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Course Info (1)
Instructor: Jia (Kevin) Liu, Associate Professor

O�ce: 620 Dreese Labs

Email: liu@ece.osu.edu

Time: TTh 11:10AM – 12:30PM

Location: Baker Systems 140

O�ce Hour: Wed 5–6pm or by appointment

O�ce Hour Zoom Link:
https://osu.zoom.us/j/98827464068?

pwd=p2pWLylQGR3v1OMjmJXn4EpIdoVzMW.1

Websites: Carmen: announcements, grade management, course materials)
Schedule: https://kevinliu-osu.github.io/teaching/ECE8101_A24/

Prerequisite:
I Working knowledge of Linear Algebra and Probability
I Exposure to optimization and machine learning is a plus but not required
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Course Info (2)
Grading Policy:

Class Participation (10%): Top Hat (please install on your phone/tablet)

Paper Reading Assignment (60%)
I Assigned after each major topic set (approximately)
I May involve open-ended questions
I Must be typeset using LATEX in ICML format

Final Project (30%)
I Finished by a team of 2, but solo project is OK. Project proposal due soon

after spring break
I Project report due in the final exam week. Follow ICML format

(Could become a publication of yours! “Automatic A” if determined
publishable by instructor ,)

I 20 (?)-minute in-class presentation at the end of the semester. Final report
due by the end of final exam week (Dec. 11)

I Potential ideas of project topics (should contain something new & useful):

• Nontrivial extension of the results introduced in class
• Novel applications in your own research area
• New theoretical analysis/insights of an existing/new algorithm
• It is important that you justify its novelty!
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Course Info (3)

Course Materials:

No required textbook

Lecture notes are developed based on:

- Important & trending papers in the field

- [BV] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, 2004 (available online)

- [NW] J. Nocedal and S. Wright, “Numerical Optimization,” Ed. 2, Springer,

- [BSS] M. Bazarra, H.D. Sherali, and C.M. Shetty, “Nonlinear Programming:

Theory and Algorithms,” John Wiley & Sons, 2006

- [Nesterov] Y. Nesterov, “Introductory Lectures on Convex Optimization: A

Basic Course,” Springer, 2004
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Tentative Topics

Stochastic First-Order Nonconvex Optimization
- Fundamental of SGD; variance-reduced algorithms (SVRG, SAGA, SPIDER);
accelerated algorithms (STORM, Hybrid)

Federated and Decentralized Optimization
- Decentralized (stochastic) gradient descent, FedAvg, and variants

Complex-Structured Optimization
- Minimax optimization, bilevel optimization, multi-objective optimization ...

Zeroth-order Optimization
- One-point and two-point gradient estimator; zeroth-order SGD; zeroth-order
variance-reduced optimization methods ...

Geometry of Nonconvex Optimization
- Landscape of learning models, PL conditions, NTK ...
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Special Notes

Advanced, research-oriented
- There will be paper reading assignments and a term project

Goal: Prepare & train students for theoretical ML research

But will (briefly) mention relevant applications in ML:
- Deep Learning
- Big data analytics
- LLM, GenAI
- ...

Caveat: Focus on theory & proofs, rather than “coding/programming”
I No “one book fits all” ) Many readings required
I Will try to cover a wide range of major topics
I Background materials will be introduced but at very fast pace
I So, mathematical maturity is essential!
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How to Best Prepare for the Lectures?

Read, read, read!

Especially if you’re unfamiliar with the background (e.g., linear algebra,
probability, ...)

I Will quickly go over some related background in class

Appendices in [BV] and [BSS] provide some math background

You are welcome to ask questions in o�ce hours

But careful self-studies may still be needed
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Mathematical Optimization

Mathematical optimization problem:

Minimize f0(x)

subject to fi(x)  0, i = 1, . . . ,m

x = [x1, . . . , xN ]> 2 RN : decision variables

f0 : RN ! R: objective function

fi : RN ! R, i = 1, . . . ,m: constraint fucntions

Solution or optimal point x⇤ has the smallest value of f0 among all vectors that
satisfy the constraints
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Brief History of Optimization

Theory:

Early foundations laid by many all-time great mathematicians
(e.g., Newton, Gauss, Lagrange, Euler, Fermat, ...)

Convex analysis 1900–1970 (Duality by von Neumann, KKT conditions...)

Algorithms

1947: simplex algorithm for linear programming (Dantzig)

1970s: ellipsoid method [Khachiyan 1979], 1st polynomial-time alg. for LP

1980s & 90s: polynomial-time interior-point methods for convex optimization
[Karmarkar 1984, Nesterov & Nemirovski 1994]

since 2000s: many methods for large-scale convex optimization

Applications

before 1990: mostly in operations research, a few in engineering

since 1990: many applications in engineering (control, signal processing,
networking and communications, circuit design,...)

since 2000s: machine learning
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Solving Optimization Problems

General optimization problems

I Very di�cult to solve (NP-hard in general)

I Often involve trade-o↵s: long computation time, may not find an optimal
solution (approximation may be acceptable in practice)

Exceptions: Problems with special structures

I Linear programming problems

I Convex optimization problems

I Some non-convex optimization problems with strong-duality

Watershed between Problem Hardness: Convexity

I This course focuses on nonconvex problems arising from ML context
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Applying Optimization Tools in Machine Learning

Linear Regression

Variable Selection & Compressed Sensing

Support Vector Machine

Logistic Regression (+ Regularization)

Matrix Completion

Deep Neural Network Training

Reinforcement Learning

Distributed/Federated/Decentralized
Learning

LLM Pretraining and Finetuning

...
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Example 1: Linear Regression (Convex)

Minimize� ky �X�k22

Given data samples: {(xi, yi), i = 1, . . . ,m}, where xi 2 Rn, 8i
Find a linear estimator: y = �>x, so that “error” is small in some sense

Let X , [x1, . . . ,xm]> 2 Rm⇥n, y , [y1, . . . , ym]> 2 Rm

Linear algebra for k · k2: �⇤ = (X>X)�1X>y (analytical solution)

Computation time proportional to n2m (less if structured)

Stochastic gradient if m,n are large
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Example 2: Support Vector Machine (Convex)

Given data samples: {(xi, yi), i = 1, . . . ,m}
I xi 2 Rn called “feature vectors”, 8i
I yi 2 {�1,+1} are “labels”

Linear classifier: f(x) = sgn(w>x+ b):
I w 2 Rn: weight vector for features
I b 2 R: Some “bias”

Goal: To find a pair (w, b) to minimize a weighted sum such that
I Minimize classification error on training samples
I Robust to random noise in the training samples

Minimize
w,b,✏

1

2
kwk2 + C

mX

i=1

✏i

subject to yi(w
>xi + b) � 1� ✏i, ✏i � 0, i = 1, . . . ,m
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Optimization Algorithms for SVM

Coordinate Descent [Platt, 1999; Chang and Lin, 2011]

Stochastic gradient [Bottou and LeCun, 2004; Shalev-Shwartz et al., 2007]

Higher-order methods (interior-point) [Ferris and Munson, 2002; Fine and
Scheinberg, 2001]; (on reduced space) [Joachims, 1999]

Shrink Algorithms [Duchi and Singer, 2009; Xiao, 2010]

Stochastic gradient + shrink + higher-order [Lee and Wright, 2012]
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Nonconvex Optimization Problems in ML
Lower complexity bound for solving general nonconvex problems

I Consider, w.l.o.g., minx2[0,1]d f(x)
I f is nonconvex and L-Lipschitz-continuous, with global optimal f⇤ > �1
I To find an ✏-approximate solution x̂ (i.e., f(x̂)� f⇤  ✏), number of iterations

required: ⌦(Ld✏�d) (exponential)

Several ways to relax this challenging goal:
I Finding hidden convexity or reformulate into an equivalent convex problem

F Need to exploit special problem structure as much as possible
F However, solution approaches cannot be generalized

I Change the goal to finding a stationary point or a local extremum
F Often possible to obtain FO methods with polynomial dependence of the

complexity on the dimension of the problem and desired accuracy

I Identify a class of problems:
F General enough to characterize a wide range of applications (in ML)
F Allow one to obtain global performance guarantees of an algorithm
F E.g., Polyak-Lojasiewicz condition (linear convergence),

↵-weakly-quasi-convexity (sublinear convergence), etc.
I But what if gradients are hard to obtain?

F E.g., reinforcement learning, blackbox adversarial attacks on DNN?
F Zeroth-order or derivative-free methods
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Tractable Nonconvex Optimization Problems in ML

Problems with hidden convexity or analytic solutions
I Eigen-problems (e.g., PCA, multi-dimensional scaling, ...)
I Non-convex proximal operators (e.g., Hard-thresholding, Potts minimization)
I Some discrete problems (binary graph segmentation, discrete Potts

minimization, nearly optimal K-means)
I Infinite-dimensional problems (smoothing splines, locally adaptive regression

splines, reproducing kernel Hilbert spaces)
I Non-negative matrix factorization (NMF)
I Compressive sensing with `1 regularization

Problems with (global) convergence results
I Phase retrieval problem
I Low-rank matrix completion
I Deep learning

Problems with certain properties of symmetry
I Rotational symmetry, discrete symmetry, etc.
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Example 3: Compressive Sensing (Nonconvex)

Interested in solving undetermined systems of linear equations:

Estimate x 2 Rn from linear measurements b = Ax 2 Rm, where m ⌧ n.

Seems to be hopelessly ill-posed, since more unknowns than equations...

Or does it?
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A Little History of Compressive Sensing (CS)

Name coined by David Donoho

Pioneered by Donoho and Candès, Tao and Romberg in 2004
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Sensing and Signal Recovery

Conventional paradigm of data acquisition: Acquire then compress

Q: Why compression works?

A: Quite often, there’s only marginal loss in “quality” between the raw data and
its compression form.

Q: But still, why marginal loss?
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Sparse Representation

Sparsity: Many real world data admit sparse representation. The signal
s 2 Cn is sparse in a basis � 2 Cn⇥n if

s = �x and x 2 Rn only has very few non-zero elements

For example, images are sparse in the wavelet domain

The # of large coe�cients in the wavelet domain is small ) compression
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Compressed Sensing: Compression on the Fly!

Q: Could we directly compress data and then reconstruct?

yi = hai,xi, i = 1, . . . ,m

Goal: To learn (recover) x’s value through some given (noisy) samples yi?

Mathematically, this gives rise to an underdetermined system of equations,
where the signal of interests is sparse

JKL (ECE@OSU) ECE 8101: Lecture 1 21 / 31

RIP .: A ,
EGO

X
=
last=

IHOSAll

-2y*



Sparse Recovery

In optimization, CS can be written in the form of:

Minimize
x2Rn

��(x) , f(y,�;x) + �kxk1

In machine learning context, questions of interests include:

How to design the measurement/sampling matrix �?

What are the e�cient algorithms to search for x?

Are they stable under noisy inputs?

How many measurements/samples are necessary/su�cient (i.e., size of y)?

Insight: Turns out m = ⌦(log(n)) random samples will su�ce
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Some Optimization Algorithms for Compressed Sensing

Shrink algorithms (for l1 term) [Wright et al., 2009]

Accelerated gradient [Beck and Teboulle, 2009b]

ADMM [Zhang et al., 2010]

Higher-order: Reduced inexact Newton [Wen et al., 2010]; Interior-point
[Fountoulakis and Gondzio, 2013]
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Example 4: Matrix Completion (Nonconvex)

In 2006, Netflix o↵ered $1 million prize to improve movie rating prediction

How to estimate the missing ratings?

About a million users, and 25,000 movies, with sparsely sampled ratings

In essence, a low-rank matrix completion problem
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Low-Rank Matrix Completion

Completion Problem: Consider M 2 Rn1⇥n2 to represent Netflix data, we
may model it through factorization:

In other words, the rank r of M is much smaller than its dimension
r ⌧ min{n1, n2}
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Low-Rank Matrix Completion

In optimization, the low-rank matrix completion problem can be written as:

Minimize
X

rank(X)

subject to (X)ij = (M)ij , 8i, j 2 observed entries

In machine learning context, questions of interests include:

What are the e�cient algorithms to search for X?

Are they stable under noisy inputs and outliers?

How many samples are necessary/su�cient (i.e., size of (M)i,j)?

Insight: Turns out m = ⌦(rmax{n1, n2} log2(max{n1, n2})) samples will su�ce
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Some Optimization Algorithms for Matrix Completion

(Block) Coordinate Descent [Wen et al., 2012]

Shrink [Cai et al., 2010a; Lee et al., 2010]

Stochastic Gradient [Lee et al., 2010]
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Example 5: Phase Retrieval (Nonconvex)

A classical topic from at least 1980s:
I Recovery of a function given magnitude of its Fourier transform
I Applications: optimal imaging, electron microscopy, crystallography, etc.

Recover an x⇤ 2 Cd from a phase-less measurements:

yk = |hak,xi|2, k = 1, . . . ,M,

where ak denotes some measurement vectors. The phase-retrieval problem
can be formulated as an empirical risk minimization (ERM): problem

min
x

MX

k=1

(yk � |hak,xi|2)2.

Phase retrieval is nonconvex and unclear how to find a global minimum
I Provable convergence result: [Candes et al. ’15], [Yang et al. ’19], [Wu and

Rebeschini, ’20], [Tan and Vershynin, ’16], [Chen et al. ’19]
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Example 6: Deep Learning (Nonconvex)

Example: Train an L-layer fully-connected NN for supervised learning:

min
W

(
F (W) , 1

m

mX

i=1

`(yi, f(xi,W))

)
,

I W = {W1, . . . ,WL}, with Wi 2 Rni⇥ni�1 , are weights of NN model
I {(xi,yi)

m
i=1}, xi 2 Rn0 , are training samples

I `(·, ·) is a loss function (e.g., quadratic or logistic loss)
I NN model can be written as:

f(xi,W) = WL�(WL�1�(. . . ,�(W2�(W1xi)) . . .)),

where �(·) is scalar-valued and called activation function.
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Example 6: Deep Learning (Nonconvex)

Landscape of deep neural networks
I Loss surfaces of ResNet-56 with/without skip connections [Li et al. ’18]

Training NN is NP-complete in general [Blum and Rivest, ’89], but:
I All local minima are global for 1-layer NN: [Soltanolkotabi et al. ’18],

[Hae↵ele and Vidal, ’17], [Feizi et al. ’17]
I GD/SGD converge to global min for linear networks [Arora et al. ’18], [Ji and

Telgarsky, ’19], [Shin, ’19], wide over-parameterized networks [Allen-Zhu et
al., ’19], and pyramid networks [Nguyen and Mondelli, ’19]
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Next Class...

We will start from some related math background.
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