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Outline

In this lecture:

Lagrange dual problem

Weak and strong duality

Geometric interpretation

Examples in machine learning
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The Lagrangian

Standard optimization problem (may or may not be convex):

Minimize f(x)

subject to gi(x)  0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

variable x 2 Rn, domain D, optimal value p⇤

Lagrangian: L: Rn ⇥ Rm ⇥ Rp ! R, with dom(L) = D ⇥ Rm ⇥ Rp:

L(x,u,v) = f(x) +
mX

i=1

uigi(x) +
pX

j=1

vjhj(x)

weighted sum of objective and constraint functions

ui � 0 is dual variable (Lagrangian multiplier) associated with gi(x)  0

vj 2 R is dual variable (Lagrangian multiplier) associated with hj(x) = 0

JKL (CS@ISU) COM S 578X: Lecture 4 3 / 21

Convex optimization if : dual war .  or
Lagrange

multipliers .

f- convex .

gi convex ,
Vi ← uizo.fi

h ;
 affine , V-j

}⇒ P "
←

Vj EIR . tj )- convex  opt . -

I
↳ hj Eo,

-hjttlko .

I EIRP VIER?



Lagrangian Dual Function

Lagrangian dual function: ⇥ : Rm ⇥ Rp ! R:

⇥(u,v) = inf
x2D

L(x,u,v)

= inf
x2D

0

@f(x) +
mX

i=1

uigi(x) +
pX

j=1

vjhj(x)

1

A

⇥(u,v) is concave in u,v, can be �1 for some u,v

Lower bound property: If u � 0, then ⇥(u,v)  p⇤

Proof.

If x̃ 2 D and u � 0, then

f(x̃) � L(x̃,u,v) � inf
x2D

L(x,u,v) = ⇥(u,v).

Since this holds for any x̃ 2 D, minimizing over all x̃ yields p⇤ � ⇥(u,v).
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Example: Least-norm solution of linear equations

Minimize x>x

subject to Ax = b

Dual function:

Lagrangian is: L(x,v) = x>x+ v>(Ax� b)

To minimize L(x,v) over x, set gradient equal to zero

rxL(x,v) = 2x+A>v = 0 =) x = �1

2
A>v

Plug it in L to obtain ⇥:

⇥(v) = L(�1

2
A>v,v) = �1

4
v>AA>v � b>v,

which is clearly a concave function of v.

Lower bound property: p⇤ � � 1
4v

>AA>v � b>v for all v
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Example: Linear Programming

Minimize c>x

subject to Ax = b, x � 0

Dual function:

Lagrangian is:

L(x,u,v) = c>x+ v>(Ax� b)� u>x

= �b>v + (c+A>v � u)>x

L is a�ne in x, hence

⇥(u,v) = inf
x

L(x,u,v) =

(
�b>v A>v � u+ c = 0

�1 otherwise

⇥ is linear on a�ne domain {(u,v) : A>v � u+ c = 0}, hence concave

Lower bound property: p⇤ � �b>v if A>v + c � 0
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Example: Equality Constrained Norm Minimization

Minimize kxk
subject to Ax = b

Dual function: ⇥(v) = inf
x
(kxk � v>Ax+ b>v) =

(
b>v kA>vk⇤  1

�1 otherwise

where kvk⇤ , supkuk1 u
>v (referred to as dual norm of k · k)

Proof.

It follows from the fact that infx(kxk � y>x) = 0 if kyk⇤  1, �1 otherwise.

If kyk⇤  1, then kxk � y>x � 0, 8x, with equality if x = 0

if kyk⇤ > 1, choose x = tu, where u satisfies kuk  1, u>y = kyk⇤ > 1:

kxk � y>x = t(kuk � kyk⇤) ! �1 as t ! 1

Lower bound property: p⇤ � b>v if kA>vk⇤  1
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Example: Two-way Partitioning

Minimize x>Wx

subject to x2
i = 1, i = 1, . . . , n

A non-convex problem; feasible set contains 2n discrete points

Interpretation: partition {1, . . . , n} into two sets; (W)ij is cost of assigning
i, j to the same set; �(W)ij is cost of assigning to di↵erent sets

Dual function:

⇥(v) = inf
x
(x>Wx+

X

i

vi(x
2
i � 1)) = inf

x
{x>�W +Diag(v)

�
x� 1>v}

=

(
�1>v W +Diag{v} ⌫ 0

�1 otherwise

Lower bound property: p⇤ � �1>v if W +Diag{v} ⌫ 0

Example: v = ��min(W)1 gives non-trivial bound p⇤ � n�min(W)
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Lagrangian Dual and Conjugate Function

Minimize f(x)

subject to Ax  b, Cx = d

Dual function:

⇥(u,v) = inf
x2dom(f)

�
f(x) + (A>u+C>v)>x� b>u� d>v

�

= �f⇤(�A>u�C>v)� b>u� d>v

Definition of conjugate function: f⇤(y) = supx2dom(f)

�
y>x� f(x)

�

Simplifies derivation of dual if conjugate of f is known

Example: Entropy maximization

f(x) =
nX

i=1

xi log xi, f⇤(y) =
nX

i=1

exp(yi � 1)

JKL (CS@ISU) COM S 578X: Lecture 4 9 / 21

m n

f 1

- -
I EIR -1 I EIR

"

Legendre - Fenichel conjugate I convex conjugate
-



The Lagrangian Dual Problem

Maximize ⇥(u,v)

subject to u � 0

Finds largest lower bound on p⇤, obtained from Lagrangian dual function

A convex optimization problem; optimal value denoted d⇤

u,v are dual feasible if u � 0, (u,v) 2 dom(⇥)

Often simplified by making implicit constraint u � 0, (u,v) 2 dom(⇥)
explicit

Example: Standard form LP and its dual:

Minimize c>x

subject to Ax = b, x � 0

Maximize � b>v

subject to A>v + c � 0
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Weak and Strong Duality

Weak duality: d⇤  p⇤

Always holds (for convex and non-convex problems)

Can be used to find non-trivial lower bounds for di�cult problems

For example, solving SDP

Maximize � 1>v

subject to W +Diag{v} ⌫ 0

yields a lower bound for the two-way partitioning problem

Strong duality: d⇤ = p⇤

Does not hold in general

Usually hold for convex problems

Conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s Constraint Qualification

Strong duality holds for a convex problem

Minimize f(x)

subject to gi(x)  0, i = 1, . . . ,m

Ax = b

if it is strictly feasible, i.e.,

9x 2 intD : gi(x) < 0, i = 1, . . . ,m, Ax = b

Also guarantees that the dual optimum is attained (if p⇤ > �1)

Can be further relaxed: e.g., can replace intD with relintD (interior relative
to a�ne hull); linear inequalities do not need to hold with strict inequality, . . .

There exist many other types of constraint qualifications (see [BSS, Ch. 5])
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Other Well-Known CQs

LICQ (Linear independence CQ): Gradients of active inequality constraints
and gradients of equality constraints are linearly independent at x⇤

MFCQ (Manasarian-Fromovitz CQ): Gradients of equality constraints are LI
at x⇤, 9d 2 Rn such that rg>i (x

⇤)d < 0 for active inequality constraints,
rh>

j (x
⇤)d = 0 for equality constraints

CRCQ (Constant rank CQ): For each subset of gradients of active inequality
constraints & gradients of equality constraints, the rank at x⇤’s vicinity is
constant

CPLD (Constant positive linear dependence CQ): For each subset of gradients
of active inequality constraints & gradients of equality constraints, if it’s
positive-linear dep. at x⇤ then it’s positive-linear dependent in x⇤’s vicinity

QNCQ (Quasi-normality CQ): If gradients of active inequality constraints and
gradients of equality constraints are positively-linearly dependent at x⇤ with
duals ui for inequalities and vj for equalities, then there is no sequence
xk ! x⇤ such that vj 6= 0 ) vjhj(xk) > 0 and ui 6= 0 ) uigi(xk) < 0
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Geometric Interpretation

For ease of exposition, consider problem with one constraint g(x)  0

Interpretation of dual function

⇥(u) = inf
(q,p)2G

(uq + p), where G = {(g(x), f(x))|x 2 D}

uq + p = ⇥(u) is an supporting hyperplane to set G with slope u

Hyperplane intersects p-axis at p = ⇥(u)
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Geometric Interpretation

Epigraph variation: Same interpretation if G is replaced with

A = {(q, p)|g(x)  q, f(x)  p for some x 2 D}

Strong duality

Holds if there is a non-vertical supporting hyperplane to A at (0, p⇤)

For convex problem, A is convex, hence has supporting hyperplane at (0, p⇤)

Slater’s condition: If there exist (q̃, p̃) 2 A with q̃ < 0, then supporting
hyperplanes at (0, p⇤) must be non-vertical
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Strong Duality Geometric Interpretation
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Example: Inequality Form of LP

Primal problem:

Minimize c>x

subject to Ax  b

Dual function:

⇥(u) = inf
x

�
(c+A>u)>x� b>u

�
=

(
�b>u A>u+ c = 0

�1 otherwise

Dual problem:

Maximize � b>u

subject to A>u+ c = 0, u � 0

From Slater’s condition: p⇤ = d⇤ if Ax̃ < b for some x̃

In fact, p⇤ = d⇤ except when primal and dual are infeasible

JKL (CS@ISU) COM S 578X: Lecture 4 17 / 21

Assume It is full row  rank
.

← Ese

LCE , a) =  Etz t IT LEZ - I )

If so ⇐
s I' a

Max Out )

sit . use } ]

Tip .

-

( LICQ )



Example: Quadratic Program

Primal problem (P 2 Sn++):

Minimize x>Px

subject to Ax < b

Dual function:

⇥(�) = inf
x

�
x>Px+ u>(Ax� b)

�
= �1

4
u>AP�1A>u� b>u

Dual problem:

Maximize � 1

4
u>AP�1A>u� b>u

subject to u � 0

From Slater’s condition: p⇤ = d⇤ if Ax̃ < b for some x̃

In fact, p⇤ = d⇤ always
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Example: Support Vector Machine

Given labels y 2 {�1, 1}n, feature vectors x1, . . . ,xm. Let X , [x1, . . . ,xm]>

Recall from Lecture 1 that the support vector machine problem:

Minimize
w,b,✏

1

2
w>w + C

mX

i=1

✏i

subject to yi(w
>xi + b) � 1� ✏i, i = 1, . . . ,m

✏i � 0, i = 1, . . . ,m

Introducing dual variables u,v � 0 to obtain the Lagrangian:

L(w, b, ✏,u,v) =
1

2
kwk22 + C

mX

i=1

✏i +
nX

i=1

ui(1� ✏i � yi(w
>xi + b))�

nX

i=1

vi✏i

Minimizing over w, b, ✏ yields the Lagrangian dual function ...
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Example: Support Vector Machine

⇥(u,v) =

(
� 1

2u
>X̃>X̃u+ 1>u if u = C1� v,u>y = 0

�1 otherwise

where X̃ , XDiag{y1, . . . , ym}. The dual problem, after eliminating v, becomes:

Minimize
↵

1

2
u>X̃>X̃u� 1>u

subject to u>y = 0, 0  ui  C, i = 1, . . . ,m.

Slater’s condition is satisfied ) strong duality

In ML literature, more common to work with the dual: Quadratic having PSD
Hessian with simple bounds, plus a single linear & simple box constraints

At optimality, we can verify that w = X̃u (this is not a coincidence! will be
proved by KKT conditions in next class)
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Next Class

Optimality Conditions
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