COM S 578X: Optimization for Machine Learning

Lecture Note 3: Convex Sets \& Convex Functions

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science
lowa State University, Ames, Iowa, USA

Fall 2019

Outline

Today:

- Convex sets
- Convex functions
- Key properties
- Operations preserving convexity

Recap the Very First Lecture

Mathematical optimization problem:

$$
\begin{array}{ll}
\text { Minimize } & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $\mathbf{x}=\left[x_{1}, \ldots, x_{N}\right]^{\top} \in \mathbb{R}^{N}$: decision variables
- $f_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}, i=1, \ldots, m$: constraint fucntions

Solution or optimal point \mathbf{x}^{*} has the smallest value of f_{0} among all vectors that satisfy the constraints

Key property of interests in ML: Convexity/Non-Convexity

Why Do We Care About Convexity?

For convex optimization problem, local minima are global minima
Formally: Let \mathcal{D} be the feasible domain defined by the constraints. If $\mathrm{x} \in \mathcal{D}$ satisfies the following local condition: $\exists d>0$ such that for all $\mathbf{y} \in \mathcal{D}$ satisfying $\|\mathbf{x}-\mathbf{y}\|_{2} \leq d$, we have $f_{0}(\mathbf{x}) \leq f_{0}(\mathbf{y}) . \Rightarrow f_{0}(\mathbf{x}) \leq f_{0}(\mathbf{y})$ for all $\mathbf{y} \in \mathcal{D}$.
local min
Global: $f_{0}(x) \leqslant f(y), \forall y \in D$.

Convex

Nonconvex

A crucial fact that would significantly reduce the complexity in optimization!

Convex Sets

Convex set: A set $\mathcal{D} \in \mathbb{R}^{n}$ such that

$$
\forall \mathbf{x}, \mathbf{y} \in \mathcal{D} \quad \Rightarrow \quad \mu \mathbf{x}+(1-\mu) \mathbf{y} \in \mathcal{D}, \quad \forall 0 \leq \mu \leq 1
$$

Geometrically, line segment joining any two points in \mathcal{D} lies in entirely in \mathcal{D}

"Smallast convex set that
Convex combination: A linear combination $\mu_{1} \mathbf{x}_{1}+\cdots+\mu_{k} \mathbf{x}_{k}$ for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{R}^{n}$, with $\mu_{i} \geq 0, i=1, \ldots, k$ and $\sum_{i=1}^{k} \mu_{i}=1$.

Convex hull: A set defined by all convex combinations of elements in a set \mathcal{D}.

Examples of Convex Sets

1) Norm balls: Radius r ball in l_{p} norm $\mathcal{B}_{p}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{p} \leq r\right\}$

Examples of Convex Sets

2) Hyperplane and haflspaces

- Hyperplane: Set of the form $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x}=b\right\}$ with $\mathbf{a} \neq \mathbf{0}$

- Halfspace: Set of the form $\left\{\mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x} \leq b\right\}$ with $\mathbf{a} \neq \mathbf{0}$

- \mathbf{a} is called "normal vector"

Examples of Convex Sets

3) Polyhedron: $\{\mathbf{x}: \mathbf{A x} \leq \mathbf{b}\}$, whre $\mathbf{A} \in \mathbb{R}^{m \times n}$, \leq is component-wise inequality
$A \geq \leq b$
$\Rightarrow \underline{a}_{i}^{\top} \underline{x} \leq b_{i}, \forall$ rows i.

Note:

$$
\left\{\begin{array}{l}
c x \leq d \\
c x x \geqslant d \\
c_{z \leq} x
\end{array}\right\}-a_{4}
$$

- $\{\mathbf{x}: \mathbf{A x} \leq \mathbf{b}, \mathbf{C x = d}\}$ is also a polyhedron (Why?)
- Polyhedron is an intersection of finite number of halfspaces and hyperplanes

Examples of Convex Sets

Cones: $\mathcal{K} \subseteq \mathbb{R}^{n}$ such that $\mathrm{x} \in \mathcal{K} \Rightarrow t \mathrm{x} \in \mathcal{K}, \quad \forall t \geq 0 \quad \underline{x}=\mathbb{O} \in \mathbb{K}$.
Convex Cones: A cone that is convex, i.e.,

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{K} \quad \Rightarrow \quad \mu_{1} \mathbf{x}_{1}+\mu_{2} \mathbf{x}_{2} \in \mathcal{K}, \quad \forall \mu_{1}, \mu_{2} \geq 0
$$

cone

Conic Combination: For $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbb{R}^{n}$, a linear combination $\mu_{1} \mathbf{x}_{1}+\cdots+\mu_{k} \mathbf{x}_{k}$ with $\mu_{i} \geq 0, i=1, \ldots, k$. Conic hull collects all conic combinations

Examples of Convex Sets

ice cream cone

- Norm Cones: $\left\{(\mathbf{x}, t) \in \mathbb{R}^{d+1}:\|\mathbf{x}\| \leq t\right\}$ for some norm $\|\cdot\|$ (the norm cone for l_{2} norm is referred to as second-order cone)
- Normal Cone: Given any set \mathcal{C} and at a boundary point $\mathbf{x} \in \mathcal{C}$, we define

- Positive Semidefnite Cone: $\mathbb{S}_{+}^{n} \triangleq\left\{\mathbf{X} \in \mathbb{S}^{n}: \mathbf{X} \succeq 0\right\}$, where $\mathbf{X} \succeq 0$ represents \mathbf{X} is positive semidefinite and \mathbb{S}^{n} is the set of $n \times n$ symmetric matrices.
(HW) .

Key Properties of Convex Sets

- Separating hyperplane theorem: Two disjoint convex sets have a separating hyperplane between them

- More precisely, if \mathcal{C} and \mathcal{D} are non-empty convex sets with $\mathcal{C} \cap \mathcal{D}=\varnothing$, then there exists a and b such that:

$$
\mathcal{C} \subseteq\left\{\mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \leq b\right\}, \quad \mathcal{D} \subseteq\left\{\mathbf{x}: \mathbf{a}^{\top} \mathbf{x} \geq b\right\}
$$

Key Properties of Convex Sets

- Supporting hyperplane theorem: A boundary point of a convex set has a supporting hyperplane passing through it

- More precisely, if \mathcal{C} is a non-empty convex set and $\mathrm{x}_{0} \in \partial \mathcal{C}$, there exists a vector a such that:

$$
\mathcal{C}=\left\{\mathbf{x}: \mathbf{a}^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right) \leq 0\right\}
$$

Operations That Preserve Convexity of Sets

- Intersection: The intersection of convex sets is convex

- Scaling and Translation: If \mathcal{C} is convex, then $a \mathcal{C}+\mathbf{b} \triangleq\{a \mathbf{x}+\mathbf{b}: \mathbf{x} \in \mathcal{C}\}$ is also convex for any a and \mathbf{b}.

scaling translation

- Affine image and preimage: If $f(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{b}$ and \mathcal{C} is convex, then

$$
f(\mathcal{C}) \triangleq\{f(\mathbf{x}): \mathbf{x} \in \mathcal{C}\}
$$

is also convex. If \mathcal{D} is convex, then

$$
f^{-1}(\mathcal{D}) \triangleq\{\mathbf{x}: f(\mathbf{x}) \in \mathcal{D}\}
$$

is also convex

Convex Functions

- Convex function: $f(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom}(f) \in \mathbb{R}^{n}$ is convex and

$$
f(\mu \mathbf{x}+(1-\mu) \mathbf{y}) \leq \mu f(\mathbf{x})+(1-\mu) f(\mathbf{y})
$$

for all $\mu \in[0,1]$ and for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$.

- Concave function: f concave $\Longleftrightarrow-f$ convex

$$
\mu \underline{x}+(1-\mu) y
$$

Important Convexity Notions

- Strictly convex: $f(\mu \mathbf{x}+(1-\mu) \mathbf{y})<\mu f(\mathbf{x})+(1-\mu) f(\mathbf{y})$, i.e., f is convex and has greater curvature than a linear function
- Strongly convex with parameter $m: f(\mathrm{x})-\frac{m}{2}\|\mathrm{x}\|^{2}$ is convex, i.e., f is at least as curvy as a m-parameterized quadratic function
- Note: strongly convex \Rightarrow strictly convex \Rightarrow convex, (converse is not true)
- Similar notions for concave functions

strictly hit not strongly cowner

Important Examples of Convex/Concave Functions

- Univariate functions:
- Exponential functions: $e^{a x}$ is convex for all $a \in \mathbb{R}$
- Power functions: x^{a} is convex if $a \in(-\infty, 0] \cup[1, \infty)$ and concave if $a \in[0,1]$
- Logarithmic functions: $\log (x)$ is concave for $x>0$
- Affine function: $\mathbf{a}^{\top} \mathbf{x}+\mathbf{b}$ is both concave and convex $P D \Rightarrow$ strongly
- Quadratic function: $\frac{1}{2} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}+c$ is convex if $\mathbf{Q} \succeq 0$ (positive convex. semidefinite)
- Least square loss function: $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}$ is always convex (since $\mathbf{A}^{\top} \mathbf{A} \succeq 0$) $(y-A x)^{\top}(y-A x) \stackrel{H}{\Rightarrow}=A^{\top} A \leftarrow P S D$.
- Norm: $\|\dot{\mathrm{x}}\|$ is always convex for any"norim, e.g.,
- l_{p} norm: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}}$ for $p \geq 1,\|\mathbf{x}\|_{\infty}=\max _{i=1, \ldots, n}\left\{\left|x_{i}\right|\right\}$
- Matrix operator (spectral) norm $\|\mathbf{X}\|_{\text {op }}=\sigma_{1}(\mathbf{X}) \quad\{$ app h'cations Matrix trace (nuclear) norm $\|\mathbf{X}\|_{\text {tr }}=\sum_{i=1}^{r} \sigma_{r}(\mathbf{X})$, where $\sigma_{1}(\mathbf{X}) \geq \cdots \geq \sigma_{r}(\mathbf{X}) \geq 0$ are the singular values of $\mathbf{X} \int$ in low -rank matrix completion.

More Examples of Convex/Concave Functions

- Indicator function: If \mathcal{C} is convex, then its indicator function
- Support function: For any set \mathcal{C} (convex or not), its support function

$$
\begin{aligned}
& \text { Proof. } \mathbb{1}_{C}^{*}\left(\mu \underline{x}_{1}+\left(1-\mu_{\mathcal{C}}^{*}\right) \underline{x}_{2}^{*}\right)=\max _{y \in \mathcal{C}} \max _{y \in C}\left(\mu \underline{x}_{1}+(1-\mu) \underline{x}_{2}\right)^{\top} y \\
& \text { is convex }=\max _{y \in C}\left(\mu x_{1}^{\top} y+(1-\mu) x_{2}^{\top} y\right)=\mu\left(x_{1}^{\top} \hat{u}\right)+(1-\mu)\left(x_{2}^{\top} \hat{y}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Min in } \\
& \text { is concave. } \\
& \text { Let } \hat{y}=\underset{y \in c}{\operatorname{argmax}}(f)=\mu \mathbb{1}_{c}^{*}(x)+(1-\mu) \mathbb{1}_{c}^{+}(x) \text {. }
\end{aligned}
$$

Key Properties of Convex Functions

- Epigraph characterization: A function f is convex if and only if its epigraph

$$
\begin{aligned}
& \qquad \operatorname{ep}(f) \triangleq\{(\mathbf{x}, \mu) \in \operatorname{dom}(f) \times \mathbb{R}: f(\mathbf{x}) \leq \mu\} \\
& \text { is a convex set } \\
& \text { - Convex sublevel set: If } f \text { is convex, then its sublevel set } \\
& \qquad\{\mathbf{x} \in \operatorname{dom}(f): f(\mathbf{x})<\mu\}
\end{aligned}
$$

$$
\{\mathbf{x} \in \operatorname{dom}(f): f(\mathbf{x}) \leq \mu\}
$$

is convex for all $\mu \in \mathbb{R}$ (but the converse is not true)

- Jensen's inequality: If f is convex, then

$$
f\left(\mu \mathbf{x}_{1}+(1-\mu) \mathbf{x}_{2}\right) \leq \mu f\left(\mathbf{x}_{1}\right)+(1-\mu) f\left(\mathbf{x}_{2}\right)
$$

for all $\mathbf{x}_{1}, \mathbf{x}_{2} \in \operatorname{dom}(f)$ and $0 \leq \mu \leq 1$

is a convex set

Other Important Characterizations of Convex Functions

- First-order characterization: If f is differentiable, then f is convex if and only if $\operatorname{dom}(f)$ is convex, and
for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$.

- Implying an important consequence: $\nabla f(\mathbf{x})=0 \Longrightarrow \mathbf{x}$ minimizḕs f 子

$$
\begin{aligned}
& \downarrow \\
& f(y) \geqslant f(z)
\end{aligned}
$$

- Second-order characterization: If f is twice differentiable, then f is convex if and only if $\operatorname{dom}(f)$ is convex, and $\mathbf{H}(\mathbf{x})=\nabla^{2} f(\mathbf{x}) \succeq 0$ for all $\mathbf{x} \in \operatorname{dom}(f)$

$$
\left[\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}\right]_{i j} \geq 0, \quad 1-d: \frac{\partial^{2} f(x)}{\partial x^{2}} \geq 0
$$

Operations That Preserve Convexity of Functions

- Nonnegative linear combinations: f_{1}, \ldots, f_{m} being convex implies $\mu_{1} f_{1}+\cdots+\mu_{m} f_{m}$ is convex for any $\mu_{1}, \ldots, \mu_{m} \geq 0$
- Pointwise maximization: If f_{i} is convex for any index $i \in \mathcal{I}$, then
e. .j., $\mathbb{1}_{\mathbf{c}}^{*}(\underline{x})=\max _{\boldsymbol{y} \in \mathbf{C}} \underline{x}^{\top} \boldsymbol{y} \quad f(\mathrm{x})=\max _{i \in \mathcal{I}} f_{i}(\mathrm{x}) \quad f_{1}$ is convex. Note that the index set \mathcal{I} can be infinite
- Partial minimization: If $g(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x}, \mathbf{y} and \mathcal{C} is convex, then

$$
f(\mathbf{x})=\min _{\mathbf{y} \in \mathcal{C}} g(\underset{\text { f }}{ }(\mathbf{x}, \mathbf{y})
$$

is convex (the basis for ADMM, coordinate descent, ...)

Examples of Composite Operations to Prove Convexity

Example 1: Let \mathcal{C} be an arbitrary set. Show that maximum distance to \mathcal{C} under an arbitrary norm $\|\cdot\|$, i.e., $f(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|$ is convex.

$$
\text { Proof. } \quad f(x)=\max _{y \in C}\|x-y\|=\max _{y \in C} f_{y}(x)
$$

- Note that $f_{\mathbf{y}}(\mathbf{x})=\|\mathbf{x}-\mathbf{y}\|$ is convex in \mathbf{x} for any fixed \mathbf{y}.
- By pointwise maximization rule, f is convex.

Example 2: Let \mathcal{C} be a convex set. Show that minimum distance to \mathcal{C} under an arbitrary norm $\|\cdot\|$, i.e., $f(\mathbf{x})=\min _{\mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|$ is also convex.

Proof.

- Note that $f(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$ is convex in both \mathbf{x} and \mathbf{y}.
- \mathcal{C} is convex by assumption. $f(x)=\min _{y \in C}\|\underline{x}-y\|=\min _{y \in C} f(x, y)$.
- By partial minimization rule, f is convex.

More Operations That Preserve Convexity of Functions

- Affine composition: f is convex $\Longrightarrow g(\mathbf{x})=f(\mathbf{A x}+\mathbf{b})$ is convex
- General composition: Suppose $f=h \circ g$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then:
\rightarrow - f is convex if h is convex \& nondecreasing, g is convex
- f is convex if h is convex \& nonincreasing, g is concave
- f is concave if h is concave \& nondecreasing, g is concave
- f is concave if h is concave \& nonincreasing, g is convex

How to remember these? Think of the chain rule when $n=1$

$$
f^{\prime \prime}(x)=\underbrace{\underbrace{h^{\prime \prime}(g(x)} \geqslant \frac{g^{\prime}(x)^{2}}{\geqslant 0}+\frac{h^{\prime}(g(x))}{\geqslant 0} \frac{g^{\prime \prime}(x)}{\geqslant 0}}_{\geqslant 0 \text { convex. }}
$$

Generalization

- Vector-valued composition: Suppose that

$$
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x}))=h\left(g_{1}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right)
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, h: \mathbb{R}^{k} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then:

- f is convex if h is convex \& nondecreasing in each argument g is convex
- f is convex if h is convex \& nonincreasing in each argument, g is concave
- f is concave if h is concave \& nondecreasing in each argument g is concave
- f is concave if h is concave \& nonincreasing in each argument g is convex

Example of Composite Operations to Prove Convexity

Log-sum-exp function: Show that $g(\mathbf{x})=\log \left(\sum_{i=1}^{k} \exp \left(\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}\right)\right)$ is convex, where $\mathbf{a}_{i}, b_{i}, i=1, \ldots, k$ are fixed parameters (often called "soft max" in ML literature since it smoothly approximates $\max _{i=1, \ldots, k}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+b_{i}\right)$.

Proof.

- Note that it suffices to prove $f(\mathbf{x})=\log \left(\sum_{i=1}^{n} \exp \left(x_{i}\right)\right)$ is convex (Why?)
- According to second-order characterization, compute the Hessian to obtain:

$$
\nabla^{2} f(\mathbf{x})=\operatorname{Diag}\{\mathbf{z}\}-\mathbf{z z}^{\top}
$$

where $(\mathbf{z})_{i}=e^{x_{i}} /\left(\sum_{l=1}^{n} e^{x_{l}}\right)$. This matrix is diagonally dominant \Rightarrow PSD.

Next Class

Duality

