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Outline

Today:
o Convex sets
@ Convex functions
o Key properties

@ Operations preserving convexity
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Recap the Very First Lecture

Mathematical optimization problem:

Minimize fo(x)
subject to  f;(x) <0, i=1,....,m

o x=[71,...,2x]" € RY: decision variables
o fy:RY — R: objective function

o fi:RY 5 R,i=1,...,m: constraint fucntions

Solution or optimal point x* has the smallest value of fy among all vectors that
satisfy the constraints

Key property of interests in ML: Convexity/Non-Convexity
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Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima

Formally: Let D be the feasible domain defined by the constraints. If x € D
satisfies the following local condition: 3 d > 0 such that for all y € D satisfying
Ix — yll2 < d, we have fy(x) < fo(y). = fo(x) < fo(y) for ally € D.

(o(q‘, "

Globd : fex) efty), v Ye€D.

A crucial fact that would significantly reduce
the complexity in optimization!

Convex Nonconvex
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Convex Sets

Convex set: A set D € R"” such that

Vx,y€D = ux+(l-pyeD, YVO<pu<l

Geometrically, line segment joining any two points in D lies in entirely in D

amvv‘

“ s..«hns'\. m'“i\
sk, thal

Convex combination: A linear combination p1x3 + -+ pgxy for :b "
X1,...,Xp € R", with y; >0,i=1,.. kandzzl,ul_l («

Convex hull: A set defined by all convex combinations of elements in a set D.
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Examples of Convex Sets

1) Norm balls: Radius r ball in I, norm B, = {x € R : ||x||, < r}

Dxll € Il 11 m
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Examples of Convex Sets

2) Hyperplane and haflspaces 0 Jx sl
o Hyperplane: Set of the form {x|a”x = b} with a # 0 -

@ yormed
vectr
x
' Wb
a"z =1
o Halfspace: Set of the form {x|a’x < b} with a # 0
b/
7 a

@ a is called “normal vector”
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Examples of Convex Sets .
xsy S HeEy, .

3) Polyhedron: {x: Ax < b}, whre A € R™*", < is component-wise inequality

QE_‘L az
T

Note:
o {x:Ax < b,Cx =d} is also a polyhedron (Why?)
v

@ Polyhedron is an intersection of finite number of halfspaces and hyperplanes
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Examples of Convex Sets

Cones: LCR" suchthatxe L=itxe K, Vi>0 %A=@ [ K

Convex Cones: A cone that is convex, i.e.,

X1,X0 €K = Xy + pexe €K, Vui,pue >0

LX)
\
o *e
Onme
Conic Combination: For x1,...,x% € R”, a linear combination p1xy + - -+ + prpXg
with p; > 0,4 =1,...,k. Conic hull collects all conic combinations
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Examples of Convex Sets 2 . (R Creem
Nt
o Norm Cones: {(x,t) € R*!: |x|| <t} for'some norm | - || (the norm cone

for I3 norm is referred to as second-order cone)

@ Normal Cone: Given any set C and at a boundary point x € C, we define

Ne(x)={g:g'(y —x) <0, Vy €C}

0
(%, 5) -
“'5“14“5' '7 . This is always a convex
e [1 _“.\ \ > cone, regardless of C
. \

@ Positive Semidefnite Cone: S £ {X € S": X = 0}, where X = 0 represents
X is positive semidefinite and S™ is the set of n X n symmetric matrices.

(Bw).
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Key Properties of Convex Sets

@ Separating hyperplane theorem: Two disjoint convex sets have a separating
hyperplane between them

alz>b aTz <

D g
¢ OLMU-('IJ .

@ More precisely, if C and D are non-empty convex sets with C N D = &, then
there exists a and b such that:

CC{x:a'x<b}), DC{x:a'x>Db},
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Key Properties of Convex Sets

@ Supporting hyperplane theorem: A boundary point of a convex set has a
supporting hyperplane passing through it
O

L4

)

@ More precisely, if C is a non-empty convex set and xg € JC, there exists a
vector a such that:

C={x:a'(x—x) <0}
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Operations That Preserve Convexity of Sets

@ Intersection: The intersection of convex sets is convex

e Scaling and Translation: If C is convex, then aC +b = {ax +b:x €C} is
also convex for any a and b.
9‘“‘““9 Aroasltabion
o Affine image and preimage: If f(x) = Ax+ b and C is convex, then

f0) £ {fx):xeC}

is also convex. If D is convex, then

f7HD) £ {x: f(x) € D}

is also convex
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Convex Functions

e Convex function: f(-) : R™ — R is convex if dom(f) € R™ is convex and

flux+ (1= p)y) <pf(x)+ 1 —pw)f(y)

for all u € [0,1] and for all x,y € dom(f).

e

In words, f lies below the line segment thSJ{Jins aﬁy-f(x) and f(y).

prelp)y

~
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Important Convexity Notions

e Strictly convex: f(ux+ (1 — u)y)@uf(x) + (1 —p)f(y). ie., fis convex
and has greater curvature than a linear function

,Mm20.
e Strongly convex with parameter m: f(x) — 2||x||* is convex, i.e., f is at
least as curvy as a m-parameterized quadratic function

o Note: strongly convex = strictly convex = convex, (converse is not true)

(\Cx

@ Similar notions for concave functions 3

f02) (HY).
AR

1
ek — =>

s(:r"ék] bk neat £'("‘M7(A,; soav!
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Important Examples of Convex/Concave Functions

@ Univariate functions:
» Exponential functions: e®® is convex for all a € R
» Power functions: z® is convex if a € (—o0, 0] U [1, 00) and concave if a € [0, 1]
» Logarithmic functions: log(z) is concave for > 0

o Affine function: a’x + b is both concave and convex PD = 1,{1""3(‘)

@ Quadratic function: —XTQX + b x + ¢ is convex if Q = 0 (positive ConVex.
semidefinite) '

o Least square_Joss function:; .||y Ax||_? is aIways convex (since ATA = 0)
(y-R=)TCu-82) 2 @ =

e Norni: ||x|| is alway5 Convex for any’norm e.g., &

» I, norm: x|, = (300, mi)P for p > 1, ||x]|cc = max;=1,....n{|z:i|}
» Matrix operator (spectral) norm || X||op = 01(X) [“cd:)m
Matrix trace (nuclear) norm || Xl = >°0_; or(X), wherei Off
o1(X) > -+ > 0,(X) > 0 are the singular values of X
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More Examples of Convex/Concave Functions

@ Indicator function: If C is convex, then its indicator function

0 xec ®: e
lc(X)Z{OO iy '; '.

is convex n
—-L«.M.q_—y R

@ Support function: For any set C (convex or not), its support function

15 (x) = maxx

f,-.q“ 1 (',4,4.0_”1,) w‘(«x lli.-t[l-ft)l':.)%

oy, = o GG $ F@%{&M@
° Max function: f(x) = max{x1,...,2,} l%convexllr M’L‘ j +&T,! "
M o B) = pZertoptie

$ conceiL.
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Key Properties of Convex Functions

@ Epigraph characterization: A function f is convexjf and only if its epigraph
R eon
ep(f) 2 {(x, ) € dom(f) x R: f(x) < u} [\ FF 5%

is a convex set 1@)

@ Convex sublevel set: If f is convex, then its sublevel set

{x € dom(f): f(x) < p}

is convex for all u € R (but the converse is not true)

r

e_Jensen's inequality: If f is convex, then

for all x1,x2 € dom(f) and 0 < <1 o q90=
cﬂ“‘*
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Other Important Characterizations of Convex Functions

o First-order characterization: If f is differentiable, then f is convex if and only
if dom(f) is convex, and 1, fop

fy) = fx)+ VT (x)(y —x) .
e |

for all x,y € dom(f). A1

(4

@ Implying an important consequence: V f(x) = 0 => x minimizés f 3

gy > §=)
@ Second-order characterlzatlon If fis twice dn‘Ferent|abIe then fis convex if
and only if dom(f) is convex, and H ) = 0 for all x € dom(f
e

(x) =
o U '> 0, (1
a%.a*\‘ s
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Operations That Preserve Convexity of Functions

@ Nonnegative linear combinations: fy,..., f;, being convex implies
p1f1+ -+ pmfm is convex for any pig, ..., pm >0

@ Pointwise maximization: If f; is convex for any index ¢ € Z, then

-' >
€9, ﬁt(z)= v;;:z( X f(x) = max fi(x) &éj—

is convex. Note that the index set Z can be infinite

@ Partial minimization: If g(x,y) is convex in x,y and C is convex, then
f(x) =ming(x,y)

yec ‘ t‘.&

is convex (the basis for ADMM, coordinate descent, ...)
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Examples of Composite Operations to Prove Convexity

Example 1: Let C be an arbitrary set. Show that maximum distance to C under an
arbitrary norm | - ||, i.e., f(x) = maxycc ||x — y|| is convex.

Proof. f(‘)" l\’l g\\— max “’(7‘)
o Note that fy(x) =[x —y|| |s convex in x for any flxed y.

@ By pointwise maximization rule, f is convex. m
—_————

Example 2: Let C be a convex set. Show that minimum distance to C under an
arbitrary norm | - ||, i.e., f(x) = minyec ||x — y|| is also convex.

Proof.

o Note that f(x,y) = ||x — y| is convex in both x and y ).
@ C is convex by assumption. -\—(&‘:W‘K “7!—% “- t(l( '4

@ By partial minimization rule, f is convex. m
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More Operations That Preserve Convexity of Functions

o Affine composition: f is convex = g(x) = f(Ax + b) is convex

o General composition: Suppose f = hog, where g: R* - R, h: R — R,
f:R® = R. Then:
~—>» [ is convex if h is convex & nondecreasing, g is convex
> fis convex if h is convex & nonincreasing, g is concave
» fis concave if h is concave & nondecreasing, g is concave
» fis concave if h is concave & nonincreasing, g is convex

How to remember these? Think of the chain rule when n =1

(@) =h"(g(x)g' (x)* + I (g(x))g" (=)
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Generalization

@ Vector-valued composition: Suppose that
f(x) = h(g(x)) = h(g1(x),. .., 9r(x))

where g : R - R*, h:R¥ 5 R, f:R® = R. Then:

f is convex if h is convex & nondecreasingfin each argument) g is convex

f is convex if h is convex & nonincreasing W each argument, lg is concave

f is concave if h is concave & nondecreasing|in each argument) g is concave
f is concave if h is concave & nonincreasing {n each argumentf g is convex

vvYyVvVy
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Example of Composite Operations to Prove Convexity

Log-sum-exp function: Show that g(x) = 1og(Z _, exp(a] x +b;)) is convex,
where a;,b;, i =1,...,k are fixed parameters (often called "soft max" in ML
literature since it smoothly approximates max;—,. (a X+ b;).

‘1‘&“ . r!W
Proof. t VM,:I{
o Note that it suffices to prove f(x) = log(} ., exp(z;)) is convex (Why?)

@ According to second-order characterization, compute the Hessian to obtain:

V2f(x) = Diag{z} — zz'

where (z); = e /(Y- €*). This matrix is diagonally dominant = PED. O]
o wox ’

2 ~H0- o max_ & +b]}

JKL (CSeISu) COM S 578X: Lecture 3 24 /25



Next Class

Duality
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