Math Background Review
Basic Analysis:
A. Norm: A fa $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called norm if:

* (non-neg.) : $f(x) \geqslant 0, \quad \forall x \in \mathbb{R}^{n} . f(x)=0$ eff $x=0$.
$*$ (homogenity): $f(t \underline{x})=|t| f(\underline{x}), \forall x \in \mathbb{R}^{n}, t \in \mathbb{R}$.
* (triangle ineq.): $f(\underline{x}+y) \leq f(\underline{x})+f(y), \forall x, y \in \mathbb{R}^{n}$.

If $f(\underline{x})$ is a norm, we denote it: $\|\underline{x}\|$.
2. Norm $\|\underline{\underline{x}}\|^{\prime}$ s meaning:
$*\|\underline{x}\|$: length of \underline{x}

* $\|\underline{x}-y\|$: dist. btw $\underline{x} \& y$.

3. Unit Ball: Set of vectors with $\|x\| \leq 1$.

$$
B=\left\{\underline{x} \in \mathbb{R}^{n}:\|\underline{x}\| \leq 1\right\}
$$

Ex:
*x: l_{2}-norm (Euclidean norm): $\|\underline{x}\|_{2} \triangleq\left(\underline{x}^{\top} \underline{x}\right)^{\frac{1}{2}}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}$

* $l_{1}-$ norm (sum - abs. -val.): $\|\underline{x}\|_{1} \stackrel{8}{\approx}\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.
$* l_{\infty}-$ norm (Chebyshev) $:\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right\}$
$* l_{p}-\operatorname{norm}:\|\underline{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} .\|\underline{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\underline{x}\|_{p}$
* Quadratic norm: For any positive semdey. matrix $P, \in \mathbb{R}^{n \times n}$.

$$
\|\underline{x}\|_{f}=\left(\underline{x}^{\top} f \underline{x}\right)^{\frac{1}{2}}=\left\|\underline{p}^{\frac{1}{2}} \underline{x}\right\|_{2} \quad x^{\top} f \underline{x} \geqslant 0, \forall x \in \mathbb{R}^{n}
$$

4. Equivalence of Norms:

Suppose $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are norms on \mathbb{R}^{n}. Then $\exists \alpha, \beta>0$ sit. $\quad \forall \underline{x} \in \mathbb{R}^{n}, \quad \alpha\|\underline{x}\|_{a} \leqslant\|\underline{x}\|_{b} \leq \beta\|\underline{x}\|_{a}$.

$$
\begin{aligned}
E x: & \|\underline{x}\|_{2} \leq\|\underline{x}\|_{1} \leq \sqrt{n}\|\underline{x}\|_{2} \\
& \|\underline{x}\|_{\infty} \leq\|\underline{x}\|_{2} \leq \sqrt{n}\|\underline{x}\|_{\infty} \\
& \|\underline{x}\|_{\infty} \leq\|\underline{x}\|_{1} \leq n\|\underline{x}\|_{\infty}
\end{aligned}
$$

B. Sets and Sequences,

1. ε-neighorhood about a pt. x_{0}

$$
N_{\varepsilon}\left(\underline{x}_{0}\right)=\left\{\underline{x}:\left\|\underline{x}-\underline{x}_{0}\right\|<\varepsilon\right\} .
$$

2. Interior of S :

$$
\operatorname{int}(S)=\left\{\underline{x} \in S: \exists \varepsilon>0 \text {, sit. } N_{\varepsilon}(\underline{x}) \subseteq S\right\}
$$

3. Boundary of S :

$$
\partial(S)=\left\{\underline{x}: \forall \varepsilon>0, N_{\varepsilon}(\underline{x}) \cap S \neq \phi, N_{\varepsilon}(x) \cap S^{c} \neq \phi\right\} .
$$

4. Open and closed sets:
open set $S: S \cap \partial(S)=\phi \Leftrightarrow S=\operatorname{int}(S)$.
closed set $S: \partial(S) \subseteq S \Leftrightarrow\left\{S^{c}\right.$ in open $\}$.
closed b / c every $p t$. is bandy pt.
$S=\mathbb{R}^{n}$: both open and closed.

1. $s^{c}=\phi, \partial\left(s^{c}\right)=\phi=\partial(s), s \cap^{\partial}(s)=s \cap \phi=s \cap s^{c}=\phi$. open.
2. $\partial(S)=\phi S S \quad \Rightarrow S$ is closed.
c empty set is
a subset of any set).
III/范 open or closed? neither.
3. Closure of S : $d(\delta)=\partial(S) \cup S$. (smallest closed set that contains S).
4. S is bounded if it can be contained within a ball of finite radius.
5. S is compact if it's closed and bound.
 closed but umbided
6. Convergent Sequence and Limits.
1^{0} Def (Convergence): A seq. of vectors $\underline{x}_{1}, \underline{x}_{2} ; \cdots$ are said to be convergent to a limit pt. \bar{x} if $\forall \varepsilon>0, \exists N_{\varepsilon} \in \mathbb{N}$ sit. $\left\|\underline{x}_{k}-\bar{z}\right\|<\varepsilon, \forall k \geqslant N_{\varepsilon} \cdot\left(\left\{\underline{x}_{k}\right\} \rightarrow \bar{x}\right.$ as $\left.k \rightarrow \infty . \lim _{k \rightarrow \infty} \underline{x}_{k}=\underline{x}\right)$.
7. Def (Cauchy Seq.) : A seq $\left\{\underline{x}_{k}\right\}$ is Cauchy seq. if $\forall \varepsilon>0, \exists N \in \mathbb{N}$, st. $\left\|\underline{x}_{m}-x_{n}\right\|<\varepsilon, \forall m, n \geqslant N$.

The: A seq. in \mathbb{R}^{n} has a limit iff if is Cauchy. \#x: $\left(p\right.$-series). $a_{n}=\frac{1}{n^{2}}$. Show $\left\{b_{n}\right\}=\left\{\sum_{k=1}^{n} a_{k}\right\} \quad(p=2)$ has a limit. Proof: w.l.o.g., let $m, n \in \mathbb{N}$ and $m<n$.

$$
\begin{aligned}
& b_{n}-b_{m}=\sum_{k=1}^{n} \frac{1}{k^{2}}-\sum_{k=1}^{m} \frac{1}{k^{2}}=\sum_{k=m+1}^{n} \frac{1}{k^{2}}<\sum_{k=m+1}^{n} \frac{1}{k(k-1)} \\
& =\sum_{k=m+1}^{n}\left(\frac{1}{k-1}-\frac{1}{k}\right)=\frac{1}{m}-\frac{1}{n+1}+\frac{1}{m+1}-\frac{1}{m+2}+\cdots+\frac{1}{m-1}-\frac{1}{n} \\
& \quad=\frac{1}{m}-\frac{1}{n}<\frac{1}{m}<\varepsilon
\end{aligned}
$$

can always find snuff- large m st. $b_{n}-b_{m}<\varepsilon$.
9. CCosedness \& Compactness characterized convergent seq. \& limits. The: A sat S is closed Af for any seq. $\left\{x_{k}\right\} \rightarrow \bar{x}$, st. $x_{k} \in S$, we also have $\bar{x} \in S$.
Proof: (\Rightarrow) By contradiction: Suppose not: $\exists a\left\{x_{k}\right\} \rightarrow \bar{x}, \underline{x}_{k} \in S, \forall k$ T Ms. but $\bar{x} \in S$. S closed $\Rightarrow S^{c}$ open $\Rightarrow S^{c}=\operatorname{int}\left(S^{c}\right)$.
since $\bar{x} \in S^{c} \stackrel{{ }^{*} \leq}{\Rightarrow} \underline{\bar{x}} \in \operatorname{int}\left(S^{c}\right) \Rightarrow \exists N_{\varepsilon}(\bar{x}) \leq S^{c}$ $\therefore x_{k} \wedge$ since $\bar{x} \in S^{c} \stackrel{(*)}{\Rightarrow} \underline{\bar{x}} \in \operatorname{int}(S)$
\rightarrow convergence assumption.
(\Leftrightarrow) By contra: If $S \neq$ closed: $\exists \underline{\bar{x}} \in \partial(S)$, but $\bar{x} \notin S$. keep shrinking $\varepsilon \Rightarrow$ create a seq. $\left\{\underline{x}_{k}\right\} \rightarrow$ 즈

$$
\underline{x}_{k} \in S, \forall k \Rightarrow \bar{x} \in S
$$

Thu (Bolzano-Weiratrass): Every band seq. In \mathbb{R}^{n} has a convergent subseq.

1. enlighted terms are infinite
E MCT: if $\left\{a_{n}\right\}$ is a mono \leftarrow seq. reals, then $\left\{a_{n}\right\}$ has a finis off $\{a n\}$ is bonded.

2. enlighted terms are frise.
3. Supremum of S (least UB): Sinallest possible α satisfying $\alpha \geqslant x, \forall x \in S$.

$$
\xrightarrow{\sim} 1-\frac{1}{x}, \underbrace{x>0}_{s i}
$$

Indium of S (Largest $L B$): Largest possible value α satisfying $\alpha \leq x, \forall x \in S$.

$$
e^{x}, x \in \mathbb{R} . \quad \text { Ipinum }: 0
$$

Maximum, minimum (achievable).

* The limit superior $\limsup _{k \rightarrow \infty} x_{k}$ is the infirmam of all $q \in \mathbb{R}$ for which all but a trite \# of elements in $\left\{x_{k}\right\}$. exceed q. $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left\{\sup _{m \geqslant x_{n}} x_{m}\right\} \quad$ (HF).

$$
\begin{array}{ll}
\left\{x_{n}\right\} \quad & \left\{a_{n}\right\} \\
& n_{1}>n_{2} \quad\left\{x_{1}\right\} \subset\left\{x_{n_{2}}\right\}
\end{array}
$$

* The limit infinum $\operatorname{liminef}_{k \rightarrow \infty} x_{k}$ is the supremum of all $q \in \mathbb{R}$ for which all but a finite \# of elements in $\left\{x_{k}\right\}$ less than 9. $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left\{\inf _{m \geqslant n} x_{m}\right\}$.
* Limsup and liming always exist. $\left\{x_{n}\right\}$ converge if $\limsup _{n \rightarrow \infty} x_{n}=\operatorname{limang}_{n \rightarrow \infty} x_{n}$.

3. Functions.

1 Cont. f_{n}.: A fa $f: S \rightarrow \mathbb{R}$ is cont. at $\bar{x} \in S$ if $\forall \varepsilon>0$, \exists a $\delta>0$, st. $\underline{x} \in S$ with $\|\underline{x}-\underline{x}\|<\delta \rightarrow|f(\underline{x})-f(\underline{x})|<\varepsilon$. write: $f(\underline{\underline{x}}) \rightarrow f(\overline{\underline{x}})$, as $\underline{\underline{x}} \rightarrow \underline{\underline{x}}$.
Fact: Coot. fare achieves both a maximum \& minimum over a non-empty compact sat. closed \& boded.
2° Diffible fr:
(1) S non-empty sot in $\mathbb{R}^{n}, \underline{x} \in \operatorname{int} S$, and $f: S \rightarrow \mathbb{R}$. f is diffible at \bar{x} if \exists a vector (called gradient). $\nabla f(\bar{z}) \triangleq\left[\frac{\partial f(x)}{\partial x_{1}}, \cdots \frac{\partial f(\underline{x})}{\partial x_{n}}\right]^{\top}$ at $\underline{\bar{x}}$ and f_{n} $\beta(\underline{x}, \underline{\underline{x}}) \rightarrow 0$ as $\underline{x} \rightarrow \bar{x}$, such that

$$
f(\underline{x})=\underbrace{f(\bar{x})+\nabla f(\bar{x})^{\top}(\underline{x}-\bar{x})}_{\text {FO-approx. }}+\underbrace{\|\bar{x}\| \beta(\underline{x}, \bar{x})}_{0(\|\underline{x}-\bar{x}-\bar{x}\|) .}, \forall \underline{x} \in S .
$$

(2). f is called twice diffible at \bar{x} if, in addition to gradient, \exists symmetric $n \times n$ matrix $\underset{=}{\mathrm{H}}(\bar{x})$ (called Hessian $m f(x)$. If f at \bar{z}, and $\beta(\underline{x}, \bar{x}) \rightarrow 0$ as $\underline{x} \rightarrow \bar{x}$, such th t:

$$
f(\underline{x})=\frac{f(\bar{x})+\nabla f(\bar{x})^{\top}(\underline{x}-\bar{x})+\frac{1}{2}(\underline{x}-\bar{x})^{\top} H(\underline{\bar{x}})(\underline{x}-\bar{x})}{\text { so -approx. }}+\frac{\|\underline{x}-\overline{\underline{x}}\|^{2} \beta(\underline{x}, \underline{\bar{x}})}{o\left(\|x-\bar{x}\|^{2}\right) .}
$$

$$
\underline{H}(x) \triangleq\left[\begin{array}{ccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} \cdots \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} 2 x_{n}} \\
\vdots & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} \cdots \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

3° A vector-valued th f is diffible if each component is diffible. (twice)
(twice dit 'le).
A diffible vector-valued fo $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, the Jacobian, denoted by $\nabla \underline{h}(\underline{x})$, is given by the $n \times m$ matrix:

$$
\nabla \underline{h}(x)=\left[\begin{array}{c}
\nabla h_{1}(\underline{x})^{\top} \\
\vdots \\
\nabla h_{n}(\underline{x})^{\top}
\end{array}\right]_{n \times m}
$$

$4^{0}\left(\right.$ MUT): S nonempty open convex set in \mathbb{R}^{n}, let $f: \delta \rightarrow \mathbb{R}$ be diffible. For every $\underline{x}_{1}, \underline{x}_{2} \in S$, we have $f\left(x_{2}\right)=f\left(\underline{x}_{1}\right)+\nabla f(\underline{\underline{1}})^{\top}\left(\underline{x}_{2}-\underline{x}_{1}\right)$, where $\underline{x}=\lambda \underline{x}_{1}+(1-\lambda) x_{2}$ for some $\lambda \in(0,1)$.
5° Taylor's Thu: δ nonempty, open, convex in \mathbb{R}^{n}. $f: \delta \rightarrow \mathbb{R}$, twice difible, For every $\underline{x}_{1}, \underline{x}_{2} \in S$, we hare, $f\left(x_{2}\right)=f\left(\underline{x}_{1}\right)+\nabla f\left(x_{1}\right)^{\top}\left(x_{2}-x_{1}\right)+\frac{1}{2}\left(\underline{x}_{2}-\underline{x}_{1}\right)^{+} \underline{\underline{H}}(\underline{x})\left(\underline{x}_{2}-x_{1}\right)$, where $\underset{\underline{A}}{\underline{\theta}}(\underline{x})$ is Hessian at \underline{x}, and $\underline{x}=\lambda x_{1}+(1-\lambda) x_{2}$, for some $\lambda \in(0,1)$.

Linear Algebra:

1. Linear indef: $\underline{x}_{1}, \cdots, \underline{x}_{k} \in \mathbb{R}^{n}$ are lin. indep. if

$$
\sum_{i=1}^{k} \lambda_{i} \underline{x}_{i}=\underline{0} \Rightarrow \lambda_{i}=0, \quad \forall i=1, \ldots, k .
$$

2. linear comb: $y \in \mathbb{R}^{n}$ is lin. comb. of $\underline{x}_{1} \cdots x_{k} \in \mathbb{R}^{n}$ if $y=\sum_{i=1}^{k} \lambda_{i} \underline{x}_{i}$ for some $\lambda_{1} \ldots \lambda_{k}$.

* $\sum_{i=1}^{k} \lambda_{i}=1: y$ is an affine comb. of $\underline{x}_{1}-\cdots, \underline{x}_{k}$.
$x \sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geqslant 0, \forall_{i}: y$ is a convex comb. of $\underline{x}_{1}, \cdots, \underline{x}_{k}$.
The linear, affine, convex hull of $s \in \mathbb{R}^{n}$ are, resp, the set of all lin., affine, convex comb. of pts in S.

3. Spanning vectors: $\underline{x}_{1}, \cdots, \underline{x}_{k} \in \mathbb{R}^{n}, k \geqslant n$, said to be spanning \mathbb{R}^{n} if any vector in \mathbb{R}^{n} con be represented as a lin. comb. of $\underline{x}_{1}, \cdots, \underline{x}_{k}$.
The cone spanned by $\underline{x}_{1}, \ldots, \underline{x}_{k}$ is set of non-neq. lin. comb.
4. Basis: A set of $x_{1} \ldots \underline{x}_{k} \in \mathbb{R}^{n}$ spans \mathbb{R}^{n} and if the deletion of any of $\underline{x}_{1} \ldots \underline{x}_{k}$ prevents remaining vector from spanning \mathbb{R}^{n} (Basis $\underline{x}_{1} ; \cdots, \underline{x}_{k}$ spans \mathbb{R}^{n} ift $k=n$).
5. Canchy-Schwatz Ineq: $\quad|\langle\underline{x}, y\rangle|=\left|\underline{x}^{\top} y\right| \leqslant\|\underline{x}\|_{2} \cdot\|y\|_{2}$. (unsigned) angle btw $x, y \in \mathbb{R}^{n}$.

$$
L(x, y) \stackrel{x}{=} \cos ^{-1}\left(\frac{x^{\top} y}{\|\underline{x}\|_{2} \cdot\|y\|_{2}}\right) \in[0, \pi] .
$$

(즌y are orthogonal, $(\underline{x} \perp y)$, if $\langle\underline{x}, y\rangle=0$).
6. Orthogonal matrix: $Q \in \mathbb{R}^{m \times n}: \underline{Q}^{\top} \underline{\underline{Q}}=\frac{7}{\underline{=}} n$ or $Q \underline{\underline{Q}}^{\top}=I_{\underline{I}} m$ If \underline{Q} is square: $\underline{Q}^{-1}=Q^{\top}$.
7. Rank of matrix : For $\underline{\underline{A}} \in \mathbb{R}^{m \times n}, \operatorname{rank}(\underline{A})=\max \# \theta y$ lin. indep. rows (or equailantly, cols) of A.

If $\operatorname{rank}(A)=\min \{m, n\}, A$ is full $\operatorname{row} / \operatorname{col} \operatorname{rank}$.
8. Eigenvalues and eigenvectors: $A \in \mathbb{R}^{n \times n}$. If λ and $x \neq 0$ satisfy ${ }^{\alpha} \underline{A} \underline{x}=\lambda^{\alpha} \underline{x^{x}}$, then λ, \underline{x} are eigenvalues \& eigenvectors. * λ can computed by solving $\operatorname{det}(A-\lambda I)=0$ (characteristic).

* A is symmetric $\Rightarrow n$ (possibly non-distinct) real eigenvalues
* Eigenvectors assoc. w/ distinct eigenvalues are orthogonal.
* Given symmetrix $\stackrel{A}{=} \Rightarrow$ can construct an orthogonal basis $B \in \mathbb{R}^{n \times n}$ where each col in B is an eigenvector of A.
* Normalize $\underline{\underline{B}}$ to have unit l_{2} norm, s.t. $\underline{B}^{\top} B=I \quad\left(\underline{B}^{\top}=\underline{B}^{-1}\right)$. Then B is called orthonormal matrix.

$$
\text { Note } \underset{\underline{A}}{\underline{B}}=\underline{\underline{B}} \underline{\underline{n}} \quad \underset{=}{A}\left[\begin{array}{ccc}
\vdots & & \vdots \\
\underline{v}_{1} & \cdots & \underline{v}_{n} \\
\vdots & & \vdots
\end{array}\right]=\left[\begin{array}{ccc}
\vdots & & \vdots \\
\dot{y}_{1} & \cdots & \underline{v}_{n} \\
\vdots & & \vdots
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& & \\
& & \\
& & \lambda_{n}
\end{array}\right]
$$

$$
\underline{B}^{\top}=B^{-1}
$$

(eigenvalue decamp).
10. Singular - Value Decomp. (SVD).
 $V \in \mathbb{R}^{n \times n}$ orthonormal, and $\sum_{=} \in \mathbb{R}^{m \times n},\left(\sum_{=}\right)_{i j}=0$ for $i \neq j$,
$\underbrace{\left(\sum_{\bar{\prime}}\right)_{i j} \geqslant 0}_{\in \mathbb{R}}$, for $i=j$.

* Cols of \underline{U}. Normalized eiganvectors of $\underline{\underline{A}} A^{\top}$.
* Cols of $\underline{\underline{V}}: \ldots \ldots$ of ${\underset{\sim}{A}}^{\top} \underline{A}$
* $\left(\sum_{=}\right)_{i j}, i=j$: Are abs. square root of eigenvalues of

$$
A^{\top} A \text { if } m \leqslant n \text { or } A A^{\top} \text { if } m \geqslant n \text {. }
$$

12. Depnite \& Semidefinite Matices: $A \in \mathbb{R}^{n \times n}$ symmetric.

$$
\text { PD } \quad \underline{x}^{\top} A \underline{x}>0 \quad \forall \underline{x} \neq 0, \underline{x} \in \mathbb{R}^{n}
$$

A is PSD if $;$	$\geqslant 0$,	$\forall x \in \mathbb{R}^{n}$
$N D$	<0	$\forall x \neq 0, x \in \mathbb{R}^{n}$
NSD	$\leqslant 0$	$\forall x \in \mathbb{R}^{n}$.

\underline{A} is indef. if neither PSD nor NSD.
PD pos.

A is PSD if eigencalues are non-neg., resp.
ND

NSD
non-pos.
B. If A is PSD, then $\underline{N}^{\frac{1}{2}}$ is the matrix satisfying

$$
A^{\frac{1}{2}} A^{\frac{1}{2}}=A \text {, and } A^{\frac{1}{2}}=\underline{B} \underline{N}^{\frac{1}{2}} \underline{\underline{B}}^{\top} \rightarrow\left[\begin{array}{cc}
\lambda_{1}^{\frac{1}{1}} & 0 \\
0 & \cdots \\
0 & \lambda_{n}^{\frac{1}{2}}
\end{array}\right] \text {. }
$$

