
COM S 578X: Optimization for Machine Learning

Lecture Note 11: ADMM and Operator Splitting

Jia (Kevin) Liu

Assistant Professor
Department of Computer Science

Iowa State University, Ames, Iowa, USA

Fall 2019

JKL (CS@ISU) COM S 578X: Lecture 11 1 / 36

Outline

In this lecture:

Motivation and goals for ADMM

Methods of multipliers

Alternating direction method of multipliers

Consensus and exchange

JKL (CS@ISU) COM S 578X: Lecture 11 2 / 36

Motivation: Dual Decomposition and Decentralization

Consider a convex and equality-constrained problem:

Minimize f(x)

subject to Ax = b

where x ∈ Rn, A ∈ Rm×n, and b ∈ Rm

Lagrangian: L(x,u) = f(x) + u>(Ax− b)

Dual function: Θ(u) = infx L(x,u)

Dual problem: maxu Θ(u)

Recover x∗ = arg minx L(x,u∗)

JKL (CS@ISU) COM S 578X: Lecture 11 3 / 36

Dual Ascent

Gradient method for the dual problem: uk+1 = uk + sk∇g(uk)

∇g(uk) = Ax̃− b, where x̃ = arg min
x

L(x,uk)

Dual ascent method is:

xk+1 = arg min
x

L(x,uk) //x−minimization

uk+1 = uk + sk(Axk+1 − b) //dual update

It works, but with lots of assumptions

JKL (CS@ISU) COM S 578X: Lecture 11 4 / 36

Dual Decomposition

Suppose f is separable:

f(x) = f1(x1) + · · ·+ fN (xN), x = [x1, . . . , xN]>

Lagrangian is separable in x:

L(x,u) = L1(x1,u) + · · ·+ LN (xN ,u)− u>b

where Li(xi,u) = fi(xi) + u>[A]ixi

x-minimization in dual ascent splits into N seperate minimizations

[xk+1]i = arg min
xi

Li(xi,uk),

which can be performed in parallel

JKL (CS@ISU) COM S 578X: Lecture 11 5 / 36

Dual Decomposition

This yields the following dual decomposition scheme:

[xk+1]i = arg min
xi

Li(xi,u)

uk+1 = uk + sk

(N∑
i=1

[A]i[xk+1]i − b
)

In words: Distribute uk; update xi in parallel; gather [A]i[xk+1]i

Attractive for solving large-size problems (n� m)
I By iteratively solving subproblems in parallel
I Dual variable updates provide coordination

Works but require lots of strong assumptions; often slow

JKL (CS@ISU) COM S 578X: Lecture 11 6 / 36

Method of Multipliers

A method to robustify dual ascent

Based on Augmented Lagrangian [Hestenes, Powell, ’69]: With ρ > 0,

Lρ(x,u) = f(x) + u>(Ax− b) +
ρ

2
‖Ax− b‖22

Method of multiplier [Hestenes, Powell, ’69, Bertsekas, ’82]:

xk+1 = arg min
x

Lρ(x,uk)

uk+1 = uk + ρ(Axk+1 − b)

(Contrast the specific dual update step size ρ to that in dual ascent)

JKL (CS@ISU) COM S 578X: Lecture 11 7 / 36

Deriving the Dual Step in Method of Multipliers

The KKT conditions for the original problem:

(ST): ∇f(x∗) + A>u∗ = 0

(PF): Ax∗ − b = 0

while (DF) and (CS) are automatically implied by (ST) and (PF)

Since xk+1 minimizes Lρ(x,uk), we have

0 = ∇xLρ(xk+1,uk)

= ∇xf(xk+1) + A>(uk + ρ(Axk+1 − b))

= ∇xf(xk+1) + A>uk+1

Thus, dual update uk + ρ(Axk+1 − b) enforces (ST) for (xk+1,uk+1)

(PF) achieved asymptotically: Axk+1 − b→ 0

JKL (CS@ISU) COM S 578X: Lecture 11 8 / 36

Properties of Methods of Multipliers

Compared to dual ascent:

Pro: Converges under much more relaxed conditions (non-smooth, taking on
value ∞, ...)

Con: Quadratic penalty destroys splitting of the x-update, so losing the
benefits of doing decomposition

JKL (CS@ISU) COM S 578X: Lecture 11 9 / 36

Alternating Direction Method of Multipliers

A method:
I with good robustness of method of multipliers
I which can support decomposition

“Robust dual decomposition” or “decomposable method of multipliers”

Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

JKL (CS@ISU) COM S 578X: Lecture 11 10 / 36

Alternating Direction Method of Multipliers

ADMM problem formulation (with f and g convex):

Minimize f(x) + g(z)

subject to Ax + Bz = c

i.e., two sets of variables, with separable objectives

The Augmented Lagrangian becomes:

Lρ(x,y, ρ) = f(x) + g(z) + u>(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖22

The ADMM Method:

xk+1 = arg min
x

Lρ(x, zk,uk) // x−minimization

zk+1 = arg min
z

Lρ(xk+1, z,uk) // z −minimization

uk+1 = uk + ρ(Axk+1 + Bzk+1 − c) // dual − update

JKL (CS@ISU) COM S 578X: Lecture 11 11 / 36

Remarks on ADMM

If we minimized over x and z jointly, reduces to method of multipliers

Instead, we do one pass of a Gauss-Seidel method

We get splitting since we minimize over x with z fixed, and vice versa

JKL (CS@ISU) COM S 578X: Lecture 11 12 / 36

Deriving the Dual Step in ADMM

KKT optimality conditions (for differentiable case):
I (PF): Ax + Bz− c = 0
I (ST): ∇f(x) + A>u = 0 and ∇g(z) + B>u = 0

Since zk+1 minimizes Lρ(xk+1, z,uk), we have

0 = ∇g(zk+1) + B>uk + ρB>(Axk+1 + Bzk+1 − c)

= ∇g(zk+1) + B>uk+1

Thus, with ADMM dual update, (xk+1, zk+1,uk+1) satisfies the second (ST)
condition

(PF) and the first (ST) are achieved as k →∞

JKL (CS@ISU) COM S 578X: Lecture 11 13 / 36

ADMM with Scaled Dual Variables

Combine linear and quadratic terms in augmented Lagrangian:

Lρ(x, z,u) = f(x) + g(z) + u>(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖22

= f(x) + g(z) +
ρ

2
‖Ax + Bz− c + v‖22 + const,

with vk = (1/ρ)uk

ADMM in scaled dual form:

xk+1 = arg min
x

(
f(x) +

ρ

2
‖Ax + Bzk − c + vk‖22

)
zk+1 = arg min

z

(
g(z) +

ρ

2
‖Axk+1 + Bzk − c + vk‖22

)
vk+1 = vk + (Axk+1 + Bzk+1 − c)

JKL (CS@ISU) COM S 578X: Lecture 11 14 / 36

Convergence of ADMM

Assume very little:
I f , g convex, closed, proper
I L0 has a saddle point

Then ADMM converges:
I Iterates approach feasibility: Axk + Bzk − c→ 0
I Objective approaches optimal value: f(xk) + g(zk)→ p∗

JKL (CS@ISU) COM S 578X: Lecture 11 15 / 36

Historical Perspective

Operator splitting methods (Douglas, Peaceman, Rachford, Lions, Mercier, .
. . 1950s, 1979)

Proximal point algorithm (Rockafellar 1976)

Dykstra’s alternating projections algorithm (1983)

Spingarn’s method of partial inverses (1985)

Rockafellar-Wets progressive hedging (1991)

Proximal methods (Rockafellar, many others, 1976 – present)

Bregman iterative methods (2008 – present)

Most of these are special cases of the proximal point algorithm

JKL (CS@ISU) COM S 578X: Lecture 11 16 / 36

Common Patterns

x-update step requires f(x) + ρ
2‖Ax−w‖22 (with w = Bzk − c + vk, which

is a constant during x-update)

Similar for z-update

There are many special cases for specific problems

Can simplify update with by exploiting special structure in these cases

JKL (CS@ISU) COM S 578X: Lecture 11 17 / 36

Decomposition

Suppose that f is block-separable

f(x) = f1(x1) + f2(x2) + · · ·+ f(xN), x = (x1,x2, . . . ,xN)

A is conformably block separable: A>A is block diagonal

Then x-update splits into N parallel updates of xi

JKL (CS@ISU) COM S 578X: Lecture 11 18 / 36

Proximal Operator

Consider the x-update when A = I. We have:

x+ = arg min
x

(
f(x) +

ρ

2
‖x−w‖22

)
= proxf,ρ(w)

Some special case:

I f = 1C , i.e., indicator function of set C. Then, x+ = ΠC(w), i.e., projection
onto C

I f = λ‖ · ‖1, i.e., `1 norm. Then, x+
i = soft(wi,

λ
ρ

), i.e., soft thresholding

(soft(w,a) = (w − a)+ − (−w − a)−)

JKL (CS@ISU) COM S 578X: Lecture 11 19 / 36

Quadratic Objective

f(x) = 1
2x
>Px + q>x + r

x+ = (P + ρA>A)−1(ρA>w − q)

Use SMW matrix inversion lemma when computationally advantageous

(P + ρA>A)−1 = P−1 − ρP−1A>(I + ρAPA>)−1AP−1

e.g., ρA>A is a low-rank update

JKL (CS@ISU) COM S 578X: Lecture 11 20 / 36

Smooth Objective

f smooth

Can use standard methods for smooth minimization
I Gradient, Newton, or quasi-Newton
I Preconditionned CG, limited-memory BFGS (scale to very large problems)

Can exploit:
I Warm start
I Early stopping, with tolerances decreasing as ADMM proceeds

JKL (CS@ISU) COM S 578X: Lecture 11 21 / 36

Example 1: Constrained Convex Optimization

Consider ADMM for generic problem:

Minimize f(x)

subject to x ∈ C

ADMM form: Take g to be the indicator function of C

Minimize f(x) + g(z)

subject to x− z = 0

Algorithm:

xk+1 = arg min
x

(
f(x) +

ρ

2
‖x− zk + vk‖22

)
zk+1 = ΠC(xk+1 + vk)

vk+1 = vk + xk+1 − zk+1

JKL (CS@ISU) COM S 578X: Lecture 11 22 / 36

Example 2: LASSO

LASSO problem:

Minimize
1

2
‖Ax− b‖22 + λ‖x‖1

ADMM form:

Minimize
1

2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0

Algorithm:

xk+1 = (ρI + A>A)−1(A>b + ρzk − uk)

zk+1 = soft
(
xk+1 +

1

ρ
uk,

λ

ρ

)
uk+1 = uk + ρ(xk+1 − zk+1)

JKL (CS@ISU) COM S 578X: Lecture 11 23 / 36

Example 2: LASSO

Dense A ∈ R1500×5000 (1500 measurements, 5000 regressors)

Computation times

Factorization (same as ridge regression) 1.3s
subsequent ADMM iterations 0.03s
LASSO solve (about 50 ADMM iterations) 2.9s
Full regularization path (30 λ’s) 4.4s

Reasonably efficient for large-size problems

JKL (CS@ISU) COM S 578X: Lecture 11 24 / 36

Example 3: Sparse Inverse Covariance Selection

S: Empirical covariance of samples from N (0,C), with C−1 sparse (i.e.,
Gaussian Markov random field)

Estimate C−1 via `1 regularized maximum likelihood:

MinimizeTr(SX)− log detX + λ‖X‖1

Method: COVSEL [Banerjee et al. ’08], graphical LASSO [FHT ’08]

JKL (CS@ISU) COM S 578X: Lecture 11 25 / 36

Sparse Inverse Covariance Selection via ADMM

ADMM form:

Minimize Tr(SX)− log detX + λ‖Z‖1
subject to X− Z = 0

ADMM:

Xk+1 = arg min
X

(
Tr(SX)− log detX +

ρ

2
‖X− Zk + Vk‖2F

)
Zk+1 = soft

(
Xk+1 + Vk,

λ

ρ

)
Uk+1 = Uk + (Xk+1 − Zk+1)

JKL (CS@ISU) COM S 578X: Lecture 11 26 / 36

Example 3: Sparse Inverse Covariance Selection via ADMM

Analytical solution for X-update:

I Compute eigenvalue decomposition: ρ(Zk −Vk)− S = QΛQ>

I Form diagonal matrix X̃ with:

[X̃]ii =
λi +

√
λ2
i + 4ρ

2ρ

I Let Xk+1 = QX̃Q>

I Cost of X-update is an eigenvalue decomposition: O(n3)

JKL (CS@ISU) COM S 578X: Lecture 11 27 / 36

Example 3: Sparse Inverse Covariance Selection via ADMM

C−1 is 1000× 1000 with 104 non-zeros
I Graphical LASSO (Fortran): 20 sec
I ADMM (Matlab): 3-10 min
I depends on the choice of λ

A rough experiments, no special tuning on ADMM, but comparable to recent
specialized methods (for comparison, COVSEL takes 25 min when C−1 is a
400× 400 tridiagonal matrix)

JKL (CS@ISU) COM S 578X: Lecture 11 28 / 36

ADMM for Consensus Optimization

Want to solve objective function with N objective terms

Minimize
N∑
i=1

fi(x)

e.g., fi is the loss function for ith block of training data

ADMM form:

Minimize
N∑
i=1

fi(xi)

subject to xi − z = 0

I xi are local variables
I z is the global variable
I xi − z = 0 is consensus or consistency constraint
I Can further add regularization using g(z) term

JKL (CS@ISU) COM S 578X: Lecture 11 29 / 36

ADMM for Consensus Optimization

The augmented Lagrangian:

Lρ(x, z,u) =

N∑
i=1

(
fi(xi) + u>i (xi − z) +

ρ

2
‖xi − z‖22

)
ADMM:

xi[k + 1] = arg min
xi

(
fi(xi) + u>i [k](xi − z[k])

)
+
ρ

2
‖xi − z[k]‖22

z[k + 1] =
1

N

N∑
i=1

(
xi[k + 1] +

1

ρ
ui[k]

)
ui[k + 1] = ui[k] + ρ(xi[k + 1]− z[k + 1])

With regularization, averaging in z-update is followed by proxg,ρ

JKL (CS@ISU) COM S 578X: Lecture 11 30 / 36

ADMM for Consensus Optimization

Using
∑N
i=1 ui[k] = 0, the algorithm simplifies to:

xi[k + 1] = arg min
xi

(
fi(xi) + u>i [k](xi − x̄[k])

)
+
ρ

2
‖xi − x̄[k]‖22

ui[k + 1] = ui[k] + ρ(xi[k + 1]− x̄[k + 1])

where x̄[k] = 1
N

∑N
i=1 xi[k]

In each iteration:

I Collect xi[k] to compute average x̄[k]

I Distribute the average x̄[k] to processors

I Update ui[k] locally (in each processor in parallel)

I Update xi[k] locally

JKL (CS@ISU) COM S 578X: Lecture 11 31 / 36

Example 1: Consensus Classification

Data samples (xi, yi), i = 1, . . . , N , xi ∈ RN , bi ∈ {−1,+1}

Linear classifier sign(w>x + b), with weight w and bias b

Margin for i-th sample is yi(w
>xi + b); want margin to be positive

Loss for i-th sample is: l(yi(w
>xi + b))

I l is loss function (hinge, logistic, exponential, ...)

Choose w to minimize empirical loss: 1
N

∑N
i=1 l(yi(w

>xi + b)) + r(w)
I r(w) is regularization term (`1, `2, ...)

Can split data and use ADMM to solve

JKL (CS@ISU) COM S 578X: Lecture 11 32 / 36

Example 2: Distributed LASSO

Dense A ∈ R400000×8000 (roughly 30 GB of data)

I Distributed solver written in C using MPI and GSL

I No optimization or tuned libraries (like ATLAS, MKL)

I Split into 80 subsystems across 10 (8-core) machines on Amazon EC2

Computation times

Loading data 30s
Factorization 5m
Subsequent ADMM iterations 0.5-2s
LASSO solve (about 15 ADMM iterations) 5-6m

JKL (CS@ISU) COM S 578X: Lecture 11 33 / 36

Example 3: Exchange Problem

Problem formulation:

Minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

xi = 0

Another canonical problem, like consensus

in fact, it’s the dual of consensus

Can interpret as N agents exchanging n goods to minimize a total cost

(xi)j ≥ 0 means agent i receives (xi)j of good j from exchange

(xi)j < 0 means agent i contributes |(xi)j | of good j to exchange

Constraint
∑N
i=1 xi = 0 is equilibrium or market clearing constraint

Optimal dual variable u∗ is a set of valid prices for the goods

Suggest real or virtual cash payments (u∗)>xi by agent i

JKL (CS@ISU) COM S 578X: Lecture 11 34 / 36

Example 3: Exchange Problem

Solve as a generic constrained convex problem with constraint set

C =
{
x ∈ RnN |x1 + · · ·+ xN = 0

}
Scaled form ADMM

xi[k + 1] = arg min
xi

(
fi(xi) +

ρ

2
‖xi − xi[k] + x̄[k] + vk‖22

)
v[k + 1] = v[k] + x̄[k + 1]

Unscaled form ADMM

xi[k + 1] = arg min
xi

(
fi(xi) + (u[k])>xi +

ρ

2
‖xi − (xi[k]− x̄[k])‖22

)
u[k + 1] = u[k] + ρx̄[k + 1]

JKL (CS@ISU) COM S 578X: Lecture 11 35 / 36

Summary and Conclusions

ADMM is the same as, or closely related to, many methods with other names

ADMM has been around since 1970s

Gives simple single-processor algorithms that can be competitive with
state-of-the-art

Can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem

JKL (CS@ISU) COM S 578X: Lecture 11 36 / 36

