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Recap Last Lecture

Given a minimization problem

Minimize f(x)

subject to gi(x)  0, i = 1, . . . ,m  ui � 0

hj(x) = 0, j = 1, . . . , p  vj unconstrained

We define the Lagrangian:

L(x,u,v) = f(x) +
mX

i=1

uigi(x) +
pX

j=1

vjhj(x)

and the Lagrangian dual function:

⇥(u,v) = min
x

L(x,u,v)
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Recap Last Lecture

The subsequent Lagrangian dual problem is:

Maximize ⇥(u,v)

subject to u � 0

Important properties:

Dual problem is always convex (or ⇥ is always concave), even if the primal
problem is non-convex

The weak duality property always holds, i.e., the primal and dual optimal
values p⇤ and d⇤ satisfy p⇤ � d⇤

Slater’s condition: for convex primal, if 9 x such that

f1(x) < 0, . . . , fm(x) < 0 and h1(x) = 0, . . . , hp(x) = 0.

then strong duality holds: p⇤ = d⇤.
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Outline

Today:

KKT conditions

Geometric interpretation

Relevant examples in machine learning and other areas
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Karush-Kuhn-Tucker Conditions

Given general problem

Minimize f(x)

subject to gi(x)  0, i = 1, . . . ,m  ui � 0

hj(x) = 0, j = 1, . . . , p  vj unconstrained

The Karush-Kuhn-Tucker (KKT) conditions are:

Stationarity (ST): rxf(x) +
Pm

i=1 uirxgi(x) +
Pp

j=1 vjrxhj(x) = 0

Complementary slackness (CS): uigi(x) = 0, 8i

Primal feasibility (PF): gi(x)  0, hj(x) = 0, 8i, j

Dual feasibility (DF): ui � 0, 8i
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KKT Necessity

Theorem 1

If x⇤ and u⇤,v⇤ be primal and dual solutions w/ zero duality gap (e.g., implied by
convexity and Slater’s condition), then (x⇤,u⇤,v⇤) satisfy KKT conditions.

Proof. We have PF and DF for free from the assumption. Also, x⇤ and (u⇤,v⇤)
are primal & dual solutions with strong duality )

f(x⇤) = ⇥(u⇤,v⇤) = min
x

⇢
f(x) +

mX

i=1

u⇤
i gi(x) +

pX

j=1

v⇤jhj(x)

�

 f(x⇤) +
mX

i=1

u⇤
i gi(x

⇤) +
pX

j=1

v⇤jhj(x
⇤)  f(x⇤)

That is, all these inequalities are equalities. Then:

x⇤ minimizes L(x,u⇤,v⇤) over x 2 Rn (unconstrained) ) Gradient of
L(x,u⇤,v⇤) must be 0 at x⇤, i.e., the stationarity condition.

Since u⇤
i gi(x

⇤)  0 (PF & DF), we must have each u⇤
i gi(x

⇤) = 0, i.e.,
complementary slackness condition.
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KKT Su�ciency

Theorem 2

If the primal problem is convex and x⇤ and (u⇤,v⇤) satisfy KKT conditions, then
x⇤ and (u⇤,v⇤) are primal and dual optimal solutions, respectively.

Proof. If x⇤ and (u⇤,v⇤) satisfy KKT conditions, then

⇥(u⇤,v⇤)
(a)
= f(x⇤) +

mX

i=1

u⇤
i gi(x

⇤) +
pX

j=1

v⇤jhj(x
⇤)

(b)
= f(x⇤),

where (a) follows from ST and (b) follows from CS.

Therefore, the duality gap is zero. Note that x⇤ and (u⇤,v⇤) are PF and DF.
Hence, they are primal and dual optimal, respectively.
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In Summary

So putting things together...

Theorem 3

For a convex optimization problem with strong duality (e.g., implied by Slater’s
conditions or other constraints qualifications):

x⇤ and (u⇤,v⇤) are primal and dual solutions
() x⇤ and (u⇤,v⇤) satisfy KKT conditions

Warning: This statement is only true for convex optimization problems. For
non-convex optimization problems, KKT conditions are neither necessary nor
su�cient! (more on this shortly)
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Where Does This Name Come From?

Older books/papers referred to this as the KT (Kuhn-Tucker) conditions

First appeared in a publication by Kuhn and Tucker in 1951

Kuhn & Tucker shared the John von Neumann Theory Prize in 1980

Later people realized that Karush had the same conditions in his unpublished
master’s thesis in 1939

William Karush Harold W. Kuhn Albert W. Tucker

A Fun Read: R. W. Cottle, ”William Karush and the KKT Theorem,”
Documenta Mathematica, 2012, pp. 255-269.
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Other Optimality Conditions

KKT conditions are a special case of the more general Fritz John Conditions:

u0rf(x⇤) +
mX

i=1

uirgi(x⇤) +
pX

j=1

vjrhj(x
⇤) = 0

where u0 could be 0

In turn, Fritz John conditions (hence KKT) belong to a wider class of the
first-order necessary conditions (FONC), which allow for non-smooth
functions using subderivatives

Further, there are a whole class second-order necessary & su�cient
conditiosn (SONC,SOSC) – also in “KKT style”

For an excellent treatment on optimality conditions, see [BSS, Ch.4–Ch.6]
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Geometric Interpretation of KKT
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When is KKT neither su�cient nor necessary?

(Not necc.): x⇤ is a (local) minimum ; x⇤ is a KKT point

(Not su↵.): x⇤ is a KKT point ; x⇤ is a (local) minimum
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Example 1: Quadratic Problems with Equality Constraints

Consider for Q ⌫ 0, the following quadratic programming problem is:

Minimize
x

1

2
x>Qx+ c>x

subject to Ax = 0  u

A convex problem w/o inequality constraints. By KKT, x is primal optimal i↵


Q A>

A 0

�
x
u

�
=


�c
0

�

for some dual variable u. A linear equation system combines ST & PF (CS
and DF vacuous)

Often arises from using Newton’s method to solved equality-constrained
problems {minx f(x)|Ax = b}
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Example 2: Support Vector Machine

Given labels y 2 {�1, 1}n, feature vectors x1, . . . ,xm. Let X , [x1, . . . ,xm]>

Recall from Lecture 1 that the support vector machine problem:

Minimize
w,b,✏

1

2
kwk2 + C

mX

i=1

✏i

subject to yi(w
>xi + b) � 1� ✏i, i = 1, . . . ,m

✏i � 0, i = 1, . . . ,m

Introducing dual variables u,v � 0 to obtain the KKT system:

(ST): 0 =
mX

i=1

uiyi, w =
mX

i=1

uiyixi, u = C1� v

(CS): vi✏i = 0, ui

�
1� ✏i � yi(x

>
i w + b)

�
= 0, i = 1, . . . ,m
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Example 2: Support Vector Machine

Hence, at optimality, we have w =
Pm

i=1 uiyixi, and ui is nonzero only if
yi(x>

i w + b) = 1� ✏i. Such points are called the support points

For support point i, if ✏i = 0, then xi lies on the edge of margin and
ui 2 (0, C]

For support point i, if ✏i 6= 0, then xi lies on wrong side of margin, and
ui = C

Margin:

✏1

1
kwk

1
kwk

✏2

✏3

✏4

✏5

w>x+ b = 0

2
kwk

KKT conditions do not really give us a way to find
solution here, but gives better understanding & use-
ful in proofs

In fact, we can use this to screen away non-
support points before performing optimization
(lower-complexity)
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Constrained and Lagrange Forms

Often in ML and STATS, we’ll switch back and forth between constrained form,
where t 2 R is a tuning parameter

(C): min
x

f(x) subject to g(x)  t

and Lagrange form, where u � 0 is a tuning parameter

(L): min
x

f(x) + u · g(x)

and claim these are equivalent. Is this true (assuming f and g convex)?

Proof. (C) to (L): If Problem (C) is strictly feasible, then strong duality holds
(why?), and there exists some u � 0 (dual solution) such that any solution x⇤ in
(C) minimizes

f(x) + u ·
�
g(x)� t

�
.

Clearly, x⇤ is also a solution in (L).
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Constrained and Lagrange Forms

(L) to (C): If x⇤ is a solution in (L), then the KKT conditions for (C) are satisfied
by taking t = g(x⇤), so x⇤ is a solution in (C).

Putting things together:

[

u�0

n
solutions in (L)

o
✓

[

t

n
solutions in (C)

o

[

u�0

n
solutions in (L)

o
◆

[

t: (C) is strictly
feasible

n
solutions in (C)

o

I.e., nearly perfect equivalence. Note: If the only value of t that leads to a feasible
but not strictly feasible constraint set is t = 0, then we do get perfect equivalence

So, e.g., if g � 0 and (C) and (L) are feasible for all t, u � 0, then we do get
perfect equivalence
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Next Class

Gradient Descent
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