COM S 578X: Optimization for Machine Learning

Lecture Note 9: Stochastic (Sub)Gradient Descent

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science lowa State University, Ames, Iowa, USA

Fall 2019

Outline

In this lecture:

- Noisy unbiased subgradient
- Stochastic subgradient method
- Convergence results
- Online learning and adaptive signal processing
- Stochastic gradient descent for artificial neural networks

Noisy Unbiased Subgradient

- Random vector $\tilde{\mathbf{g}} \in \mathbb{R}^{n}$ is a noisy unbiased subgradient for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{x} if for all \mathbf{z}

$$
f(\mathbf{z}) \geq f(\mathbf{x})+(\mathbb{E}\{\tilde{\mathbf{g}}\})^{\top}(\mathbf{z}-\mathbf{x})
$$

i.e., $\mathbb{E}\{\tilde{\mathbf{g}}\} \in \partial f(\mathbf{x})$

- Can be viewed as $\tilde{\mathbf{g}}=\mathbf{g}+\mathbf{n}$, where $\mathbf{g} \in \partial f$ and $\mathbb{E}\{\mathbf{n}\}=\mathbf{0}$
- \mathbf{n} can be interpreted as error in computing \mathbf{g}, measurement noise, Monte Carlo sampling errors, etc.
- If \mathbf{x} is also random, $\tilde{\mathbf{g}}$ is a noisy unbiased subgradient at \mathbf{x} if

$$
f(\mathbf{z}) \geq f(\mathbf{x})+(\mathbb{E}\{\tilde{\mathbf{g}} \mid \mathbf{x}\})^{\top}(\mathbf{z}-\mathbf{x}), \quad \forall \mathbf{z}
$$

holds almost surely, i.e., $\mathbb{E}\{\tilde{\mathbf{g}} \mid \mathbf{x}\}) \in \partial f(\mathbf{x})$ w.p.1.

Stochastic Subgradient Method

- Consider $\min _{\mathbf{x} \in \mathbb{R}} f(\mathbf{x})$. Following standard GD or SGD, we should do:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \mathbb{E}\left\{\mathbf{g}_{k}\right\}
$$

- However, $\mathbb{E}\left\{\mathbf{g}_{k}\right\}$ is difficult to compute: Unknown distribution, too costly to sample at each iteration k, etc.
- Idea: Simply use a noisy unbiased subgradient to replace $\mathbb{E}\left\{\mathbf{g}_{k}\right\}$:
- The stochastic subgradient method works as follows:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-s_{k} \tilde{\mathbf{g}}_{k}
$$

- \mathbf{x}_{k} is the k-th iterate
- $\tilde{\mathbf{g}}_{k}$ is any noisy subgradient of at \mathbf{x}_{k}, i.e., $\mathbb{E}\left\{\tilde{\mathbf{g}}_{k} \mid \mathbf{x}_{k}\right\}=\mathbf{g}_{k} \in \partial f\left(\mathbf{x}_{k}\right)$
- s_{k} is the step size
- Let $f_{\text {best }}^{(k)}=\min \left\{f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{k}\right)\right\}$

Historical Perspective

- Also referred to as stochastic approximation in the literature, first introduced by [Robbins, Monro '51] and [Keifer, Wolfowitz '52]
- The original work [Robbins, Monro '51] is motivated by finding a root of a continuous function:

$$
f(\mathbf{x})=\mathbb{E}\{F(\mathbf{x}, \theta)\}=0,
$$

where $F(\cdot, \cdot)$ is unknown and depends on a random variable θ. But the experimenter can take random samples (noisy measurements) of $F(\mathbf{x}, \theta)$

Historical Perspective

- Robbins-Monro: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+s_{k} Y\left(\mathbf{x}_{k}, \theta\right)$, where:
- $\mathbb{E}\left\{Y(\mathbf{x}, \theta) \mid \mathbf{x}=\mathbf{x}_{k}\right\}=f\left(\mathbf{x}_{k}\right)$ is an unbiased estimator of $f\left(\mathbf{x}_{k}\right)$
- Robbins-Monro originally showed convergence in L^{2} and in probability
- Blum later prove convergence is actually w.p.1. (almost surely)
- Key idea: Diminishing step-size provides implicit averaging of the observations
- Robbins-Monro's scheme can also be used in stochastic optimization of the form $f\left(\mathbf{x}^{*}\right)=\min _{\mathbf{x}} \mathbb{E}\{F(\mathbf{x}, \theta)\}$ (equivalent to solving $\nabla f\left(\mathbf{x}^{*}\right)=0$)
- Stochastic approximation (or more generally, stochastic (sub) gradient) has found applications in many areas
- Adaptive signal processing
- Dynamic network control and optimization
- Statistical machine learning
- Workhorse algorithm for deep neural networks (will see an example)

Assumptions and Step Size Rules

- $f^{*}=\inf _{x} f\left(\mathbf{x}_{k}\right)>-\infty$, with $f\left(\mathbf{x}^{*}\right)=f^{*}$
- $\mathbb{E}\left\{\left\|\tilde{\mathbf{g}}_{k}\right\|_{2}^{2}\right\} \leq G^{2}$, for all k
- $\mathbb{E}\left\{\left\|\mathrm{x}_{0}-\mathrm{x}^{*}\right\|_{2}^{2}\right\} \leq R^{2}$

Commonly used step-size strategies:

- Constant step-size: $s_{k}=s, \forall k$
- Step-size is square summable, but not summable

$$
s_{k}>0, \forall k, \quad \sum_{k=1}^{\infty} s_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} s_{k}=\infty
$$

Note: This is stronger than needed, but just to simplify proof

Convergence Results

- Convergence in expectation:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left\{f_{\text {best }}^{(k)}\right\}=f^{*}
$$

- Convergence in probability: for any $\epsilon>0$,

$$
\lim _{k \rightarrow \infty} \operatorname{Pr}\left\{\left|f_{\text {best }}^{(k)}-f^{*}\right|>\epsilon\right\}=0
$$

- Almost sure convergence

$$
\operatorname{Pr}\left\{\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}=f^{*}\right\}=1
$$

- See [Kushner, Yin '97] for a complete treatment on convergence analysis

Convergence in Expectation and Probability

Proof Sketch:

- Key quantity: Expected squared Euclidean distance to the optimal set. Let x^{*} be any minimzer of f. We can show that

$$
\mathbb{E}\left\{\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|_{2}^{2} \mid \mathbf{x}_{k}\right\} \leq\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|_{2}^{2}-2 s_{k}\left(f\left(\mathbf{x}_{k}\right)-f^{*}\right)+s_{k}^{2} \mathbb{E}\left\{\left\|\tilde{\mathbf{g}}_{k}\right\|_{2}^{2} \mid \mathbf{x}_{k}\right\}
$$

- which can further lead to

$$
\min _{i=1, \ldots, k}\left\{\mathbb{E}\left\{f\left(\mathbf{x}_{i}\right)\right\}-f^{*}\right\} \leq \frac{R^{2}+G^{2}\|s\|^{2}}{2 \sum_{i=1}^{k} s_{i}}
$$

- The result $\min _{i=1, \ldots, k} \mathbb{E}\left\{f\left(\mathbf{x}_{i}\right)\right\} \rightarrow f^{*}$ simply follows from the divergent step-size series rule

Convergence in Expectation and Probability

- Jensen's inequality and concavity of minimum yields

$$
\mathbb{E}\left\{f_{\text {best }}^{(k)}\right\}=\mathbb{E}\left\{\min _{i=1, \ldots, k} f\left(\mathbf{x}_{i}\right)\right\} \leq \min _{i=1, \ldots, k} \mathbb{E}\left\{f\left(\mathbf{x}_{i}\right)\right\}
$$

Therefore, $\mathbb{E}\left\{f_{\text {best }}^{(k)}\right\} \rightarrow f^{*}$ (convergence in expectation)

- Convergence in expectation also implies convergence in probability: By Markov's inequality, for any $\epsilon>0$,

$$
\operatorname{Pr}\left\{f_{\text {best }}^{(k)}-f^{*} \geq \epsilon\right\} \leq \frac{\mathbb{E}\left\{f_{\text {best }}^{(k)}-f^{*}\right\}}{\epsilon}
$$

i.e., RHS goes to 0 , which proves convergence in probability.

Example: Piecewise Linear Minimization

$$
\text { Minimize } \quad f(\mathbf{x})=\min _{i=1, \ldots, m}\left\{\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}\right\}
$$

Using stochastic subgradient algorithm with noisy subgradient

$$
\tilde{\mathbf{g}}_{k}=\mathbf{g}_{k}+\mathbf{n}_{k}, \quad \mathbf{g}_{k} \in \partial f\left(\mathbf{x}_{k}\right),
$$

where \mathbf{n}_{k} is independent zero mean random variables

Example: Piecewise Linear Minimization

Problem instance: $n=20$ variables, $m=100$ terms, $f^{*} \approx 1.1, s_{k}=1 / k, \mathbf{n}_{k}$ are i.i.d. $\mathcal{N}(0,0.05 \mathbf{I})(25 \%$ noise since $\|\mathbf{g}\| \approx 4.5)$

Example: Piecewise Linear Minimization

Average and standard deviation for $f_{\text {best }}^{(k)}-f^{*}$ over 100 realizations

Example: Piecewise Linear Minimization

Empirical distributions of $f_{\text {best }}^{(k)}-f^{*}$ at $k=250, k=1000$, and $k=5000$

Example: Online Sequential Learning

- $(\mathbf{x}, y) \in \mathbb{R}^{n} \times \mathbb{R}$ have some joint distribution
- Find weight vector $\mathbf{w} \in \mathbb{R}^{n}$ such that $\mathbf{w}^{\top} \mathbf{x}$ is a good estimator of y
- Choose \mathbf{w} to minimize expected value of a convex loss function L

$$
J(\mathbf{w})=\mathbb{E}\left\{L\left(\mathbf{w}^{\top} \mathbf{x}-y\right)\right\}
$$

- $L(u)=u^{2}$: mean-square error
- $L(u)=|u|$: mean-absolute error
- At each step (i.e., each iteration), we are given a sample (x_{k}, y_{k}) drawn from the distribution

Example: Online Sequential Learning

- Noisy unbiased subgradient of J at \mathbf{w}_{k}, based on sample $\left(\mathbf{x}_{k+1}, y_{k+1}\right)$:

$$
\tilde{\mathbf{g}}_{k}=L^{\prime}\left(\mathbf{w}_{k}^{\top} \mathbf{x}_{k+1}-y_{k+1}\right) \mathbf{x}_{k+1}
$$

where L^{\prime} denotes the derivative or a subgradient of L

- Online algorithm:

$$
\mathbf{w}_{k+1}=\mathbf{w}_{k}-s_{k} L^{\prime}\left(\mathbf{w}_{k}^{\top} \mathbf{x}_{k+1}-y_{k+1}\right) \mathbf{x}_{k+1}
$$

- For $L(u)=u^{2}$, gives the LMS (least mean-square) algorithm
- For $L(u)=|u|$, gives the sign algorithm
- $\mathbf{w}_{k}^{\top} \mathbf{x}_{k+1}-y_{k+1}$ is referred to as the predictor error

Example: Mean Square Error Minimization

Problem instance: $n=10,(\mathbf{x}, y) \sim \mathcal{N}(0, \boldsymbol{\Sigma})$, and $s_{k}=1 / k$

One More Example

Artificial Neural Networks ...

Convergence of R.V.

1. Convergence in diatr. (weak convergence):

A seq. of (real-valued) r.v. $\left\{X_{n}\right\}$ comverpes in distr. to X if $\lim _{n \rightarrow \infty} F_{n}\left(X_{n}\right)=F(X)$, where F_{n} and F are colf of X_{n} and X, resp. Denote as: $X_{n} \xrightarrow{D} X$.
2. Convergance in prob. to a r.v.:
$\left\{X_{n}\right\}$ convergas in prob. to a r.v. X if $\forall \varepsilon>0$, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|X_{n}-X\right|>\varepsilon\right\}=0$. Denote as: $X_{n} \xrightarrow{p} X$.
3. Aluovit sure convergence ($p t$-wise convergence in real analysis): $\left\{X_{n}\right\}$ converpes a.s. (a.e., or w.p.l, or strougly) to X if $\operatorname{Pr}\left\{\lim _{n \rightarrow \infty} X_{n}=X\right\}=1$. Denote as: $X \xrightarrow{\text { a.s. }} X$
4. Convergance in expectation: Given $r \geqslant 1,\left\{x_{n}\right\}$ converges on r-th mean to r.v. X of r-th absolute moments $\mathbb{E}\left\{\left|X_{n}\right|^{r}\right\}$ and $\mathbb{E}\left\{|X|^{r}\right\}$ exist and $\lim _{n \rightarrow \infty} \mathbb{E}\left\{\left|X_{n}-X\right|^{r}\right\}=0$. Penote as : $X_{n} \xrightarrow{L^{r}} X$.

* $r=1$: X_{n} converges in mean to X.
* $r=2$: … mean square to X.

The: If $\mathbb{E}\left\{\left\|\tilde{q}_{k}\right\|_{2}\right\} \leq G, \forall k, \mathbb{E}\left\{\left\|x_{1}-\underline{x}^{*}\right\|_{2}\right\} \leq R$, and stop-sizes $\left\{s_{k}\right\}_{k=1}^{\infty}$ satiety: $s_{k}>0, k k, \sum_{k=1}^{\infty} s_{k}^{2}=B<\infty$, $\sum_{k=1}^{\infty} s_{k}=\infty$, then we have:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left\{f_{\text {beet }}^{(k)}\right\}=f^{*} \text { and } \lim _{k \rightarrow \infty} \operatorname{pr}\left\{\left|f_{\text {best }}^{(k)}-f^{*}\right|>\varepsilon\right\}=0, \forall \varepsilon>0 \text {. }
$$

Proof. Consider the conditional expected square Edidean dist:

$$
\begin{aligned}
& \mathbb{E}\left\{\left\|\underline{x}_{k+1}-\underline{x}^{*}\right\|_{2}^{2} \mid \underline{x}_{k}\right\}=\mathbb{E}\left\{\left\|\underline{x}_{k}-s_{k} \tilde{g}_{k}-\underline{x}^{*}\right\|_{2}^{2} \mid \underline{x}_{k}\right\} \\
& =\mathbb{E}\left\{\left\|\underline{x}_{k}-\underline{x}^{*}\right\|_{2}^{2}+s_{k}^{2}\left\|\underline{g}_{k}\right\|_{2}^{2}-2 s_{k} \tilde{g}_{k}^{\top}\left(\underline{x}_{k}-x^{*}\right) \mid \underline{x}_{k}\right\} \\
& =\left\|\underline{x}_{k}-\underline{x}^{*}\right\|_{2}^{2}+s_{k}^{2} \mathbb{E}\left\{\left\|g_{k}\right\|_{2}^{2} \mid \underline{x}_{k}\right\}-2 s_{k} \mathbb{E}\left\{\tilde{g}_{k} \mid \underline{x}_{k}\right\}^{\top}\left(\underline{x}_{k}-x^{*}\right) \\
& \leq\left\|\underline{x}_{k}-\underline{x}^{*}\right\|_{2}^{2}+s_{k}^{2} \mathbb{E}\left\{\left\|g_{k}\right\|_{2}^{2} \mid \underline{x}_{k}\right\}-2 s_{k}\left(f\left(x_{k}\right)-f^{*}\right) \\
& (*)
\end{aligned}
$$

where $(*)$ follows from $\mathbb{E}\left\{\tilde{q}_{k} \mid \underline{x}_{k}\right\}=g_{k} \in \partial f\left(x_{k}\right)$
Hence, $f\left(x^{*}\right) \geqslant f\left(x_{k}\right)+\mathbb{E}\left\{\tilde{q}_{k} \mid x_{k}\right\}^{\top}\left(\underline{x}^{x}-x_{k}\right)$

$$
\Rightarrow-\mathbb{E}\left\{\tilde{f}_{k} \mid \underline{x}_{k}\right\}^{\top}\left(\underline{x}_{k}-z^{*}\right) \leq-\left(f\left(x_{k}\right)-f^{*}\right)
$$

Note: \underline{x}_{k+1} only depends on \underline{x}_{k} and cond. index. of

$$
\begin{aligned}
& x_{k-1}, \cdots, \underline{x}_{1} . \\
& \mathbb{E}\left\{\left\|x_{k+1}-x_{3}^{*}\right\|_{2}^{2} \mid x_{k}\right\}=\mathbb{E}\left\{\left\|x_{k+1} x^{*}\right\|_{2}^{2} \mid \underline{x}_{k}, \cdots, x_{1}\right\}
\end{aligned}
$$

Take expectation over joint distr. of $\left\{x_{k}, \cdots, x_{1}\right\}$ yields:

$$
\begin{aligned}
\mathbb{E}\left\{\left\|x_{k+1}-\underline{x}^{*}\right\|_{2}^{2}\right\} & \leq \mathbb{E}\left\{\left\|\underline{x}_{k}-x^{*}\right\|_{2}^{2}\right\}-2 s_{k}\left[\mathbb{E}\left\{f\left(x_{k}\right)-f^{*}\right\}\right] \\
& +s_{k}^{2} \mathbb{E}\left\{\left\|\tilde{g}_{k}\right\|_{2}^{2}\right\} .
\end{aligned}
$$

Apply this process recursively, noting $\mathbb{E}\left\{\left\|\tilde{F}_{l}\right\|_{2}^{2}\right\} \leq G^{2}$:

$$
\begin{aligned}
& \mathbb{E}\left\{\left\|x_{k n}-s^{*}\right\|_{2}^{2}\right\} \leq \mathbb{E}\left\{\left\|x_{1}-x^{*}\right\|_{2}^{2}\right\}-2 \sum_{i=1}^{k} s_{i} \frac{\left(\mathbb{E}\left\{f\left(x_{i}\right)\right\}-f^{*}\right)}{\geqslant \min _{i=1,-, k} \mathbb{E}\left\{f\left(x_{i}\right)\right\}} \\
&+G^{2} \sum_{k=1}^{\infty} s_{k}^{2}
\end{aligned} \quad \begin{aligned}
\Rightarrow \min _{i=1, \cdots, k}\left\{\mathbb{E}\left\{f\left(x_{k}\right)\right\}-f^{*}\right\} \leqslant \frac{R^{2}+G^{2} B}{2 \sum_{i=1}^{G} s_{i} k_{\infty}} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

So, we can conclude that $\min _{i=1, \ldots, k} \mathbb{I}\left\{f\left(x_{i}\right)^{2}\right\} \rightarrow f^{*}$. in HWy Claim: The $f_{n} g(y) \triangleq \min _{i=1,-k}\left\{y_{i}\right\}$ is concave, $\forall y \in \mathbb{R}^{k}$ Therefore, by Jensen's ina. Jensen's inc: if f is convex, In prob:

$$
\begin{aligned}
& \text { In prob: } \\
& * f f \text { convex: } f(\mathbb{E} x) \leqslant \mathbb{E} f(x)
\end{aligned}
$$

* - concave

$$
\begin{aligned}
\text { for } \mu \in[0,1]: & f\left(\mu x_{1}+(1-\mu) x_{2}\right) \leq \mu f\left(x_{1}\right) \\
& +(1-\mu) f\left(x_{2}\right)
\end{aligned}
$$

$$
\mathbb{E} f_{\text {best }}^{(k)}=\mathbb{E}\{\underbrace{\left\{\min _{i=1,-k} f\left(x_{i}\right)\right.}_{\text {concave }}\} \leqslant \prod_{\text {Jonsen }} \leq \min _{i=1, \ldots, k} \mathbb{E}\left\{f\left(x_{i}\right)\right\} \rightarrow f^{*},
$$

i.e., convergance in expectution.

Use Makov's Ineq. (If X is non-neg. r.v.

$$
\operatorname{Pr}\left\{f_{\text {bett }}^{(k)}-f^{*} \geq \varepsilon\right\} \leq \frac{\operatorname{Er}\left\{f_{\text {beit }}^{(k)}-f^{*}\right\} \rightarrow 0 \text { as } k \rightarrow \infty .}{\varepsilon} 0,
$$

So, we get convergence in prop.

Neural Networks

- Aistory:
* Roserblatt: 1958 "Mark-1 perceptron" (linear classifier).
* Widrow - ltooff: 1960's "Adaline/Madoline" (Multi-layer percoptron)

Nonlinear actioation, however backprop.

* Rumelhart-Ginton-Williams: 1986 BP (Nature). 4-page.
* Yan LeCan 1989: CNN.
* Hinefon - Salakhudinov 2006: Daep learning.
restricted Boltzman machine
* Krizevsky, Sulskerer, Hinton 2012: (~ 2590).
"AlexNet": Deap CNN. ImageNet 12\% 2015, ResNet. (A) GPN-based CNN.
- Neworn: A nonlinear $f n: \sigma: \mathbb{R} \rightarrow \mathbb{R}$

ReLU: $\max (0, x)$
leaky Rell ! $\max \{\alpha x, x\}$ $\alpha \in[1,1\rangle$.

$\tanh (x)=-i \tan (i x)$ "hyperboles tangent".

* Neuron structure:

10. Summation always assumed.
2°. Bins b is important: eig.0 lat σ be $\operatorname{sign}(t)$, then:

$$
\begin{cases}+1, & \text { if } w^{\top} x \geqslant-b \\ -1, & \cdots<-b\end{cases}
$$

$3^{0}-\underline{w}^{\top} \underline{x}+b$: is hyperplane. A single newoon divides input space in 2 parts.

Universal Approx. Theorem (UAT).
In: n-dim unit cube $[0,1]^{n} \quad f(x) \in C\left(I_{n}\right)$ to be approximated. $C\left(I_{n}\right)$: space of cont. fir on I_{n}.
Thu (Cybenko'sq): Let σ be any cont. nonlinear fr, the finite sum of the form: $G(\underline{x})=\sum_{i=1}^{N} \alpha_{i} \sigma\left(\underline{\omega}_{i}^{\top} \underline{\underline{x}}+b_{i}\right)$ is dense in $C\left(I_{n}\right)$, i.e., given any $\varepsilon>0$, there must \exists a $G(\underline{x})$ of the above form, st. $|G(x)-f(x)|<\varepsilon, \forall x \in I n$

* Not specific choice of activation foe, but roother the architecture of NN thant gives the potential of being a universal learning machine.
* σ : cont. nonlín.
otherwise, no richness.

* Caveat: UAT is only a existence result, doesn't say how mary neurons are needed, also doesn't say how to construct $G(x)$ -
- Multi-layer NN: Allow dividing high-dion space in more complicated ways:

- \# of neurons per Comer could be different.
- Goal: To choose weights so that NN's output $\hat{f}(\underline{x})$ is "close" to $f(x)$ for some unknown f i.e., $\hat{f}(x) \approx f(x), \forall x$.
- structure of \hat{f} : Let y_{i} be vector output after layer i.

$$
\underline{y}_{1}=\sigma\left(\underline{x}_{1}\right)=\sigma\left(\underline{w}_{1} \underline{y}_{0}+\underline{b}_{1}\right) \quad \| \sigma(\cdot) \text { element -wise }
$$

Similarly, $\quad y_{2}=\sigma\left(\underline{x}_{2}\right)=\sigma\left(\underline{w}_{2} y_{1}+\underline{b}_{2}\right)$

$$
\begin{aligned}
& \vdots \\
& y_{L}=\sigma\left(\underline{x}_{L}\right)=\sigma\left(\underline{w}_{L} y_{L-1}+\underline{b}_{L}\right), ~
\end{aligned}
$$

* $\left[W_{=}\right]_{i j}$: weight from input $\left[y_{t-1}\right]_{j}$ to neuron i in l-th layer.
* If f is scalar-valued $f n$: last layer has single newon.
* Let's dotrue $y_{0}=\underline{x}$, then $y_{k}=\sigma\left(x_{k}\right), x_{k}=w_{k} y_{k-1}+b_{k}$
* Goal of training: Fred "good" weight matrices $W_{=1}, \cdots, W_{L}$ and bias vectors $\underline{b}_{1} \cdots \underline{b}_{L}$ through "training" and sample data $\left(x^{(1)}, f\left(x^{(1)}\right)\right), \cdots\left(\underline{x}^{(N)}, f\left(x^{(N)}\right)\right)$ to minimize some empirical loss for empirical risk minimization (ERM).

$$
J=\frac{1}{N} \sum_{n=1}^{N} \tilde{L}(\underbrace{f\left(\underline{x}^{(n)}\right)}_{\substack{\text { ground } \\ \text { truth }}}, \underbrace{y_{L}^{(n)}}_{\substack{\text { mode } \\ \text { ont put. }}})
$$

* \tilde{L} : often convex. For example: square loss: $J=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{2}\left\|f(x)-y^{(n)}\right\|^{2}$
logistic regression: $J=\frac{1}{N} \sum_{n=1}^{N} \log \operatorname{Pr}\left(y_{i} \mid x_{i}, \theta\right)$,

$$
\begin{aligned}
& \operatorname{Pr}(\underline{Y}=1 \mid \underline{X} ; \theta)=\frac{1}{1+e^{-\theta^{\top} \underline{\underline{x}}}}=h_{\underline{\theta}}(\underline{X}) \\
& \operatorname{Pr}(Y=0 \mid X ; \theta)=1-h_{\underline{\theta}}(X) .
\end{aligned}
$$

- Traing: Optimization to solve ERM.

$$
\left.\begin{array}{rl}
* G D: \quad{\underset{\underline{w}}{l}}[t+1] & \left.=\underline{\underline{w}}_{l}[t]-s_{t} \nabla_{\underline{w}_{l}}\right][t], \\
& \underline{b}_{l}[t+1]
\end{array}=\underline{\underline{b}}_{l}[t]-s_{t} \nabla_{\underline{b}_{l}}\right][t] .
$$

where $\sum_{=1} J[t$.$) is matrix of partial der. w.r.t. weiphts.$ the entry at isth row $j^{\text {-th }}$ col being $\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \tilde{L}^{(n)}[t]}{\partial[W]_{i j}}$ $\nabla_{b} J_{6}[t]$ is vector of par. der. w.r.t. biases. in the the isth component: $\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \tilde{L}^{(n)}[t]}{\partial\left[\underline{b}_{L}\right]_{i}}$ form of

To calculate $\frac{\partial \tilde{L}^{(n)}[1]}{\partial[\underline{\omega}]_{i j}}$ and $\frac{\partial \tilde{L}^{(n)}(t)}{\partial\left[\underline{b}_{i}\right]_{i}}$: Drop " $(x)^{\prime \prime}$ and " $[t]^{\prime \prime}$.

* At layer L (last output layer)

$$
\begin{aligned}
& \frac{\partial[}{\partial\left[\omega_{L}\right]_{i j}}=\frac{\partial \tilde{L}}{\partial\left[y_{L}\right]_{i}} \frac{\partial\left[y_{L}\right]_{i}}{\partial\left[\omega_{L}\right]_{i j}}
\end{aligned}
$$

From computational graph:

$$
\begin{aligned}
& \frac{\partial\left[\underline{x}_{L}\right]_{i}}{\partial\left[\underline{w}_{L}\right]_{i j}}=\frac{\partial\left(\sum_{i=1}^{M}\left[\underline{w}_{L}\right]_{i j}\left[\underline{y}_{L-1}\right]_{j}+[\underline{b}]_{i}\right)}{\partial\left[w_{i j}\right]_{i j}}=\left[y_{L-1}\right]_{j} \\
& \frac{\partial\left[y_{L}\right]_{i}}{\partial\left[\underline{x}_{L}\right]_{i}}=\frac{\partial\left[\sigma\left(\left[\underline{x}_{L}\right]_{i}\right)\right]}{\partial\left[\underline{x}_{L}\right]_{i}}=\sigma^{\prime}\left(\left[x_{L}\right]_{i}\right) \\
& \text { compututbe } \\
& \text { using local } \\
& \text { into at } \\
& \text { L-th layer. }
\end{aligned}
$$

For $\frac{\partial \tilde{L}}{\partial\left[y_{L}\right]_{i}}$, consider, e.g., square loss. Then

$$
\frac{\partial \tilde{L}}{\partial\left[y_{L} I_{i}\right.}=\frac{\partial\left(\frac{1}{2}\left\|f(x)-y_{L}\right\|^{2}\right)}{\partial\left[y_{L} I_{i}\right.}=\left[y_{L}-f(x)\right]_{i}
$$

Just the practiction error if square lass is used.
Thus, $\frac{\partial \tilde{L}}{\left.\partial\left[\mathcal{W}_{L}\right]\right]_{i j}}$ can be computed nosing (1)-(3).

Similarly, for bias, we have:

$$
\frac{\partial \tilde{L}}{\partial\left[\underline{b}_{L}\right]_{i}}=\underbrace{\frac{\partial \tilde{L}}{\partial\left[y_{L}\right]_{i}}}_{\substack{\text { same as } \\(1)}} \cdot \underbrace{\frac{\partial\left[y_{L}\right]_{i}}{\partial\left[x_{L}\right]_{i}}}_{\substack{\text { same as } \\(2)}} \cdot \underbrace{\frac{\partial\left[x_{L}\right]_{i}}{\partial\left[\underline{L}_{L}\right]_{i}}}_{=1 \text { (from the computational graph). }}
$$

Hence, $\frac{\partial \tilde{L}}{\partial\left[\omega_{2} L_{i j}\right.}$ and $\frac{\partial \tilde{L}}{\left.\partial \tilde{L}_{L}\right]_{i}}$ can all be calculated.

* At layer $1 \leq L<L$.

Following the decomposition approach by chain rule:

$$
\begin{array}{r}
\frac{\partial \tilde{L}}{\partial\left[w_{l}\right]_{i j}}=\underbrace{\frac{\partial \tilde{L}}{\partial\left[y_{l}\right]_{i}}}_{\begin{array}{c}
\text { non-lucal } \\
\text { grad. } \\
\text { (4) }
\end{array}} \cdot \underbrace{\frac{\partial\left[y_{l}\right]_{i}}{\partial\left[x_{l}\right]_{i}}}_{\text {local grad }} \cdot \underbrace{\left.\sigma^{\prime}\left(x_{l}\right]_{i}\right)}_{\text {local grad }}=\underbrace{\frac{\partial\left[\underline{x}_{l}\right]_{i}}{\partial\left[w_{l}\right]_{i j}}}
\end{array}
$$

same derivation as in layer L.

Consider $\frac{\partial \tilde{L}}{\partial\left[_{2}\right]_{i}}$ in (4): Again, by chain rule:

$$
\begin{aligned}
& \frac{\partial \tilde{L}}{\partial\left[y_{i}\right]_{i}}=\sum_{k=1}^{(L+1)} \frac{\partial \tilde{L}}{\partial\left[y_{l+1}\right]_{k}} \cdot \frac{\partial\left[y_{l+1}\right]_{k}}{\partial\left[y_{l}\right]_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { after finishing }=\sigma^{\prime}\left([\underline{z} l+1]_{k}\right)=\left[w_{k+1}\right]_{k i} \\
& \text { layer } l+1 \underbrace{\text { l }}_{\text {available after processing layer } L+1 \text {. }} \text {. }
\end{aligned}
$$

Similarly, for bias, we have:

$$
\begin{aligned}
\frac{\partial \tilde{L}}{\partial\left[\underline{b}_{L}\right]_{i}}= & \underbrace{(4)}_{\text {same as }} \begin{aligned}
\frac{\partial \tilde{L}}{\partial\left[y_{i}\right]_{i}}
\end{aligned} \underbrace{\frac{\partial\left[y_{l}\right]_{i}}{\partial\left[x_{1}\right]_{i}}}_{\begin{array}{c}
\text { loco grad } \\
\\
\end{array} \begin{aligned}
\sigma\left[\left[x_{i}\right]_{l}\right)
\end{aligned}} \cdot \underbrace{\frac{\partial\left[x_{l}\right]_{i}}{\partial\left[\underline{b}_{i}\right]_{i}}}_{\text {(from comp. graph) }}
\end{aligned}
$$

Finally, contriving all discussions, we have the "Backprop" algorithon as follows:

Backpropogetion: (recurssively using chain rale).
(1) Compute $\frac{\partial \tilde{L}^{(n)}}{\partial\left[y L_{i}\right.}, \forall i=1, \cdots,|L|, n \subset$ Just the avg $=1,-, m$ if square loss is used.
(2) for $(l=L$ down to 1$)\{$

$$
\begin{align*}
& \frac{\partial \tilde{L}^{(n)}}{\partial\left[\underline{w}_{l}\right]_{i j}}=\frac{\partial \tilde{L}^{(n)}}{\partial\left[y_{L}\right]_{i}} \cdot \underbrace{\left.\sigma^{\prime}\left(\underline{x_{1}}\right]_{i}\right)} \cdot \underbrace{}_{\left(y_{i-1}\right]_{j}}, \quad \forall i=1, \ldots,|l|, n)^{=1, \cdots, m} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial \tilde{L}^{(n)}}{\partial\left[y_{l-1}\right]_{i}}=\sum_{k=1}^{\frac{1 L I}{} \frac{\partial \tilde{L}^{(n)}}{\partial\left[y_{l}\right]_{k}} \cdot \underbrace{\sigma^{\prime}\left(\left[\underline{x}_{l}\right]_{k}\right)}_{\text {composed previously }} \cdot\left[W_{k_{i}},\right.} \\
& \begin{array}{l}
\text { This is the } \\
\text { backdrop part }
\end{array}
\end{aligned}
$$

Remarks:

1. To compute fill grad for $G D$, we need to compute $\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \tilde{L}^{(n)}[t]}{\partial[\underline{w}]_{i j}}$ and $\frac{1}{N} \sum_{n=1}^{N} \frac{\partial \tilde{L}^{(n)}[t]}{\partial\left[\underline{b}_{L}\right]_{i}}$,
N is large typically.

More practical: Use a mini-batch of size m (usually $m \ll N$) to compute a stochastic grad:

$$
\begin{aligned}
& \frac{1}{m} \sum_{n=1}^{m} \frac{\partial \tilde{L}^{(n)}[t]}{\partial[\tilde{W}]_{i j}} \text { and } \frac{1}{m} \sum_{n=1}^{m} \frac{\partial \tilde{L}^{(n)}(t)}{\partial\left[k_{l}\right]_{i}} \\
& G D \rightarrow S G D .
\end{aligned}
$$

2. Even though loss f_{n} is convex, the training of NN is NOT a convex opt. prob! The obj th is:

$$
\begin{aligned}
F(\underline{x})= & \underbrace{L\left[\sigma _ { L } \left(\underline{w}_{L}\left(\sigma_{L-1}\left(\underline{w}_{L-1} \cdots \sigma_{1}\left(\underline{w}_{1} \underline{x}+\underline{b}_{1}\right)+\cdots+\underline{b}_{L}\right)-f(x)\right]\right.\right.}_{\text {High - Dimensional Non-convex Optionization. }} \\
& \text { even w/o activation, } F=L\left(\underline{w}_{L} \cdot w_{L-1} \cdots\left(\underline{w}_{1} x+\underline{b}_{1}\right)+\cdots+b_{L}-f(x)\right) . \\
& \text { is still non-convex (poly prog.). . }
\end{aligned}
$$

Active research x still many open problems:

* SGD can at best converge to stationary pt., which can either local min, saddle pt. Con we escape from saddle pt.? If yes, how \& how fart. $O\left(\right.$ poly bog $\left.^{4}(d) / \varepsilon^{2}\right)$
* "Landscape": Mary theories to characterize "landscape" of $F(x)$. a.e.,? ヨ spurious local min (i.e., local = or \neq global min * "Overparameterized Regime".
$y=\underline{w} \underline{x}+\underline{b} \quad \underline{b} \in \mathbb{R}^{m \times n} \underset{i}{n>m \text {. large mull space. }}$ Can every global min generalization SGD.
* Optimal choice of arch?

