COM S 578X: Optimization for Machine Learning

Lecture Note 5: Optimality Conditions

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science lowa State University, Ames, Iowa, USA

Fall 2019

Recap Last Lecture

Given a minimization problem

$$
\begin{array}{lll}
\text { Minimize } & f(\mathbf{x}) & \\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m & \leftarrow u_{i} \geq 0 \\
& h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p \quad \leftarrow v_{j} \text { unconstrained }
\end{array}
$$

We define the Lagrangian:

$$
L(\mathbf{x}, \mathbf{u}, \mathbf{v})=f(\mathbf{x})+\sum_{i=1}^{m} u_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} v_{j} h_{j}(\mathbf{x})
$$

and the Lagrangian dual function:

$$
\Theta(\mathbf{u}, \mathbf{v})=\min _{\mathbf{x}} L(\mathbf{x}, \mathbf{u}, \mathbf{v})
$$

Recap Last Lecture

The subsequent Lagrangian dual problem is:

$$
\begin{aligned}
& \text { Maximize } \quad \Theta(\mathbf{u}, \mathbf{v}) \\
& \text { subject to } \\
& \mathbf{u} \geq \mathbf{0}
\end{aligned}
$$

Important properties:

- Dual problem is always convex (or Θ is always concave), even if the primal problem is non-convex
- The weak duality property always holds, i.e., the primal and dual optimal values p^{*} and d^{*} satisfy $p^{*} \geq d^{*}$
- Slater's condition: for convex primal, if $\exists \mathrm{x}$ such that

$$
\mathscr{F}_{1}(\mathbf{x})<0, \ldots, \mathscr{g}_{m}(\mathbf{x})<0 \text { and } h_{1}(\mathbf{x})=0, \ldots, h_{p}(\mathbf{x})=0
$$

then strong duality holds: $p^{*}=d^{*}$.

Outline

Today:

- KKT conditions
- Geometric interpretation
- Relevant examples in machine learning and other areas

Karush-Kuhn-Tucker Conditions

Given general problem

$$
\begin{array}{rlr}
\text { Minimize } & f(\mathbf{x}) \\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \quad \leftarrow u_{i} \geq 0 \\
& h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p \quad \leftarrow v_{j} \text { unconstrained } \\
L(\underline{x}, \underline{u}, \underline{v})= & f(\underline{x})+\underline{u}^{\top} g(\underline{x})+\underline{v}^{\top} h(\underline{x}) \quad \text { the grad of } L(\underline{x}, \underline{u}, \underline{v}) \\
\text { The Karush-Kuhn-Tucker }(\mathrm{KKT}) \text { conditions are: } \quad \& \quad \text { w.r.t. } \underline{x} \text { is } \underline{0}
\end{array}
$$

- Stationarity (ST): $\nabla_{\mathbf{x}} f(\mathbf{x})+\sum_{i=1}^{m} u_{i} \nabla_{\mathbf{x}} g_{i}(\mathbf{x})+\sum_{j=1}^{p} v_{j} \nabla_{\mathbf{x}} h_{j}(\mathbf{x})=0$
- Complementary slackness (CS): $u_{i} g_{i}(\mathbf{x})=0, \forall i$ either $u_{i}=0$ or $g_{i}(\underline{x})=0$
- Primal feasibility (PF): $g_{i}(\mathbf{x}) \leq 0, h_{j}(\mathbf{x})=0, \forall i, j$
- Dual feasibility (DF): $u_{i} \geq 0, \forall i$

KKT Necessity \ddagger $\left.\begin{array}{l}\underline{x}^{*} \text { primal opt. } \\ \left(\underline{v}^{*}, v^{*}\right) \text { dual opt. }\end{array}\right\} \stackrel{\substack{\text { dinanet}}}{\Rightarrow}\left(\underline{x}^{*}, \underline{v}^{*}, v^{*}\right)$ are kkT.
Theorem 1
If \mathbf{x}^{*} and $\mathbf{u}^{*}, \mathbf{v}^{*}$ be primal and dual solutions $w /$ zero duality gap (e.g., implied by convexity and Slater's condition), then ($\mathbf{x}^{*}, \mathbf{u}^{*}, \mathbf{v}^{*}$) satisfy KKT conditions.

WIS: $(S T),(C S),(P F),(D F)$
Proof. We have PF and DF for free from the assumption. Also,' \mathbf{x}^{*} and ($\mathbf{u}^{*}, \mathbf{v}^{*}$) are primal \& dual solutions with strong duality \Rightarrow strong duality def of
any π (including \underline{x}^{*}) $\underbrace{\leqslant 1}_{\leqslant 0}(\approx 0)$

- \mathbf{x}^{*} minimizes $L\left(\mathbf{x}, \mathbf{u}^{*}, \mathbf{v}^{*}\right)$ over $\mathbf{x} \in \mathbb{R}^{n}$ (unconstrained) \Rightarrow Gradient of $L\left(\mathbf{x}, \mathbf{u}^{*}, \mathbf{v}^{*}\right)$ must be 0 at x^{*}, ie., the stationarity condition. (ST)
- Since $u_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq 0$ (PF \& DF), we must have each $\frac{u_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0 \text {, i.e., }}{(\mathrm{cs})}$ complementary slackness condition. complementary slackness condition.

KKT Sufficiency

$$
\text { If } \left.\begin{array}{l}
\left(\underline{x}^{*}, \underline{u}^{*}, v^{*}\right) \text { is kKT } \\
\text { primal is convex }
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\underline{x}^{*} \text { is primal opt. } \\
\left(\underline{u}^{*}, v^{*}\right) \text { is dual opt. }
\end{array}\right.
$$

Theorem 2
If the primal problem is convex and \mathbf{x}^{*} and $\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right)$ satisfy KKT conditions, then \mathbf{x}^{*} and $\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right)$ are primal and dual optimal solutions, respectively.

Proof. If \mathbf{x}^{*} and ($\mathbf{u}^{*}, \mathbf{v}^{*}$) satisfy KKT conditions, then
Lagrangian: $L=f(\underline{x})+y^{\prime} g(\underline{x})+\underline{v}^{\top} h(x)$. From (δT) : ${\underset{v}{x}}_{p} L\left(x_{1}^{*}, \underline{y}^{*}, \underline{v}^{*}\right)=0$
where (a) follows from ST and (b) follows from CS.
Therefore, the duality gap is zero. Note that \mathbf{x}^{*} and $\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right)$ are PF and DF. Hence, they are primal and dual optimal, respectively.

In Summary

So putting things together...

Theorem 3

For a convex optimization problem with strong duality (e.g., implied by Slater's conditions or other constraints qualifications):

$$
\begin{aligned}
& \mathbf{x}^{*} \text { and }\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right) \text { are primal and dual solutions } \\
& \Longleftrightarrow \mathbf{x}^{*} \text { and }\left(\mathbf{u}^{*}, \mathbf{v}^{*}\right) \text { satisfy } K K T \text { conditions }
\end{aligned}
$$

Warning: This statement is only true for convex optimization problems. For non-convex optimization problems, KKT conditions are neither necessary nor sufficient! (more on this shortly)

Where Does This Name Come From?
Older books/papers referred to this as the KT (Kuhn-Tucker) conditions

- First appeared in a publication by Kuhn and Tucker in 1951
- Kuhn \& Tucker shared the John von Neumann Theory Prize in 1980
- Later people realized that Karush had the same conditions in his unpublished master's thesis in 1939,

William Karush

Univ. of Chicago

Harold W. Kuhn

Albert W. Tucker

Princeton:
John Nash Lloyd Shapley (shapley value... stochastic games. Morn Mindy

- A Fun Read: R. W. Cottle, "William Karush and the KKT Theorem," Documenta Mathematica, 2012, pp. 255-269.
RAND.
RAND. with Richard \rightarrow Assoc. Prof \rightarrow cal state
JKL (CSClSU)
Bell at Chicago \rightarrow University \rightarrow Died

Other Optimality Conditions

- KKT conditions are a special case of the more general Fritz John Conditions:

$$
\stackrel{\bigwedge_{u}^{\prime}}{u_{0}} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} u_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} v_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

where u_{0} could be 0

- In turn, Fritz John conditions (hence KKT) belong to a wider class of the first-order necessary conditions (FONC), which allow for non-smooth functions using subderivatives
- Further, there are a whole class second-order necessary \& sufficient conditiosn (SONC,SOSC) - also in "KKT style"
- For an excellent treatment on optimality conditions, see [BSS, Ch.4-Ch.6]

Geometric Interpretation of KKT
Set of binding (active/tight) constraints: $I\left({\underset{x}{*}}^{*}\right) \triangleq\left\{i: g_{i}\left(x^{*}\right)=0\right\}$.
(cs): $u_{i}^{*} g_{i}\left(x^{*}\right)=0 \Rightarrow \underline{u}_{i}^{*} \geqslant 0$

physics interpretation $-\nabla f\left(x^{*}\right)$: "palling force".
$-\nabla g_{i}\left(z^{x}\right), i \in I\left(z^{*}\right)$.
"repelling force".
-89, (2*)
$-g_{2}\left(x^{*}\right) \quad$ sum $=0$

When is KKT neither sufficient nor necessary?

- (Not neck.): x^{*} is a (local) minimum $\nRightarrow \mathrm{x}^{*}$ is a KKT point
 \underline{x}^{*} opt. but not $K K T$.

$$
\begin{aligned}
& \left.b / c: \nabla f\left(z_{3}^{*}\right) \neq u_{1} \nabla g\left(z_{1}^{*}\right)+u_{2}\right)_{2}\left(3^{*}\right) . \\
& u_{0} \quad \forall u_{1}, u_{2} \geqslant 0 .
\end{aligned}
$$

(x^{*} is Fritz John pt. for $u_{0}=0$).

- (Not cuff.): x^{*} is a KKT point $\nRightarrow \mathrm{x}^{*}$ is a (local) minimum

obj: $\min \underline{C}^{\top} \underline{x}$
\underline{x}^{*} is $K K T: \exists u_{1}, u_{2} \geq 0$
sit. $-\underline{c}=u_{1} \nabla g_{1}\left(x^{*}\right)+u_{2} \nabla g_{2}\left(x^{*}\right)$
But x^{*} NOT opt.

Example 1: Quadratic Problems with Equality Constraints

- Consider for $\mathbf{Q} \succeq 0$, the following quadratic programming problem is:

$$
\begin{aligned}
& \text { Lagrangian } \begin{array}{l}
\frac{1}{2} x^{\top} Q x+\underline{c}^{\top} x+\underline{u}^{\top}(A \underline{A} x) \text {, } \\
\\
\text { Minimize }
\end{array} \\
& \underset{\mathbf{x}}{\operatorname{Minimize}} \quad \frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x} \\
& \text { subject to } \quad \mathbf{A x}=\mathbf{0} \quad \leftarrow \mathbf{u}
\end{aligned}
$$

- A convex problem wo inequality constraints. By KKT, x is primal optimal iff

$$
\left.\begin{array}{l}
(S T): \underline{Q} \underline{x}+\underline{c}+A^{\top} \underline{u}=0 \\
(P F): \underset{A}{A} \underline{0}=0
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
Q & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{u}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{c} \\
0
\end{array}\right]
$$

(OF) \& $(C S)$: Implied by (PF)
for some dual variable \mathbf{u}. A linear equation system combines ST \& PF (CS and DF vacuous)

- Often arises from using Newton's method to solved equality-constrained problems $\left\{\min _{\mathbf{x}} f(\mathbf{x}) \mid \mathbf{A x}=\mathbf{b}\right\}$

Note: $\underset{\sim}{A} \underset{\underline{x}}{\underline{x}}=\underline{b} \quad \underset{\sim}{x}=\underline{b} \Rightarrow A(x-x-\bar{x}) \equiv 0 \quad \approx \quad \underset{x}{\Rightarrow} \underset{\underline{x}}{ }=0$

Example 2: Support Vector Machine

Given labels $y \in\{-1,1\}^{n}$, feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$. Let $\mathbf{X} \triangleq\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]^{\top}$ Recall from Lecture 1 that the support vector machine problem:

$$
\begin{aligned}
\underset{\mathbf{w}, b, \epsilon}{\operatorname{Minimize}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m} \epsilon_{i} \\
\text { subject to } & \left\{\begin{array}{l}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\epsilon_{i} \\
(\text { PF })
\end{array}\right.
\end{aligned}
$$

Slater's cone. hold.
Introducing dual variables $\mathbf{u}, \mathbf{v}>\mathbf{0}$ to obtain the KKT system:
Lagrangian: $\frac{1}{2}\|w\|^{2}+c \sum_{m=1}^{m} \varepsilon_{i}+\sum_{i=1}^{m} u_{i}\left(1-\varepsilon_{i}-y_{i}\left(w^{\top} x_{i}+b\right)\right]-\sum_{i=1}^{m} v_{i} \varepsilon_{i} \quad$ Qudratic in w

$$
\begin{aligned}
& \text { (ST): } 0=\sum_{i=1}^{m} u_{i} y_{i}, \quad \mathbf{w}=\sum_{i=1}^{m} u_{i} y_{i} \mathbf{x}_{i}, \quad \mathbf{u}=C \mathbf{1}-\mathbf{v} \quad \text { Affine in } \varepsilon, b \\
& (\mathrm{CS}): v_{i} \epsilon_{i}=0, \quad u_{i}\left(1-\epsilon_{i}-y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{w}+b\right)\right)=0, \quad i=1, \ldots, m
\end{aligned}
$$

Take der. $w: w-\sum_{i=1}^{m} u_{i} y_{i} \underline{\underline{x}}=0, \quad b:-\sum_{i=1}^{m} u_{i} y_{i}=0, \varepsilon_{i}: c-u_{i}-v_{i}=0, \quad v i$
w.r.t. :

Example 2: Support Vector Machine

(ST) $\underline{w}=\underline{x} \operatorname{Diag}\left\{y_{1} \cdots \cdots y_{m}\right\}, \underline{u}=\tilde{x}_{\underline{x}} \underline{s}$
Hence, at optimality, we have $\mathbf{w}=\sum_{i=1}^{m} u_{i} y_{i} \mathbf{x}_{i}$, and u_{i} is nonzero only if $y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{w}+b\right)=1-\epsilon_{i}$. Such points are called the support points

- For support point i, if $\epsilon_{i}=0$, then \mathbf{x}_{i} lies on the edge of margin and $u_{i} \in(0, C] \quad \varepsilon_{i}=0 \stackrel{(C S)}{\Longrightarrow} v_{i} \geq 0 \xrightarrow{(S T)} \quad \underline{u} \leqslant c 1$
- For support point i, if $\epsilon_{i} \neq 0$, then \mathbf{x}_{i} lies on wrong side of margin, and

$$
u_{i}=C \quad \varepsilon_{i} \neq 0 \stackrel{(c s)}{\Rightarrow} v_{i}=0 \stackrel{(s)}{\Rightarrow} \quad \underline{u}=c \underline{1}
$$

KKT conditions do not really give us a way to find solution here, but gives better understanding \& useful in proofs

In fact, we can use this to screen away nonsupport points before performing optimization (lower-complexity)

Constrained and Lagrange Forms
Often in ML and STATS, we'll switch back and forth between constrained form, where $t \in \mathbb{R}$ is a tuning parameter Specie case: ($t=0$) cannot find x
(C): $\min _{\mathbf{x}} f(\mathbf{x}) \quad$ subject to $g(\mathbf{x}) \leq t$ st. $\boldsymbol{g}(\underline{x})<0$.
and Lagrange form, where $u \geq 0$ is a tuning parameter

$$
g(x)=0, \forall \underline{x}
$$

$$
(\mathrm{L}): \min _{\mathbf{x}} f(\mathbf{x})+u \cdot g(\mathbf{x})
$$

set $u=\infty$
and claim these are equivalent. Is this true (assuming f and g convex)?
UTS: $x^{*} \in(c) w / t \Rightarrow x^{*} \in(L) w / u$.
Proof. (C) to (L): If Problem (C) is strictly feasible, then strong duality holds (why?), and there exists some $u \geq 0$ (dual solution) such that any solution x^{*} in (C) minimizes
\exists Dual var. u s.t. \underline{x}^{*} solves $f(\underline{x})+u(q(\underline{x})-t)$

$$
\begin{aligned}
& f(\mathbf{x})+u \cdot(g(\mathbf{x})-t) \cdot=\underbrace{f(x)+u \cdot g(\underline{x})}_{\text {in }(\mathrm{L}) \text {. }}-\underbrace{-u t}_{\text {const }}
\end{aligned}
$$

Clearly, \mathbf{x}^{*} is also a solution in (L).

Constrained and Lagrange Forms
(L) to (C): If x^{*} is a solution in (L), then the KKT conditions for (C) are satisfied by taking $t=g\left(\mathbf{x}^{*}\right)$, so \mathbf{x}^{*} is a solution in (C).
Putting things together: $(\operatorname{cs}): u\left(q\left(x^{*}\right)-t\right)=u\left(q\left(x^{*}\right)-g\left(x^{*}\right)\right)=0$.

$$
\begin{array}{lll}
\bigcup_{u \geq 0}\{\text { solutions in }(\mathrm{L})\} & \subseteq & \bigcup_{t}\{\text { solutions in }(\mathrm{C})\} \\
\bigcup_{u \geq 0}\{\text { solutions in }(\mathrm{L})\} & \supseteq & \bigcup_{t:(\mathrm{C}) \text { is strictly }}\{\text { solutions in }(\mathrm{C})\}
\end{array}
$$

WIs: $\underline{\underline{x}}^{*} \in(L) w / u \Rightarrow \Sigma^{*} \in(C) w / t$, \therefore.e., Given $u \geqslant 0$, UT $\exists t$, st. $k k T$ is sutiviciel Try $t=g\left(s^{*}\right)$, check: (ST) x^{*} is soln $f(L) \Rightarrow e_{-1}\left(x^{*}\right)+u \nabla g\left(x^{*}\right)=0$. (PF) R(DF) I.e., nearly perfect equivalence. Note: If the only value of t that leads to a feasible but not strictly feasible constraint set is $t=0$, then we do get perfect equivalence
So, e.g., if $g \geq 0$ and (C) and (L) are feasible for all $t, u \geq 0$, then we do get $\left.\left.\begin{array}{l}\left.\begin{array}{c}\text { perfect equivalence } \\ g(x) \geqslant 0 \\ g(x)\end{array}\right\} t\end{array}\right\} \Rightarrow \begin{array}{l}1 \text {. when } t \neq 0,(c) \text { is strictly teas. } \\ 2^{\circ} \text { when } t=0, g(x)=0,\end{array}\right\} \begin{aligned} & \text { perfect equivalence. } \\ & \text { if } g(x) \text { is some norm. }\end{aligned}$

Next Class

Gradient Descent

