COM S 578X: Optimization for Machine Learning

Lecture Note 11: ADMM and Operator Splitting

Jia (Kevin) Liu

Assistant Professor
Department of Computer Science
lowa State University, Ames, lowa, USA

Fall 2019

JKL (CSelIsu) COM S 578X: Lecture 11 1/36

Outline

In this lecture:
@ Motivation and goals for ADMM
@ Methods of multipliers
@ Alternating direction method of multipliers

@ Consensus and exchange

JKL (CSelIsu) COM S 578X: Lecture 11 2/36

Motivation: Dual Decomposition and Decentralization

o Consider a convex and equality-constrained problem:

Minimize f(x)
subject to Ax=Db

where x € R™, A €¢ R™*"™ and b € R™

Lagrangian: L(x,u) = f(x) +u' (Ax — b)

@ Dual function: ©(u) = infyx L(x, u)

Dual problem: max, ©(u)

@ Recover x* = arg miny L(x,u*)

JKL (CSeISu) COM S 578X: Lecture 11 3/36

Dual Ascent

Gradient method for the dual problem: ug11 = ug + s Vg(ug)

@ Vg(u;) = AXx — b, where X = argmin L(x, uy)

X

@ Dual ascent method is:
Xp4+1 = argmin L(x, ug) //x — minimization
X

Upy1 = U + 5p(AXpy1 — b) //dual update

@ It works, but with lots of assumptions

JKL (CSeISu) COM S 578X: Lecture 11 4 /36

Dual Decomposition

@ Suppose f is separable:
J(x) = filzr) +---+ fy(on), x=[21,...,0N8
o Lagrangian is separable in x:
L(x,u) = Li(x1,u) +---+ Ly(zy,u) —u'b
where L;(z;,u) = fi(z;) +u' [A];z;
@ x-minimization in dual ascent splits into N seperate minimizations

[Xg+1]: = argmin L;(z;, ug),

Zi

which can be performed in parallel

JKL (CSeISu) COM S 578X: Lecture 11 5 /36

Dual Decomposition

@ This yields the following dual decomposition scheme:

[Xk+1]; = argmin L;(z;,u)
Ty

Upy1 = Uy + Sk (i[A]i[xk-i-l]i - b)

i=1

@ In words: Distribute uy; update z; in parallel; gather [A];[xk+1]i

@ Attractive for solving large-size problems (n > m)

» By iteratively solving subproblems in parallel
» Dual variable updates provide coordination

@ Works but require lots of strong assumptions; often slow

JKL (CSeISu) COM S 578X: Lecture 11 6 /36

Method of Multipliers

@ A method to robustify dual ascent

@ Based on Augmented Lagrangian [Hestenes, Powell, '69]: With p > 0,
Ly(x,u) = f(x) + u” (Ax —b) + £ | Ax — b}
@ Method of multiplier [Hestenes, Powell, '69, Bertsekas, '82]:
Xp4+1 = argmin L,(x, ug)
g1 = uy + p(Axgq1 —b)

(Contrast the specific dual update step size p to that in dual ascent)

JKL (CSelIsu) COM S 578X: Lecture 11 7/36

Deriving the Dual Step in Method of Multipliers

@ The KKT conditions for the original problem:

(ST): Vf(x*) + ATu* =0
(PF): Ax*—b=0

while (DF) and (CS) are automatically implied by (ST) and (PF)
@ Since Xj+1 minimizes L,(x, u), we have

0 = VixLp(Xp41, up)
= Vi f(Xpt1) + AT (0, + p(Axp1 — b))
= VS (Xit1) + AT up 1

@ Thus, dual update u; + p(Axg41 — b) enforces (ST) for (Xg41, Ug+1)

o (PF) achieved asymptotically: Axgy; —b — 0

JKL (CSeISu) COM S 578X: Lecture 11 8 /36

Properties of Methods of Multipliers

Compared to dual ascent:

@ Pro: Converges under much more relaxed conditions (non-smooth, taking on
value oo, ...)

@ Con: Quadratic penalty destroys splitting of the x-update, so losing the
benefits of doing decomposition

JKL (CSeISu) COM S 578X: Lecture 11 9/36

Alternating Direction Method of Multipliers

@ A method:

» with good robustness of method of multipliers
» which can support decomposition

@ “Robust dual decomposition” or “decomposable method of multipliers”

@ Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

JKL (CSeISu) COM S 578X: Lecture 11 10 / 36

Alternating Direction Method of Multipliers

o ADMM problem formulation (with f and g convex):

Minimize f(x) + g(z)
subject to Ax+ Bz =c

i.e., two sets of variables, with separable objectives
@ The Augmented Lagrangian becomes:
Ly(x.y,p) = f(x) + g(z) + u' (Ax+ Bz — ¢) + £ Ax + Bz — [}
@ The ADMM Method:
Xp+1 = argmin L,(x, zg, ug) // x — minimization
Zi41 = argmin L,(Xp41,2, ug) // z — minimization
z

Upt1 = ug + p(Axgi1 + Bzpg —) // dual — update

JKL (CSeISu) COM S 578X: Lecture 11 11 / 36

Remarks on ADMM

@ If we minimized over x and z jointly, reduces to method of multipliers
@ Instead, we do one pass of a Gauss-Seidel method

o We get splitting since we minimize over x with z fixed, and vice versa

JKL (CSeISu) COM S 578X: Lecture 11 12 / 36

Deriving the Dual Step in ADMM

o KKT optimality conditions (for differentiable case):
» (PF): Ax+Bz—c=0
» (ST): Vf(x)+ATu=0and Vg(z) +BTu=0

@ Since zj1 minimizes L,(Xy41,2,u), we have

0="Vg(zps1)+ B u, 4+ pBT (Axpy1 + Bz —c)
= Vg(zi+1) + B s

@ Thus, with ADMM dual update, (Xj+1,%k+1, Ugkt1) Satisfies the second (ST)
condition

o (PF) and the first (ST) are achieved as k — oo

JKL (CSeISu) COM S 578X: Lecture 11 13 /36

ADMM with Scaled Dual Variables

@ Combine linear and quadratic terms in augmented Lagrangian:
L,(x,2,u) = f(x) +g(z) +u' (Ax + Bz —c) + gHAx + Bz — c||?
= f(x)+g(z) + §||Ax + Bz — ¢ + v||3 + const,
with v, = (1/p)ug
o ADMM in scaled dual form:
X1 = arginin (f(x) + gHAx + Bz, —c+ vk||§>

i1 = argmin (g(z) + 5| A%+ Bay —c 4 vi3)

Vit1 = Vi + (AXp41 + Bzgy — ©)

JKL (CSeISu) COM S 578X: Lecture 11 14 / 36

Convergence of ADMM

@ Assume very little:

> f, g convex, closed, proper
» Lo has a saddle point

@ Then ADMM converges:

> lterates approach feasibility: Axy, + Bzrx —c — 0
> Objective approaches optimal value: f(xx) + g(zx) — p*

JKL (CSelIsu) COM S 578X: Lecture 11 15 / 36

Historical Perspective

@ Operator splitting methods (Douglas, Peaceman, Rachford, Lions, Mercier, .
.. 1950s, 1979)

@ Proximal point algorithm (Rockafellar 1976)

e Dykstra's alternating projections algorithm (1983)

@ Spingarn’s method of partial inverses (1985)

@ Rockafellar-Wets progressive hedging (1991)

@ Proximal methods (Rockafellar, many others, 1976 — present)
@ Bregman iterative methods (2008 — present)

@ Most of these are special cases of the proximal point algorithm

JKL (CSeISu) COM S 578X: Lecture 11 16 / 36

Common Patterns

o x-update step requires f(x) + 5||Ax — w||3 (with w = Bz, — ¢ + v, which
is a constant during x-update)

@ Similar for z-update
@ There are many special cases for specific problems

@ Can simplify update with by exploiting special structure in these cases

JKL (CSeISu) COM S 578X: Lecture 11 17 / 36

Decomposition

@ Suppose that f is block-separable

f(x) = fi(x1) + fa(x2) + -+ f(xn), x=(x1,%2,...

@ A is conformably block separable: AT A is block diagonal

@ Then x-update splits into IV parallel updates of x;

JKL (CSelIsu) COM S 578X: Lecture 11

18 / 36

Proximal Operator

o Consider the x-update when A = 1. We have:

: p
xT = arg min (f(x) + §||x — W||§> = proxf’p(w)

@ Some special case:

» f=1c¢, ie., indicator function of set C. Then, x™ = Tl¢c(w), i.e., projection
onto C

» f=A||- |1, ie, €1 norm. Then, xj = soft(w;, %), i.e., soft thresholding
(soft(w,a) = (w —a)t — (-w —a)")

JKL (CSeISu) COM S 578X: Lecture 11 19 / 36

Quadratic Objective

o f(x)=43x"Px+q'x+r
o xt =P +pATA) ' (pATW —q)

@ Use SMW matrix inversion lemma when computationally advantageous
P+pATA) =P 1 —pP'AT(I+pAPAT)tAP!

e.g., pATA is a low-rank update

JKL (CSeISu) COM S 578X: Lecture 11 20/ 36

Smooth Objective

@ f smooth

@ Can use standard methods for smooth minimization

» Gradient, Newton, or quasi-Newton
» Preconditionned CG, limited-memory BFGS (scale to very large problems)

o Can exploit:

» Warm start
» Early stopping, with tolerances decreasing as ADMM proceeds

JKL (CSeISu) COM S 578X: Lecture 11 21/ 36

Example 1: Constrained Convex Optimization

@ Consider ADMM for generic problem:

Minimize f(x)
subject to xe€C

o ADMM form: Take g to be the indicator function of C

Minimize f(x) + g(z)
subjectto x—z=0

o Algorithm:
i1 = argmin (£(x)+ Slx — 2" +vil}3)
X

Zit+1 = e (Xpq1 + Vi)
Vi1 = Vi + Xpr1 — Zi+1

JKL (CSeISu) COM S 578X: Lecture 11 22 /36

Example 2: LASSO

@ LASSO problem:
S 1 2
Minimize §||Ax —bl3 + Allx|1
o ADMM form:
1
Minimize §||Ax — b3+ Allz|x
subjectto x—z=0
o Algorithm:
Xpp1 = (PI+ ATA) YA b + pzp — up)
1 A
Zit1 = SOft(Xk+1 + —uyg, —)
PP

Upy1 = Ug + p(Xpt1 — Zit1)

JKL (CSelIsu) COM S 578X: Lecture 11 23 /36

Example 2: LASSO

o Dense A € R1°00%5000 (1500 measurements, 5000 regressors)

o Computation times

Factorization (same as ridge regression)
subsequent ADMM iterations

LASSO solve (about 50 ADMM iterations)
Full regularization path (30 \'s)

@ Reasonably efficient for large-size problems

JKL (CSeISu) COM S 578X: Lecture 11

1.3s
0.03s
2.9s
4.4s

24 / 36

Example 3: Sparse Inverse Covariance Selection

e S: Empirical covariance of samples from N (0, C), with C~! sparse (i.e.,
Gaussian Markov random field)

@ Estimate C~! via /; regularized maximum likelihood:

MinimizeTr(SX) — log det X + || X||1

o Method: COVSEL [Banerjee et al. '08], graphical LASSO [FHT '08]

JKL (CSeISu) COM S 578X: Lecture 11 25/ 36

Sparse Inverse Covariance Selection via ADMM

e ADMM form:

Minimize Tr(SX) — logdet X + \||Z]|1
subjectto X —-Z =0

o ADMM:

X1 = argmin (Tr(SX) ~logdet X + §||X T+ vk||§,)
X

A
Zj11 = soft (Xk+1 + Vi, ;)

Uit1 = Up + Xk+1 — Zi41)

JKL (CSelIsu) COM S 578X: Lecture 11 26 / 36

Example 3: Sparse Inverse Covariance Selection via ADMM

@ Analytical solution for X-update:
» Compute eigenvalue decomposition: p(Zy — Vi) — S = QAQT
» Form diagonal matrix X with:

[X] Xi+ /A2 +4p

2p

v

Let Xt = QXQT

v

Cost of X-update is an eigenvalue decomposition: O(n®)

JKL (CSelIsu) COM S 578X: Lecture 11 27 / 36

Example 3: Sparse Inverse Covariance Selection via ADMM

e C~1is 1000 x 1000 with 10* non-zeros

» Graphical LASSO (Fortran): 20 sec
» ADMM (Matlab): 3-10 min
» depends on the choice of A

@ A rough experiments, no special tuning on ADMM, but comparable to recent
specialized methods (for comparison, COVSEL takes 25 min when C~! is a
400 x 400 tridiagonal matrix)

JKL (CSeISu) COM S 578X: Lecture 11 28 / 36

ADMM for Consensus Optimization

@ Want to solve objective function with N objective terms
N
Minimize Zfz(x)
i=1

e.g., fi is the loss function for ith block of training data

o ADMM form:

N
Minimize Zfi(xi)
i=1
subjectto x; —z=0

x; are local variables

z is the global variable

x; —z = 0 is consensus or consistency constraint
Can further add regularization using g(z) term

vV vyVvyy

JKL (CSeISu) COM S 578X: Lecture 11 29 / 36

ADMM for Consensus Optimization

@ The augmented Lagrangian:

N
Ly(oezw) = 37 (filxi) +] (o —2) + § s — a3)
e ADMM:
il 1) = argmin (fix0) +u] [](xi —#[k))) + F lxi — #[4]13
1 & 1
alb+1] = ; (xilks+ 1]+ ;ui[k])

u; [k + 1] = w;[k] + p(x;[k + 1] — z[k + 1])

e With regularization, averaging in z-update is followed by prox, ,

JKL (CSeISu) COM S 578X: Lecture 11 30/ 36

ADMM for Consensus Optimization

e Using vazl u;[k] = 0, the algorithm simplifies to:
xilk 1] = argmin (;0c) + u] (k]G — <[k)) + § % - <[4]]3
u; [k + 1] = wk] + p(x; [k + 1] — x[k + 1])

where x[k] = & ZZ 1 X [k]

@ In each iteration:

v

Collect x;[k] to compute average x[k]

v

Distribute the average X[k] to processors

v

Update u;[k] locally (in each processor in parallel)

v

Update x;[k]| locally

JKL (CSeISu) COM S 578X: Lecture 11 31/ 36

Example 1: Consensus Classification

Data samples (x;,9;), i =1,...,N, x; € RN, b; € {-1,+1}
o Linear classifier sign(w ' x + b), with weight w and bias b

Margin for i-th sample is y;(w ' x; + b); want margin to be positive

o Loss for i-th sample is: I(y;(w ' x; + b))
» [is loss function (hinge, logistic, exponential, ...)

Choose w to minimize empirical loss: + sz\il Iy:(Ww'x; + b)) +7(w)

> r(w) is regularization term ({1, {2, ...)

Can split data and use ADMM to solve

JKL (CSeISu) COM S 578X: Lecture 11 32 /36

Example 2: Distributed LASSO

@ Dense A € R400000x8000 (o ghly 30 GB of data)

» Distributed solver written in C using MPI and GSL
> No optimization or tuned libraries (like ATLAS, MKL)

» Split into 80 subsystems across 10 (8-core) machines on Amazon EC2

o Computation times

Loading data 30s
Factorization 5m
Subsequent ADMM iterations 0.5-2s

LASSO solve (about 15 ADMM iterations) 5-6m

JKL (CSeISu) COM S 578X: Lecture 11 33 /36

Example 3: Exchange Problem

@ Problem formulation:
N
Minimize Zfz(xz)
i=1
N
subject to in =0
i=1

Another canonical problem, like consensus
in fact, it's the dual of consensus
Can interpret as N agents exchanging n goods to minimize a total cost

(x;); > 0 means agent ¢ receives (x;); of good j from exchange

(x;); < 0 means agent ¢ contributes |(x;);| of good j to exchange

Constraint Zf\il x; = 0 is equilibrium or market clearing constraint

Optimal dual variable u* is a set of valid prices for the goods

Suggest real or virtual cash payments (u*)Tx; by agent i

JKL (CSeISu) COM S 578X: Lecture 11 34 /36

Example 3: Exchange Problem

@ Solve as a generic constrained convex problem with constraint set

C={xeR"™|x;+ - +xy =0}

@ Scaled form ADMM
x;[k + 1] = argmin (fl(xz) + ngZ — x;|k] + x[k] + vk||§>

vk + 1] = v[k] + X[k + 1]

@ Unscaled form ADMM
il + 1) = argmin (£iGxi) + (ulk) i + & i = (4] - xR)3)

ulk + 1] = ulk] + px[k + 1]

JKL (CSeISu) COM S 578X: Lecture 11 35/ 36

Summary and Conclusions

@ ADMM is the same as, or closely related to, many methods with other names

ADMM has been around since 1970s

@ Gives simple single-processor algorithms that can be competitive with
state-of-the-art

@ Can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem

JKL (CSeISu) COM S 578X: Lecture 11 36 / 36

