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Outline

Today:
o Convex sets
@ Convex functions
o Key properties

@ Operations preserving convexity
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Recap the Very First Lecture

Mathematical optimization problem:

Minimize fo(x)
subject to  f;(x) <0, i=1,....,m

o x=[z1,...,zn]" € RY: decision variables
e fo: RN — R: objective function

o fi:RY 5 R,i=1,...,m: constraint fucntions

Solution or optimal point x* has the smallest value of fy among all vectors that
satisfy the constraints

Watershed between Problem Hardness: Convexity
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Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima

Formally: Let D be the feasible domain defined by the constraints. If x € D
satisfies the following local condition: 3 d > 0 such that for all y € D satisfying

[x —yll2 < d, we have fy(x) < fo(y). = fo(x) < fo(y) forally € D.

‘ A crucial fact that would significantly reduce
the complexity in optimization!

Convex Nonconvex
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Convex Sets

Convex set: A set D € R"” such that

Vx,y€D = ux+(1-pyeD, YV0O<pu<l

Geometrically, line segment joining any two points in D lies in entirely in D

Convex combination: A linear combination p1x3 + - -+ + ppxy for
X1,...,Xp € R®, with u; >0,7=1,...,k and Zle,ui =1.

Convex hull: A set defined by all convex combinations of elements in a set D.
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Examples of Convex Sets

1) Norm balls: Radius 7 ball in I, norm B, = {x € R™ : ||x||, < r}
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Examples of Convex Sets

2) Hyperplane and haflspaces
o Hyperplane: Set of the form {x|a”x = b} with a # 0

a
K

atz=1b

o Halfspace: Set of the form {x|aTx <b}witha#£0

\

az >b
\
afz <b =
@ a is called “normal vector”
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Examples of Convex Sets

i o . . .
3) Polyhedron: {x: Ax < b}, whre A € R™*", < is component-wise inequality
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Note: 7 \c i i

o {x:Ax<b,Cx= d} is also a polyhedron (Why?)
@ Polyhedron is an intersection of finite number of halfspaces and hyperplanes

U‘
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Examples of Convex Sets

Cones: CCR"suchthatxe K=txe kL, V>0

Convex Cones: A cone that is convex, i.e.,

x1,X0 €K = Xy + pexe €K, Vui,pue >0

oo o

Conic Combination: For x1,...,x; € R”, a linear combination p1xy + - -+ + prpXg
with p; > 0,4=1,...,k. Conic hull collects all conic combinations
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Examples of Convex Sets 2

X3

x,

e Norm Cones: {(x,t) € R : ||x|| <t} for some norm || - || (the norm cone

for I3 norm is referred to as second-order cone)

@ Normal Cone: Given any set C and at a boundary point x € C, we define

Ne(x)={g:g"(y —x) <0, Vy €C}

X

L

. This is always a convex
. cone, regardless of C

3y

e Positive Semidefnite Cone: ST £ {X € S" : X = 0}, where X = 0 represents
X is positive semidefinite and S is the set of n x n symmetric matrices.

reb boo meATIRS X Xve g

F s T X
emT: f(r&*d'f‘)l(,)i %0 ﬁrii,'! o2 E:x >0 @
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Key Properties of Convex Sets

@ Separating hyperplane theorem: Two disjoint convex sets have a separating
hyperplane between them

aTz>b aTz <b

@ More precisely, if C and D are non-empty convex sets with C N D = &, then
there exists a and b such that:

CC{x:a'x<b}, DC{x:a'x>Db},
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Key Properties of Convex Sets

@ Supporting hyperplane theorem: A boundary point of a convex set has a
supporting hyperplane passing through it
A

-

@ More precisely, if C is a non-empty convex set and xg € JC, there exists a
vector a such that:

C={x:a'(x—x) <0}
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Operations That Preserve Convexity of Sets

@ Intersection: The intersection of convex sets is convex @

e Scaling and Translation: If C is convex, then aC +b £ {ax+b:x € C} is
also convex for any a and b.

f(qlh\’ Leanslefim
o Affine image and preimage: If f(x) = Ax+ b and C is convex, then

fO) 2 {f(x):xeC}
is also convex. If D is convex, then
f7HD) £ {x: f(x) € D}

is also convex
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Convex Functions

e Convex function: f(-) : R™ — R is convex if dom(f) € R™ is convex and

flux+ (1= p)y) <pf(x)+ 1 —pw)fly)

for all 1 € [0,1] and for all x,y € dom(f).

rﬁs'\“’“'r)f?)(y.f(y))
AN i ) \
(. £ ))l 1{»"{‘“” |

n

o= — —
In words, f lies below the*me segment pkmga@ f(x) and f(y).

@ Concave function: f concave <= —f convex

A
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Key Properties of Convex Functions

@ Epigraph characterization: A function f is convex if and only if its epigraph

ep(f) = {(x, 1) € dom(f) x R: f(x) < i}

is a convex set

@ Convex sublevel set: If f is convex, then its sublevel set
.

{x € dom(f): f(x) < p}

is convex for all u € R (but the converse is not true)

= P

@ Jensen's inequality: If f is convex, then q
Fuxy + (1= p)x2) < pf(x1) + (1 -
for all x1,x2 € dom(f) and 0 < <1 |
X l
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Other Important Characterizations of Convex Functions

o First-order characterization: If f is differentiable, then f is convex if and only
if dom(f) is convex, and

Fy) 2 fx) + VT (x)(y —x)

for all x,y € dom(f).

Y
7

th
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skativre —

@ Implying an important consequence: V f(x) =0 = x minimizes f

Y
J423%)
@ Second-order characterization: If f is twice differentiable, then f is convex if
and only if dom(f) is convex, and H(x) = V2 f(x) = 0 for all x € dom(f)
i

+>

py,"
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Important Convexity Notions

e Strictly convex: f(ux+ (1 —p)y) < pf(x)+ (1 —p)f(y), i.e., fis convex
and has greater curvature than a linear function

e Strongly convex with parameter m: f(x) — 2[|x||* is convex, i.e., f is at
least as curvy as a m—param;terized quadratic function

(Hw) : Jﬁ)z +m -(-71(1)(@—!) * % Ilb;éll'.

o Note: strongly convex = strictly convex = convex, (converse is not true)

o Similar notions for concave functions N
%
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Important Examples of Convex/Concave Functions

@ Univariate functions:

x

» Exponential functions: €*® is convex for all a € R
» Power functions: z® is convex if a € (—o0, 0] U[1,00) and concave if a € [0, 1]
> Logarithmic functions: log(x) is concave for x > 0

o Affine function: a™x + b is both concave and convex

e Quadratic function: $x"Qx +b'x + ¢ is convex if Q = 0 (positive
semidefinite) % > foﬂ"‘)‘"’ convex.

@ Least square loss function: ||y > Ax||3 is always convex (since AT A = 0)
. = (4-A2) (4-Ax) > Q=£AA
o Norm: ||x|| is always conVex for any norm, e.g.”” <~ ~*

1
» I, norm: x|, = (301, &) for p > 1, ||X|leo = maxi=1,... n{|@i|}

» Matrix operator (spectral) norm || X||op = 01(X)
Matrix trace (nuclear) norm || X[l = > i, 0-(X), where
o1(X) > -+ > 0,(X) > 0 are the singular values of X
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More Examples of Convex/Concave Functions

@ Indicator function: If C is convex, then its indicator function

0 C “ ( ”
-/v]lc(x) - {oo i ; C 1 i
w2 . — o0
is convex mi i’( > m\n’{’f‘)"’ ﬂca) R

st

@ Support function: For any set C (convex or not), its support function

15 (x) —maxx

R i
Bl «%(ﬂqg%’@'{*ﬁ lg) pl.\g-(-u—r)m;‘ x»\}

e Max function: f :a max{xl,'q , T} is cpnvex 4 FMMZ‘, '9"'01“)
*—’_\_—_y-

(a? ‘Qemjm Tl pileople)
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Operations That Preserve Convexity of Functions

@ Nonnegative linear combinations: f1,..., f; being convex implies
p1f1+ -+ o fm is convex for any gy, ..., fhym >0

@ Pointwise maximization: If f; is convex for any index i € Z, then

% ax X .
ﬂt@P;‘J’q fo=masso  fONAD

is convex. Note that the index set Z can be infinite bl *v

@ Partial minimization: If g(x,y) is convex in x,y and C is convex, then
f(x) = ming(x,y)

ye

is convex (the basis for ADMM, coordinate descent, ...)
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Examples of Composite Operations to Prove Convexity

Example 1: Let C be an arbitrary set. Show that maximum distance to C under an
arbitrary norm || - ||, i.e., f(x) = maxycc ||x — y|| is convex.

Proof. F)= "'zg -yl = 4@( '[’4‘1)
o Note that fy(x) = ||X vl is convex in x for any fixed y.
@ By pointwise maximization rule, f is convex. O

Example 2: Let C be a convex set. Show that minimum distance to C under an
arbitrary norm | - ||, i.e., f(x) =

, minyec ||x — y|| is also convex.
Proof. @K

e Note that f(x,y) = ||[x — y|| is convex w both x and y. c
. . (7\)‘
@ C is convex by assumption. 'j'
e By partial minimization rule, f is convex. % 4) O

JKL (ECE@OSU) ECE 8101: Lecture 2-2 21/25



More Operations That Preserve Convexity of Functions

@ Affine composition: f is convex = g(x) = f(Ax + b) is convex

@ General composition: Suppose f = hog, where g : R" - R, h: R — R,
f:R® = R. Then:

= » fis convex if h_is convex & nondecreasing, g is convex
> f is convex if h is convex & nonincreasing, g is concave
» fis concave if h is concave & nondecreasing, g is concave
» fis concave if h is concave & nonincreasing, g is convex

How to remember these? Think of the chain rule when n =1

J"(@) = W(g(a))g' @) + D lale)g" (@) 20

20 20 >0 202
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Generalization

@ Vector-valued composition: Suppose that
f(x) = h(gx)) = h(g1(x),. .., gr(x))

Whereg:R"%Rk,h:Rk—)R,f:]R"—>R. Then: \/
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f is concave if h is concave & nonincreasing fn each argument) g is convex
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Example of Composite Operations to Prove Convexity
xl
—n’c—{;
e
=
Log-sum-exp function: Show that g(x) = log(Zf:1 exp(a] x + b;)) is convex,

where a;, b;, i = 1,..., k are fixed parameters (often called [Real Softmax”[in ML
literature since it smoothly approximates maxi:17,,_,k(ajx +b;).

Proof.

o Note that it suffices to prove f(x) = log(}.1 ; exp(z;)) is convex (Why?)
@ According to second-order characterization, compute the Hessian to obtain:

V2f(x) = Diag{z} —zz"

where (z); = e* /(3L €”). This matrix is diagonally dominant = PSD. []

wn - ) LsE \___
£ vt -ul"f‘f")“‘ﬁ
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Next Class

Gradient Descent
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