)  f0(y) for all y 2 D.

A crucial fact that would significantly reduce
the complexity in optimization!
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Convex Sets

Convex set: A set D 2 Rn such that

8x,y 2 D ) µx+ (1� µ)y 2 D, 80  µ  1

Geometrically, line segment joining any two points in D lies in entirely in D

Convex combination: A linear combination µ1x1 + · · ·+ µkxk for
x1, . . . ,xk 2 Rn, with µi � 0, i = 1, . . . , k and

Pk
i=1 µi = 1.

Convex hull: A set defined by all convex combinations of elements in a set D.
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Examples of Convex Sets

1) Norm balls: Radius r ball in lp norm Bp = {x 2 Rn : kxkp  r}
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Examples of Convex Sets

2) Hyperplane and haflspaces

Hyperplane: Set of the form {x|a>x = b} with a 6= 0

Halfspace: Set of the form {x|a>x  b} with a 6= 0

a is called “normal vector”
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Examples of Convex Sets

3) Polyhedron: {x : Ax  b}, whre A 2 Rm⇥n,  is component-wise inequality

Note:

{x : Ax  b,Cx = d} is also a polyhedron (Why?)

Polyhedron is an intersection of finite number of halfspaces and hyperplanes
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Examples of Convex Sets

Cones: K ✓ Rn such that x 2 K ) tx 2 K, 8t � 0

Convex Cones: A cone that is convex, i.e.,

x1,x2 2 K ) µ1x1 + µ2x2 2 K, 8µ1, µ2 � 0

Conic Combination: For x1, . . . ,xk 2 Rn, a linear combination µ1x1 + · · ·+ µkxk

with µi � 0, i = 1, . . . , k. Conic hull collects all conic combinations
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Examples of Convex Sets

Norm Cones: {(x, t) 2 Rd+1 : kxk  t} for some norm k · k (the norm cone
for l2 norm is referred to as second-order cone)

Normal Cone: Given any set C and at a boundary point x 2 C, we define

NC(x) = {g : g>(y � x)  0, 8y 2 C}

This is always a convex
cone, regardless of C

Positive Semidefnite Cone: Sn+ , {X 2 Sn : X ⌫ 0}, where X ⌫ 0 represents
X is positive semidefinite and Sn is the set of n⇥ n symmetric matrices.
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Key Properties of Convex Sets

Separating hyperplane theorem: Two disjoint convex sets have a separating
hyperplane between them

More precisely, if C and D are non-empty convex sets with C \D = ?, then
there exists a and b such that:

C ✓ {x : a>x  b}, D ✓ {x : a>x � b},
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Key Properties of Convex Sets

Supporting hyperplane theorem: A boundary point of a convex set has a
supporting hyperplane passing through it

More precisely, if C is a non-empty convex set and x0 2 @C, there exists a
vector a such that:

C = {x : a>(x� x0)  0}
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Operations That Preserve Convexity of Sets

Intersection: The intersection of convex sets is convex

Scaling and Translation: If C is convex, then aC + b , {ax+ b : x 2 C} is
also convex for any a and b.

A�ne image and preimage: If f(x) = Ax+ b and C is convex, then

f(C) , {f(x) : x 2 C}

is also convex. If D is convex, then

f�1(D) , {x : f(x) 2 D}

is also convex
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Convex Functions

Convex function: f(·) : Rn ! R is convex if dom(f) 2 Rn is convex and

f
�
µx+ (1� µ)y

�
 µf(x) + (1� µ)f(y)

for all µ 2 [0, 1] and for all x,y 2 dom(f).

In words, f lies below the line segment that joins any f(x) and f(y).

Concave function: f concave () �f convex
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Key Properties of Convex Functions

Epigraph characterization: A function f is convex if and only if its epigraph

ep(f) , {(x, µ) 2 dom(f)⇥ R : f(x)  µ}

is a convex set

Convex sublevel set: If f is convex, then its sublevel set

{x 2 dom(f) : f(x)  µ}

is convex for all µ 2 R (but the converse is not true)

Jensen’s inequality: If f is convex, then

f
�
µx1 + (1� µ)x2

�
 µf(x1) + (1� µ)f(x2)

for all x1,x2 2 dom(f) and 0  µ  1
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Other Important Characterizations of Convex Functions

First-order characterization: If f is di↵erentiable, then f is convex if and only
if dom(f) is convex, and

f(y) � f(x) +rf>(x)(y � x)

for all x,y 2 dom(f).

Implying an important consequence: rf(x) = 0 =) x minimizes f

Second-order characterization: If f is twice di↵erentiable, then f is convex if
and only if dom(f) is convex, and H(x) = r2f(x) ⌫ 0 for all x 2 dom(f)
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Important Convexity Notions

Strictly convex: f
�
µx+ (1� µ)y

�
< µf(x) + (1� µ)f(y), i.e., f is convex

and has greater curvature than a linear function

Strongly convex with parameter m: f(x)� m
2 kxk

2 is convex, i.e., f is at
least as curvy as a m-parameterized quadratic function

Note: strongly convex ) strictly convex ) convex, (converse is not true)

Similar notions for concave functions
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Important Examples of Convex/Concave Functions

Univariate functions:
I Exponential functions: eax is convex for all a 2 R
I Power functions: xa is convex if a 2 (�1, 0][ [1,1) and concave if a 2 [0, 1]
I Logarithmic functions: log(x) is concave for x > 0

A�ne function: a>x+ b is both concave and convex

Quadratic function: 1
2x

>
Qx+ b

>
x+ c is convex if Q ⌫ 0 (positive

semidefinite)

Least square loss function: ky �Axk22 is always convex (since A
>
A ⌫ 0)

Norm: kxk is always convex for any norm, e.g.,

I lp norm: kxkp = (
Pn

i=1 x
p
i )

1
p for p � 1, kxk1 = maxi=1,...,n{|xi|}

I Matrix operator (spectral) norm kXkop = �1(X)
Matrix trace (nuclear) norm kXktr =

Pr
i=1 �r(X), where

�1(X) � · · · � �r(X) � 0 are the singular values of X
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More Examples of Convex/Concave Functions

Indicator function: If C is convex, then its indicator function

C(x) =

(
0 x 2 C
1 x /2 C

is convex

Support function: For any set C (convex or not), its support function

⇤
C(x) = max

y2C
x
>
y

is convex

Max function: f(x) = max{x1, . . . , xn} is convex
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Operations That Preserve Convexity of Functions

Nonnegative linear combinations: f1, . . . , fm being convex implies
µ1f1 + · · ·+ µmfm is convex for any µ1, . . . , µm � 0

Pointwise maximization: If fi is convex for any index i 2 I, then

f(x) = max
i2I

fi(x)

is convex. Note that the index set I can be infinite

Partial minimization: If g(x,y) is convex in x,y and C is convex, then

f(x) = min
y2C

g(x,y)

is convex (the basis for ADMM, coordinate descent, ...)
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Examples of Composite Operations to Prove Convexity

Example 1: Let C be an arbitrary set. Show that maximum distance to C under an
arbitrary norm k · k, i.e., f(x) = maxy2C kx� yk is convex.

Proof.

Note that fy(x) = kx� yk is convex in x for any fixed y.

By pointwise maximization rule, f is convex.

Example 2: Let C be a convex set. Show that minimum distance to C under an
arbitrary norm k · k, i.e., f(x) = miny2C kx� yk is also convex.

Proof.

Note that f(x,y) = kx� yk is convex in both x and y.

C is convex by assumption.

By partial minimization rule, f is convex.
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More Operations That Preserve Convexity of Functions

A�ne composition: f is convex =) g(x) = f(Ax+ b) is convex

General composition: Suppose f = h � g, where g : Rn ! R, h : R ! R,
f : Rn ! R. Then:

I f is convex if h is convex & nondecreasing, g is convex
I f is convex if h is convex & nonincreasing, g is concave
I f is concave if h is concave & nondecreasing, g is concave
I f is concave if h is concave & nonincreasing, g is convex

How to remember these? Think of the chain rule when n = 1

f 00(x) = h00(g(x))g0(x)2 + h0(g(x))g00(x)
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Generalization

Vector-valued composition: Suppose that

f(x) = h(g(x)) = h(g1(x), . . . , gk(x))

where g : Rn ! Rk, h : Rk ! R, f : Rn ! R. Then:
I f is convex if h is convex & nondecreasing in each argument, g is convex
I f is convex if h is convex & nonincreasing in each argument, g is concave
I f is concave if h is concave & nondecreasing in each argument, g is concave
I f is concave if h is concave & nonincreasing in each argument, g is convex
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Example of Composite Operations to Prove Convexity

Log-sum-exp function: Show that g(x) = log(
Pk

i=1 exp(a
>
i x+ bi)) is convex,

where ai, bi, i = 1, . . . , k are fixed parameters (often called “Real Softmax” in ML
literature since it smoothly approximates maxi=1,...,k(a>i x+ bi).

Proof.

Note that it su�ces to prove f(x) = log(
Pn

i=1 exp(xi)) is convex (Why?)

According to second-order characterization, compute the Hessian to obtain:

r2f(x) = Diag{z}� zz
>

where (z)i = exi/(
Pn

l=1 e
xl). This matrix is diagonally dominant ) PSD.
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Next Class

Gradient Descent
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