COM S 578X: Optimization for Machine Learning

Lecture Note 4: Duality

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science Iowa State University, Ames, Iowa, USA

Fall 2019

Outline

In this lecture:

- Lagrange dual problem
- Weak and strong duality
- Geometric interpretation
- Examples in machine learning

The Lagrangian

Standard optimization problem (may or may not be convex):

Convex optimization if:

dual var. or Lagrange
$f(\mathbf{x})$ multipliers. subject to $\quad g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \longleftarrow \boldsymbol{u}_{\boldsymbol{i}} \geqslant 0$, Vi $h_{j}(\mathbf{x})=0, \quad j=1, \ldots, p \longleftarrow \boldsymbol{v}_{\mathbf{j}} \in \mathbb{R}, \boldsymbol{\forall}_{\mathbf{j}}$
variable $\mathbf{x} \in \mathbb{R}^{n}$, domain \mathcal{D}, optimal value p^{*}
$h_{j}(\underline{x}) \leq 0,-h_{j}(x) \leq 0$.
Lagrangian: L: $\mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$, with $\operatorname{dom}(L)=\mathcal{D} \times \mathbb{R}^{m} \times \mathbb{R}^{p}$:

$$
L(\mathbf{x}, \mathbf{u}, \mathbf{v})=f(\mathbf{x})+\sum_{i=1}^{m} u_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} v_{j} h_{j}(\mathbf{x})
$$

- weighted sum of objective and constraint functions
- $u_{i} \geq 0$ is dual variable (Lagrangian multiplier) associated with $g_{i}(\mathbf{x}) \leq 0$
- $v_{j} \in \mathbb{R}$ is dual variable (Lagrangian multiplier) associated with $h_{j}(\mathbf{x})=0$

Lagrangian Dual Function
Lagrangian dual function: $\Theta: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$:

$$
\begin{aligned}
& \Theta(\mathbf{u}, \mathbf{v})=\inf _{\mathrm{x} \in \mathcal{D}} L(\mathrm{x}, \mathbf{u}, \mathbf{v}) \text { affine in w.r.t. } \underline{u}, \underline{v} .
\end{aligned}
$$

$\Theta(\mathbf{u}, \mathbf{v})$ is concave in \mathbf{u}, \mathbf{v}, can be $-\infty$ forsonte \mathbf{u}, \mathbf{v} b/c it's a pt-wise minimum of affine tr is w.r.t. y iv.

Lower bound property: If $\mathbf{u} \geq 0$, then $\Theta(\mathbf{u}, \mathbf{v}) \leq p^{*}$
Proof.
Proof.
If $\tilde{x} \in \mathcal{D}$ and $\mathbf{u} \geq 0$, then "of. of op l. value of primal probe.

Since this holds for any $\tilde{\mathbf{x}} \in \mathcal{D}$, minimizing over all $\tilde{\mathbf{x}}$ yields $p^{*} \geq \Theta(\mathbf{u}, \mathbf{v})$. achieved by x^{*}

Example: Least-norm solution of linear equations

Dual function:

- Lagrangian is: $L(\mathbf{x}, \mathbf{v})=\mathbf{x}^{\top} \mathbf{x}+\mathbf{v}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})$
- To minimize $L(\mathbf{x}, \mathbf{v})$ over \mathbf{x}, set gradient equal to zero

$$
\begin{aligned}
& \nabla_{\mathbf{x}} L(\mathbf{x}, \mathbf{v})=2 \mathbf{x}+\mathbf{A}^{\top} \mathbf{v}=0 \quad \Longrightarrow \quad \mathbf{x}=-\frac{1}{2} \mathbf{A}^{\top} \mathbf{v} \\
& \text { to obtain } \Theta \text { : }
\end{aligned}
$$

- Plug it in L to obtain Θ :
which is clearly a concave function of \mathbf{v}.
$\geqslant-\underline{b}^{\top} v$ (largest UB).

Example: Linear Programming

Dual function:

- Lagrangian is:

$$
\begin{aligned}
& \text { Minimize } \mathbf{c}^{\top} \mathbf{x} \\
& \begin{aligned}
& \text { subject to } \underbrace{\mathbf{A x}=\mathbf{b},}_{\uparrow}, \underbrace{x \geq 0}_{\uparrow} \\
& \underline{\chi} \in \mathbb{R}^{n} \\
& \underline{U} \in \mathbb{R}_{+}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{u}, \mathbf{v}) & =\underbrace{\mathbf{c}^{\top} \mathbf{x}}+\mathbf{v}^{\top}(\mathbf{A x}-\mathbf{b})-\mathbf{u}^{\top} \mathbf{x} \\
& =-\mathbf{b}^{\top} \mathbf{v}+\underbrace{}_{\left.\left.\underline{w} \boldsymbol{(c + \mathbf { A } ^ { \top } \mathbf { v } - \mathbf { u }}\right)^{\top} \mathbf{x}\right\}}=\sum_{i=1}^{d} \boldsymbol{w}_{i} \boldsymbol{x}_{i}
\end{aligned}
$$

- L is affine in \mathbf{x}, hence

$$
\Theta(\mathbf{u}, \mathbf{v})=\inf _{\mathbf{x}} L(\mathbf{x}, \mathbf{u}, \mathbf{v})=\{\begin{array}{l}
-\mathbf{b}^{\top} \mathbf{v} \\
-\infty
\end{array} \underbrace{\mathbf{A}^{\top} \mathbf{v}-\mathbf{u}+\mathbf{c}=\mathbf{w}_{i}<u, \mathbf{x}_{\mathbf{i}} \uparrow}_{\text {otherwise }}
$$

Θ is linear on affine domain $\left\{(\mathbf{u}, \mathbf{v}): \mathbf{A}^{\top} \mathbf{v}-\mathbf{u}+\mathbf{c}=\mathbf{0}\right\}$, hence concave Lower bound property: $p^{*} \geq-\mathbf{b}^{\top} \mathbf{v}$ if $\mathbf{A}^{\top} \mathbf{v}+\mathbf{c} \geq \mathbf{0} \quad \underline{\boldsymbol{u}}=\boldsymbol{A}_{\mathbf{\Sigma}}^{\top} \underline{v}+\underline{c} \geqslant 0$

Example: Equality Constrained Norm Minimization

$$
\begin{array}{ll}
\text { Minimize } & \|\mathrm{x}\| \\
\text { subject to } & \mathbf{A x}=\mathrm{b} \leftarrow \boldsymbol{V} \in \mathbb{R}^{n}
\end{array}
$$

Dual function: $\Theta(\mathbf{v})=\inf _{\mathbf{x}}(\underbrace{\left.\|\mathbf{x}\|-\mathbf{v}^{\top} \mathbf{A x}+\mathbf{b}^{\top} \mathbf{v}\right)}= \begin{cases}\mathbf{b}^{\top} \mathbf{v} & \left\|\mathbf{A}^{\top} \mathbf{v}\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}$

$$
=\underline{b}^{\top} v+i \inf _{0}\left\{\|x\|-\underline{v}^{\top} A \underline{A}\right\}
$$

where $\frac{\|\mathbf{v}\|_{*}}{l_{2}} \triangleq \sup _{\|\mathbf{u}\| \leq 1} \mathbf{u}^{\top} \mathbf{v}$ (referred to as dial no rm of $\|\cdot\|$)

Proof.

It follows from the fact that $\inf _{\mathbf{x}}\left(\|\mathbf{x}\|-\mathbf{y}^{\top} \mathbf{x}\right)=0$ if $\|\mathbf{y}\|_{*} \leq 1,-\infty$ otherwise.

- If $\|\mathbf{y}\|_{*} \leq 1$, then $\|\mathbf{x}\|-\mathbf{y}^{\top} \mathbf{x} \geq 0, \forall \mathbf{x}$, with equality if $\mathbf{x}=\mathbf{0}$
- if $\|\mathbf{y}\|_{*}>1$, choose $\mathbf{x}=t \mathbf{u}$, where \mathbf{u} satisfies $\|\mathbf{u}\| \leq 1, \mathbf{u}^{\top} \mathbf{y}=\|\mathbf{y}\|_{*}>1$:

$$
\|\mathbf{x}\|-\mathbf{y}^{\top} \mathbf{x}=t\left(\|\mathbf{u}\|-\|\mathbf{y}\|_{*}\right) \rightarrow \frac{\underline{\boldsymbol{n}}}{-\infty} \text { is the maximizer of } t \rightarrow \boldsymbol{y} \|
$$

Lower bound property: $p^{*} \geq \mathbf{b}^{\top} \mathbf{v}$ if $\left\|\mathbf{A}^{\top} \mathbf{v}\right\|_{*} \leq 1 / 20$

Example: Two-way Partitioning

$$
\begin{aligned}
& \text { symmetric } \\
& \text { Minimize } \quad \mathbf{x}^{\top}{ }^{W} \mathbf{W} x=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}(\underset{=}{w})_{i j} x_{j}
\end{aligned}
$$

- A non-convex problem; feasible set contains 2^{n} discrete points
- Interpretation: partition $\{1, \ldots, n\}$ into two sets; $(\mathbf{W})_{i j}$ is cost of assigning i, j to the same set; $-(\mathbf{W})_{i j}$ is cost of assigning to different sets Dual function: orig

$$
\begin{aligned}
\Theta(\mathbf{v})=\inf _{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{W} \mathbf{x}+\sum_{i} \mathbf{v}_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{\mathbf{x}}\left\{\mathbf{x}^{\top}(\underset{\mathbf{W}+\operatorname{Diag}(\mathbf{v})}{ }) \mathbf{x}-\mathbf{1}^{\top} \mathbf{v}\right\} \\
& = \begin{cases}-\mathbf{1}^{\top} \mathbf{v} & \mathbf{W}+\operatorname{Diag}\{\mathbf{v}\} \succeq 0 \\
-\infty & \text { otherwise indef }\end{cases} \\
& \text { SD }
\end{aligned}
$$

Example: $\mathbf{v}=-\lambda_{\min }(\mathbf{W})$ gives non-trivial bound $p^{*} \geq n \lambda_{\min }(\mathbf{W})$.

Lagrangian Dual and Conjugate Function

Dual function:

$$
\begin{aligned}
\Theta(\mathbf{u}, \mathbf{v}) & =\inf _{\mathbf{x} \in \operatorname{dom}(f)}\left(f(\mathbf{x})+\left(\mathbf{A}^{\top} \mathbf{u}+\mathbf{C}^{\top} \mathbf{v}\right)^{\top} \mathbf{x}-\mathbf{b}^{\top} \mathbf{u}-\mathbf{d}^{\top} \mathbf{v}\right) \\
& =-f^{*}\left(-\mathbf{A}^{\top} \mathbf{u}-\mathbf{C}^{\top} \mathbf{v}\right)-\mathbf{b}^{\top} \mathbf{u}-\mathbf{d}^{\top} \mathbf{v}
\end{aligned}
$$

Legendre- Fenchel conjugate/convex conjugate

- Definition of conjugate function: $f^{*}(\mathbf{y})=\sup _{x \in \operatorname{dom}(f)}\left(\mathbf{y}^{\top} \mathbf{x}-f(\mathbf{x})\right)$
- Simplifies derivation of dual if conjugate of f is known

Example: Entropy maximization

$$
f(\mathbf{x})=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f^{*}(\mathbf{y})=\sum_{i=1}^{n} \exp \left(y_{i}-1\right)
$$

The Lagrangian Dual Problem

- Finds largest lower bound on p^{*}, obtained from Lagrangian dual function
- A convex optimization problem; optimal value denoted d^{*}
- \mathbf{u}, \mathbf{v} are dual feasible if $\mathbf{u} \geq \mathbf{0},(\mathbf{u}, \mathbf{v}) \in \operatorname{dom}(\Theta)$
- Often simplified by making implicit constraint $\mathbf{u} \geq \mathbf{0},(\mathbf{u}, \mathbf{v}) \in \operatorname{dom}(\Theta)$ explicit

Example: Standard form LP and its dual:

More on this later.

Weak and Strong Duality

Weak duality: $d^{*} \leq p^{*}$

- Always holds (for convex and non-convex problems)
- Can be used to find non-trivial lower bounds for difficult problems
- For example, solving SDP Semidefinite Programming.

$$
\begin{array}{ll}
\text { Maximize } & -\mathbf{1}^{\top} \mathbf{v} \\
\text { subject to } & \mathbf{W}+\operatorname{Diag}\{\mathbf{v}\} \succeq 0
\end{array}
$$

yields a lower bound for the two-way partitioning problem

Strong duality: $d^{*}=p^{*}$

- Does not hold in general
- Usually hold for convex problems
- Conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's Constraint Qualification

Strong duality holds for a convex problem

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x}) \\
\text { subject to } & g_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$$
\text { it }(\mathrm{Ax}=\mathrm{b}
$$

if it is strictly feasible, ie.,
$2 A_{=}^{\prime} \underline{x} \leq b$, then no need to be strict.

$$
\exists \mathbf{x} \in \operatorname{int} \mathcal{D}: \quad g_{i}(\mathbf{x})<0, \quad i=1, \ldots, m, \quad \mathbf{A x}=\mathbf{b}
$$

- Also guarantees that the dual optimum is attained (if $p^{*}>-\infty$)
- Can be further relaxed: egg., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, ...
- There exist many other types of constraint qualifications (see [BSS, Ch. 5])

Other Well-Known CQs

Do LICQ (Linear independence CQ): Gradients of active inequality constraints and gradients of equality constraints are linearly independent at \mathbf{x}^{*}

- MFCQ (Manasarian-Fromovitz CQ): Gradients of equality constraints are LI at $\mathbf{x}^{*}, \exists \mathbf{d} \in \mathbb{R}^{n}$ such that $\nabla g_{i}^{\top}\left(\mathbf{x}^{*}\right) \mathbf{d}<0$ for active inequality constraints, $\nabla h_{j}^{\top}\left(\mathbf{x}^{*}\right) \mathbf{d}=0$ for equality constraints
- CRCQ (Constant rank CQ): For each subset of gradients of active inequality constraints \& gradients of equality constraints, the rank at \mathbf{x}^{*} 's vicinity is constant
- CPLD (Constant positive linear dependence CQ): For each subset of gradients of active inequality constraints \& gradients of equality constraints, if it's positive-linear dep. at \mathbf{x}^{*} then it's positive-linear dependent in \mathbf{x}^{*} 's vicinity
- QNCQ (Quasi-normality CQ): If gradients of active inequality constraints and gradients of equality constraints are positively-linearly dependent at \mathbf{x}^{*} with duals u_{i} for inequalities and v_{j} for equalities, then there is no sequence $\mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$ such that $v_{j} \neq 0 \Rightarrow v_{j} h_{j}\left(\mathbf{x}_{k}\right)>0$ and $u_{i} \neq 0 \Rightarrow u_{i} g_{i}\left(\mathbf{x}_{k}\right)<0$

For ease of exposition, consider problem with one constraint $g(\mathbf{x}) \leq 0$ Interpretation of dual function

- $u q+p=\Theta(u)$ is an supporting hyperplane to set \mathcal{G} with slope $[u, 1]^{\top}$
- Hyperplane intersects p-axis at $p=\Theta(u)$

Geometric Interpretation

Epigraph variation: Same interpretation if \mathcal{G} is replaced with
vector-valued
A $=\{(q, p) \mid g(\mathbf{x}) \leq q, f(\mathbf{x}) \leq p$ for some $\mathbf{x} \in \mathcal{D}\}$ epigraph

Strong duality

- Holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $\left(0, p^{*}\right)$
- For convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $\left(0, p^{*}\right)$
- Slater's condition: If there exist $(\tilde{q}, \tilde{p}) \in \mathcal{A}$ with $\tilde{q}<0$, then supporting hyperplanes at $\left(0, p^{*}\right)$ must be non-vertical

Strong Duality Geometric Interpretation
If slater's condition holds

Existence of $\tilde{q}<0$, "forcing" the supporting hyperplane to be non-vetical.

Example: Inequality Form of LP
Primal problem: Assume $\underset{=}{A}$ is full row rank.

$$
\begin{array}{ll}
\text { Minimize } & \mathbf{c}^{\top} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \longleftarrow \underline{u} \geq \underline{0}
\end{array}
$$

Dual function:

$$
L(\underline{x}, \underline{y})=\underbrace{c^{\top} \underline{x}}_{\text {ohj}}+\underline{u}^{\top}(\underbrace{(\underset{\sim}{A} \underline{x}-\underline{b})}_{\leq 0} \leq \underline{c}^{\top} \underline{x}
$$

$$
\Theta(\mathbf{u})=\inf _{\mathbf{x}}\left(\left(\mathbf{c}+\mathbf{A}^{\top} \mathbf{u}\right)^{\top} \mathbf{x}-\mathbf{b}^{\top} \mathbf{u}\right)= \begin{cases}-\mathbf{b}^{\top} \mathbf{u} & \mathbf{A}^{\top} \mathbf{u}+\mathbf{c}=\mathbf{0} \\ -\infty & \text { otherwise }\end{cases}
$$

Dual problem:

$$
\begin{aligned}
& \max \left\{\begin{array}{l}
\operatorname{\theta (\underline {u})} \\
\text { s.t. } \underline{u} \geq 0
\end{array}\right\} \\
& \begin{array}{l}
\text { Maximize }-\mathbf{b}^{\top} \mathbf{u} \\
\text { subject to } \quad \mathbf{A}^{\top} \mathbf{u}+\mathbf{c}=\mathbf{0}, \quad \mathbf{u} \geq \mathbf{0}
\end{array} \quad L .
\end{aligned}
$$

- From Slater's condition: $p^{*}=d^{*}$ if $\mathbf{A} \tilde{\mathbf{x}}<\mathbf{b}$ for some $\tilde{\mathbf{x}}$
- In fact, $p^{*}=d^{*}$ except when primal and dual are infeasible (LICQ)

Example: Quadratic Program positive def, nite.
Primal problem $\left(\mathbf{P} \in \mathbb{S}_{++}^{n}\right)$:

$$
\begin{array}{ll}
\text { Minimize } & \mathbf{x}^{\top} \mathbf{P x} \\
\text { subject to } & \mathbf{A x}<\mathbf{b} \longleftarrow \underline{u} \geqslant \underline{0}
\end{array}
$$

Dual function:

$$
\begin{aligned}
& \stackrel{\underline{\mathbf{u}}}{\text { notion: }} \\
& \Theta(\dot{\mathbf{x}})
\end{aligned} \inf _{\mathbf{x}} \frac{\overbrace{\mathbf{x}^{\top} \mathbf{P} \mathbf{x}+\mathbf{u}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})}^{\text {Lagrangian n }})}{\text { quadratic } f^{n} .}=\underbrace{}_{-\frac{1}{4} \mathbf{u}^{\top} \mathbf{A} \mathbf{P}^{-1} \mathbf{A}^{\top} \mathbf{u}-\mathbf{b}^{\top} \mathbf{u}}
$$

Dual problem:
take der, set to $0 \Rightarrow$ LES: $2 \underline{p} \underline{x}+\underline{A}^{\top} \underline{u}=\underline{0} \Rightarrow \underline{x}=-\frac{1}{2} \underline{p}^{-1} A^{\top} \underline{u}$

$$
\begin{array}{ll}
\text { Maximize } & -\frac{1}{4} \mathbf{u}^{\top} \mathbf{A} \mathbf{P}^{-1} \mathbf{A}^{\top} \mathbf{u}-\mathbf{b}^{\top} \mathbf{u} \\
\text { subject to } & \mathbf{u} \geq \mathbf{0}
\end{array}
$$

- From Slater's condition: $p^{*}=d^{*}$ if $\mathbf{A} \tilde{\mathbf{x}}<\mathbf{b}$ for some $\tilde{\mathbf{x}}$
- In fact, $p^{*}=d^{*}$ always (slater's condition is automatic).

Example: Support Vector Machine

Given labels $y \in\{-1,1\}^{n}$, feature vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}$. Let $\mathbf{X} \triangleq\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]^{\top}$ Recall from Lecture 1 that the support vector machine problem: $w^{\top} \underline{x}+\mathrm{b}=0 \quad \omega_{T}: \underline{w}, b$, st.

$$
\left.y y=1, w^{\top} x_{i}+b \geqslant 1\right\}
$$ Q: slater's? Minimize

$$
\frac{1}{2} \mathbf{w}^{\top} \mathbf{w}+C \sum_{i=1}^{m} \epsilon_{i}
$$

$$
\left.4 y=-1, w_{x_{1}}+b s-1\right)
$$

Guess: subject to $\underline{\omega}=\underline{0}, b=0$, choose ε_{i} suff. large.

$$
\begin{array}{ll}
\underbrace{}_{i} \geq 0,0 \\
>0
\end{array} y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq \frac{1-\epsilon_{i}}{<0}, \quad i=1, \ldots, m \leftarrow u_{i} \geqslant 0 .
$$ Introducing dual variables $\mathbf{u}, \mathbf{v} \geq \mathbf{0}$ to obtain the Lagrangian:

Minimizing over $\mathbf{w}, b, \boldsymbol{\epsilon}$ yields the Lagrangian dual function ..penalty forms.

Example: Support Vector Machine

$$
\Theta(\mathbf{u}, \mathbf{v})= \begin{cases}\overbrace{-\frac{1}{2} \mathbf{u}^{\top} \underbrace{\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} \mathbf{u}}_{P^{S} D}}^{\text {NSD }}+\mathbf{1}^{\top} \mathbf{u} & \text { if } \mathbf{u}=C \mathbf{1}-\mathbf{v}, \mathbf{u}^{\top} \mathbf{y}=0 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\tilde{\mathbf{X}} \triangleq \mathbf{X D i a g}\left\{y_{1}, \ldots, y_{m}\right\}$. The dual problem, after eliminating \mathbf{v}, becomes:

$$
\begin{array}{ll}
\underset{\boldsymbol{\alpha}}{\operatorname{Minimize}} & \frac{1}{2} \mathbf{u}^{\top} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} \mathbf{u}-\mathbf{1}^{\top} \mathbf{u} \\
\text { subject to } & \mathbf{u}^{\top} \mathbf{y}=0, \quad 0 \leq u_{i} \leq C, i=1, \ldots, m
\end{array}
$$

- Slater's condition is satisfied \Rightarrow strong duality
- In ML literature, more common to work with the dual: Quadratic having PSD Hessian with simple bounds, plus a single linear \& simple box constraints
- At optimality, we can verify that $\mathbf{w}=\tilde{\mathbf{X}} \mathbf{u}$ (this is not a coincidence! will be proved by KKT conditions in next class)

Next Class

Optimality Conditions

