Middle Background Review
D
Basic Analysic:
A. Norm: A fn f: Rⁿ
$$\Rightarrow$$
 R is called norm if:
(non-neg.): f(x) ≥ 0 , $\forall x \in R^n$. $f(x) = 0$ iff $x = 0$.
(homeganity): $f(tx) = |t| f(x)$, $\forall x \in R^n$, $t \in R$.
(triangle ineg.): $f(z+g) \le f(z) + f(g)$, $\forall x \in R^n$.
If $f(x)$ is a norm, we denote it: $||x||$.
2. Norm $||x|| 's$ meaning:
$||x||$: length of x
$||x|| : length of x$
$||x|| : length of x
$||x|| : length of x$
$||x|| : length of x
$||x|| : length of x$
$||x-norm (Euclidean norm): $||x||_{2} \triangleq (z^{T}x)^{\frac{1}{2}} = (x_{1}^{2} + \dots + x_{n}^{2})^{\frac{1}{2}}$
l_{n} -norm (Euclidean norm): $||x||_{2} \triangleq (z^{T}x)^{\frac{1}{2}} = (x_{1}^{2} + \dots + x_{n}^{2})^{\frac{1}{2}}$
l_{n} -norm (Chebyshev): $||x||_{\infty} = nan \{|x_{1}|, \dots, |x_{n}|\}$
l_{p} -norm (Chebyshev): $||x||_{\infty} = nan \{|x_{1}|, \dots, |x_{n}|\}$
l_{p} -norm : $||x||_{p} = (|x_{1}|^{\frac{1}{2}} + \dots + |x_{n}|^{\frac{1}{2}})^{\frac{1}{2}}$. $||x||_{p} = (x^{T}px)^{\frac{1}{2}} = ||p^{\frac{1}{2}}x||_{x}$
$T p z > 0$, $vx \in \mathbb{R}^{n}$$$$

$$(2)$$
4. Equivalence of Norms:
Suppose II IIa and II IIb are norms on \mathbb{R}^n . Then $\exists d, \beta > 0$
s.t. $\forall \exists \in \mathbb{R}^n / d || \exists ||_a \leq || \exists ||_a = || \exists || a = ||$

3 closed b/c every pt. is broky pt. • S = IR": both open and clased. $I \cdot S^{c} = \phi, \quad \partial(S^{c}) = \phi = \partial(S), \quad S(\partial(S) = S(\phi) = S(S^{c} = \phi), \quad Open.$ 2. $\partial(5) = \phi \subseteq S \Rightarrow S$ is closed. (empty set is a subset of emyset). (///); open or closed? norther. s. Closure of S: $cl(s) = \partial(s) VS$. (smallest closed set that contains S). 6. S is bounded if it can be contained within a ball of finite radius. 7. S is compact if it's closed and bound. X////// closed but unbroked 8. Convergent Sequence and Limits. [Det (Convergence): A seq. of vectors X1, Z2; -- are said to be convergent to a limit pt. Z if VESO, INEEN s.t. $\|X_k - \overline{X}\| < \varepsilon, \forall h \ge N_{\varepsilon} \cdot (\{X_k\} \rightarrow \overline{X} \text{ as } k \rightarrow \infty \cdot \lim_{k \rightarrow \infty} X_k = \overline{X}).$

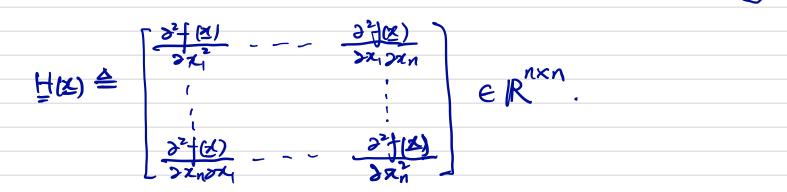
2. Def (Canchy Seq.): A seq {×k} is Canchy soq. of $\forall \varepsilon > 0, \exists N \in \mathbb{N}, st. \| \mathbf{x}_{m} - \mathbf{x}_{n} \| < \varepsilon, \forall m, n \geq \mathbb{N}.$ Thm: A seq. in R" has a limit iff it is Cauchy. $\exists x: (p-series). \quad q_n = -\frac{1}{n^2} \cdot Show \quad \{b_n\} = \{\sum_{k=1}^{n} a_k\} \quad (p=2) \text{ has a hint.}$ Proof: W.l.o.g., let $m, n \in \mathbb{N}$ and m < n. $b_n - b_m = \sum_{k=1}^{n} \frac{1}{k^2} - \sum_{k=1}^{m} \frac{1}{k^2} = \sum_{k=m+1}^{n} \frac{1}{k} < \sum_{k=m+1}^{n} \frac{1}{k(k-1)}$ $= \sum_{k=m+1}^{\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{m} - \frac{1}{m+1} + \frac{1}{m+1} - \frac{1}{m+1} + \frac{1}{m+1} - \frac{1}{m+1}$ $= -\frac{1}{m} - \frac{1}{n} < \frac{1}{m} < \varepsilon,$ can always find suff- large m sit. bn-bm < E. 9. Closedness & Compactness characterized convergent seq. & limits. Thm: A set S is closed off for any seq. SER? -> Z, st. $X_k \in S$, we also have $\overline{X} \in S$. Proof: (⇒) By contradiction: Suppose not: ∃ a {3k} → x, xkES, Vk Min erz schosed ⇒ scopen ⇒ sc=int(sc). (*) s closed ⇒ scopen ⇒ sc=int(sc). (*) since Zesc ⇒ Zerut(sc) ⇒ ∃NE(Z) ⊆ sc → convergence assupption.

(€) By contra: lef S≠ closed: ∃ Z ∈ J (S), but Z € S. keep shrinking $\varepsilon \Rightarrow create a seq. <math>\{z_k\}_{\gamma \Rightarrow \overline{z}}$ \downarrow , $\forall_k \in S, \forall_k \Rightarrow \overline{z} \in S$ Every bad seq. In IR has a Thm (Bolzanv - Weirstrass): convergent subsequ 1. enlighted terms are infinite a brit off Zanz is brided. 2. entrepted terms are finite. 10. Supremum of S (least UB): Smallest possible & satisfying & > x, +xES. $-\frac{1}{5}$

Infimum of S (Largest LB): Largest possible value 2 satisfying x < x, VXES. et, xEIR. Infimmen: 0 Maximum, minimum (achievable). * The limit superior lingup 1/k is the infimam of all q E IR for which all but a firste # of elements in {xk}. exceed 9. $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \sum_{m \to \infty} x_m^2$ (HW). $-\frac{1}{2} \prod_{n \in \mathbb{N}} \frac{1}{2} \prod_{n \in \mathbb{N}} \frac{1}{2$ & The limit infimum limited x is the supremum of all ger for which all but a finite # of elements in 3 th [ess fran q. limit $x_n = \lim_{n \to \infty} \lim_{n$ & limsup and limit sloways exist. $\{x_n\}$ converge iff limsup $x_n = \lim_{n \to \infty} x_n$.

 (\mathbf{J}) 3. Functions. l° <u>Cout. fn.</u>: A fn f: S→R is cond. at ZES if VE>0, $\exists a \delta > 0$, s.t. $\underline{x} \in S$ with $\|\underline{x} - \overline{x}\| < \delta \rightarrow |\underline{f}(\underline{x}) - \underline{f}(\overline{x})| < \varepsilon$. write: $f(Z) \rightarrow f(\bar{Z})$, as $Z \rightarrow \bar{Z}$. Fact: Cord. fr. achieves both a moximum & minimum over a non-empty <u>compart</u> set. closed & bnded. 2° Diffible tn: (1) Snon-empty set in \mathbb{R}^n , $\mathbb{Z} \in \operatorname{int} S$, and $f: S \rightarrow \mathbb{R}$. f is diffible at & if I a vector (called gradient). $\nabla f(\bar{z}) \stackrel{a}{=} \begin{bmatrix} \frac{\partial f(\bar{z})}{\partial x_{1}} & \cdots & \frac{\partial f(\bar{z})}{\partial x_{n}} \end{bmatrix}^{T}$ at \bar{z} and f_{n} $\beta(\mathbb{Z}, \mathbb{Z}) \rightarrow 0$ as $\mathbb{Z} \rightarrow \mathbb{Z}$, such that $f(\underline{z}) = f(\underline{z}) + \nabla f(\underline{z})^{T} (\underline{z} - \underline{z}) + \|\underline{z} - \underline{z}\| \beta(\underline{z}, \underline{z}) / \forall \underline{z} \in S,$ FO - approx. $o(\|\underline{z} - \underline{z}\|).$ (2). I is called twice diffible at & if, in addition to

gradient, I symmetric NXN matrix H(Z) (called Herrian mtrx). of f at $\overline{3}$, and $\beta(\underline{x},\overline{3}) \rightarrow 0$ as $\underline{x} \rightarrow \overline{2}$, such that: $f(\underline{x}) = f(\underline{z}) + \nabla f(\underline{z})^T (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z}) (\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z})^T H(\underline{z} - \underline{z}) + \frac{1}{2} (\underline{z} - \underline{z}) + \frac$ o(||ダ-茎/ピン.



3° A vector-valued on f is diffible if each component is diffible. és diffible. (twice diffible). A diffible vector-valued for h: IR" -> IR", the Jacobian, denoted by Th(Z), is given by the NXM matrix: $\nabla \underline{h}(\underline{x}) = \begin{bmatrix} \nabla h_1(\underline{x})^T \\ \vdots \\ \nabla h_n(\underline{x})^T \end{bmatrix} n \times m.$ 4° (MVT): S non-empty open convex set in IRⁿ, let f: S > IR be diffible. For every ≥1, ≥2 ES, we have $f(z_{1}) = f(z_{1}) + \nabla f(z_{1})^{T}(z_{2}-z_{1}), \text{ where } z = \lambda z_{1} + (1-\lambda)z_{2}$ for some $\lambda \in (0, 1)$.

8

(9) (3) Taylor's Thm: S non-empty, open, convex in \mathbb{R}^{n} . $f: S \gg \mathbb{R}$, twice diffible, For every $\mathbb{X}_{i}, \mathbb{X}_{i} \in S$, we have, $f: S \to \mathbb{R}$. f(ZL) = f(Z1)+ Vf(Z) (Zv-Z1)+ f(Zv-Z1) + f(Z) (Z2-Z1), where 1/3) is Hessian at x, and x=)x1+(1-2)x2, for some Le(0,1). Linear Algebra: 1. Linear indep: Z1,..., Zk Elkⁿ are lin. indep. if $\sum_{i=1}^{n} \lambda_i \mathbf{z}_i = \mathbf{0} \implies \lambda_i = \mathbf{0}, \quad \forall i = 1, \dots, k.$ 2. linear comb: yERⁿ is lin. comb. of Z1---ZkERⁿ if y= Zhizi for some him Ak. $X = \sum_{i=1}^{r} \lambda_i = 1$: y is an affine comb. of $X_1 - X_k$. * ∑Li=1, Lizo, Vi: y is a convex comb. of Z1. ~, Zk. The linear, affine, convex hull of SERM are, resp. the set of all lin., affine, convex comb. of pts in S.

3. Spanning vectors: Z₁,..., Z_k ∈ IRⁿ, k≥n, said to be spanning IR^h if any vector in IRⁿ can be represented as a lin. comb of d. as a <u>lin.</u> comb. of <u>z1,---, xk</u>. The <u>cone</u> spanned by <u>z1,---, xk</u> is set of non-neg. lin. comb. 4. <u>Basis</u>: A set of <u>x1--- xk</u> EIRⁿ spans IRⁿ and if the debetion of any of Z.... Xk prevants remaining vector from spanning IR" (Basis X1;..., Xk spans IR" iff k=n). 5. Canchy - Schwadz Zneq: $|\langle x, y \rangle| = |x^Ty| \leq ||x||_2 \cdot ||y||_2$. (unsigned) angle botwn $x, y \in \mathbb{R}^n$. $\angle (\underline{x}, \underline{y}) \stackrel{\text{\tiny def}}{=} \cos^{-1} \left(\frac{\underline{x}^{T} \underline{y}}{\|\underline{x}\|_{2}} \right) \in [0, \pi].$ (2 & y are orthogonal, (x L y), if < x, y>=0). 6. Orthogonal matrix: $Q \in \mathbb{R}^{m \times n}$: $Q^{T}Q = I_{n}$ or $QQ^{T} = I_{m}$ 2f Q is square $Q^{-1} = Q^{-1}$. 7. Rank of matrix: For AER^{mxn}, mank (A) = max # 09 lin. indep. rows (or equivilantly, cols) of A.

I)
If rank (A) = min {m, n}, A is full row/col rank.
8. Ziganvalues and eiganvectors :
$$A \in \mathbb{R}^{nKn}$$
. If λ and $x \neq 2$
subject $Ax = \lambda z^{n}$, then λ , x are eigenvalues & eigenvectors.
* λ can compared by solving det $(A - \lambda I) = 0$ (characteristics)
* A is symmetric \Rightarrow n (possibly non-distinct) real eigenvalues
* Eigenvectors assoc. as/ distinct eigenvalues are orthogonal.
* Given symmetrix $A \Rightarrow$ can construct as orthogonal basis $B \in \mathbb{R}^{nen}$
where each col in B is an argenvector of A .
* Normalize B to have unit l_2 norm, s.t. $B^TB = I$ ($B^T = B^T$).
Then B is called orthonormal matrix.
* Let $\lambda_1 \cdots \lambda_n$ be argenvalues of A . Let $\Lambda = \begin{bmatrix} \lambda_1 \\ \lambda_n \end{bmatrix}$.
Note $AB = B\Lambda$ $A \begin{bmatrix} y_1 \cdots y_n \\ y_1 \cdots y_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_n \end{bmatrix}$
 $B^T = B^T$
 $\Rightarrow A - B\Lambda B^T = \sum_{i=1}^{n} A_i : b_i : b_0^T$
(eigenvalue decomp).

(13) 13. If A is PSD, then A² is the matrix satisfying $A^{\pm}A^{\pm} = A, \text{ and } A^{\pm} = B A^{\pm} B^{\top} A^{\pm}, \text{ ond } A^{\pm} = B A^{\pm} B^{\top} A^{\pm}, \text{ ond } A^{\pm}, A^{\pm$