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Outline

In this lecture:

Motivation and goals for ADMM

Methods of multipliers

Alternating direction method of multipliers

Consensus and exchange

JKL (CS@ISU) COM S 578X: Lecture 11 2 / 36



Motivation: Dual Decomposition and Decentralization

Consider a convex and equality-constrained problem:

Minimize f(x)

subject to Ax = b

where x ∈ Rn, A ∈ Rm×n, and b ∈ Rm

Lagrangian: L(x,u) = f(x) + u>(Ax− b)

Dual function: Θ(u) = infx L(x,u)

Dual problem: maxu Θ(u)

Recover x∗ = arg minx L(x,u∗)
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Dual Ascent

Gradient method for the dual problem: uk+1 = uk + sk∇g(uk)

∇g(uk) = Ax̃− b, where x̃ = arg min
x

L(x,uk)

Dual ascent method is:

xk+1 = arg min
x

L(x,uk) //x−minimization

uk+1 = uk + sk(Axk+1 − b) //dual update

It works, but with lots of assumptions
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Dual Decomposition

Suppose f is separable:

f(x) = f1(x1) + · · ·+ fN (xN ), x = [x1, . . . , xN ]>

Lagrangian is separable in x:

L(x,u) = L1(x1,u) + · · ·+ LN (xN ,u)− u>b

where Li(xi,u) = fi(xi) + u>[A]ixi

x-minimization in dual ascent splits into N seperate minimizations

[xk+1]i = arg min
xi

Li(xi,uk),

which can be performed in parallel
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Dual Decomposition

This yields the following dual decomposition scheme:

[xk+1]i = arg min
xi

Li(xi,u)

uk+1 = uk + sk

( N∑
i=1

[A]i[xk+1]i − b
)

In words: Distribute uk; update xi in parallel; gather [A]i[xk+1]i

Attractive for solving large-size problems (n� m)
I By iteratively solving subproblems in parallel
I Dual variable updates provide coordination

Works but require lots of strong assumptions; often slow
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Method of Multipliers

A method to robustify dual ascent

Based on Augmented Lagrangian [Hestenes, Powell, ’69]: With ρ > 0,

Lρ(x,u) = f(x) + u>(Ax− b) +
ρ

2
‖Ax− b‖22

Method of multiplier [Hestenes, Powell, ’69, Bertsekas, ’82]:

xk+1 = arg min
x

Lρ(x,uk)

uk+1 = uk + ρ(Axk+1 − b)

(Contrast the specific dual update step size ρ to that in dual ascent)
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Deriving the Dual Step in Method of Multipliers

The KKT conditions for the original problem:

(ST): ∇f(x∗) + A>u∗ = 0

(PF): Ax∗ − b = 0

while (DF) and (CS) are automatically implied by (ST) and (PF)

Since xk+1 minimizes Lρ(x,uk), we have

0 = ∇xLρ(xk+1,uk)

= ∇xf(xk+1) + A>(uk + ρ(Axk+1 − b))

= ∇xf(xk+1) + A>uk+1

Thus, dual update uk + ρ(Axk+1 − b) enforces (ST) for (xk+1,uk+1)

(PF) achieved asymptotically: Axk+1 − b→ 0
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Properties of Methods of Multipliers

Compared to dual ascent:

Pro: Converges under much more relaxed conditions (non-smooth, taking on
value ∞, ...)

Con: Quadratic penalty destroys splitting of the x-update, so losing the
benefits of doing decomposition

JKL (CS@ISU) COM S 578X: Lecture 11 9 / 36



Alternating Direction Method of Multipliers

A method:
I with good robustness of method of multipliers
I which can support decomposition

“Robust dual decomposition” or “decomposable method of multipliers”

Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
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Alternating Direction Method of Multipliers

ADMM problem formulation (with f and g convex):

Minimize f(x) + g(z)

subject to Ax + Bz = c

i.e., two sets of variables, with separable objectives

The Augmented Lagrangian becomes:

Lρ(x,y, ρ) = f(x) + g(z) + u>(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖22

The ADMM Method:

xk+1 = arg min
x

Lρ(x, zk,uk) // x−minimization

zk+1 = arg min
z

Lρ(xk+1, z,uk) // z −minimization

uk+1 = uk + ρ(Axk+1 + Bzk+1 − c) // dual − update
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Remarks on ADMM

If we minimized over x and z jointly, reduces to method of multipliers

Instead, we do one pass of a Gauss-Seidel method

We get splitting since we minimize over x with z fixed, and vice versa
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Deriving the Dual Step in ADMM

KKT optimality conditions (for differentiable case):
I (PF): Ax + Bz− c = 0
I (ST): ∇f(x) + A>u = 0 and ∇g(z) + B>u = 0

Since zk+1 minimizes Lρ(xk+1, z,uk), we have

0 = ∇g(zk+1) + B>uk + ρB>(Axk+1 + Bzk+1 − c)

= ∇g(zk+1) + B>uk+1

Thus, with ADMM dual update, (xk+1, zk+1,uk+1) satisfies the second (ST)
condition

(PF) and the first (ST) are achieved as k →∞
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ADMM with Scaled Dual Variables

Combine linear and quadratic terms in augmented Lagrangian:

Lρ(x, z,u) = f(x) + g(z) + u>(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖22

= f(x) + g(z) +
ρ

2
‖Ax + Bz− c + v‖22 + const,

with vk = (1/ρ)uk

ADMM in scaled dual form:

xk+1 = arg min
x

(
f(x) +

ρ

2
‖Ax + Bzk − c + vk‖22

)
zk+1 = arg min

z

(
g(z) +

ρ

2
‖Axk+1 + Bzk − c + vk‖22

)
vk+1 = vk + (Axk+1 + Bzk+1 − c)
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Convergence of ADMM

Assume very little:
I f , g convex, closed, proper
I L0 has a saddle point

Then ADMM converges:
I Iterates approach feasibility: Axk + Bzk − c→ 0
I Objective approaches optimal value: f(xk) + g(zk)→ p∗
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Historical Perspective

Operator splitting methods (Douglas, Peaceman, Rachford, Lions, Mercier, .
. . 1950s, 1979)

Proximal point algorithm (Rockafellar 1976)

Dykstra’s alternating projections algorithm (1983)

Spingarn’s method of partial inverses (1985)

Rockafellar-Wets progressive hedging (1991)

Proximal methods (Rockafellar, many others, 1976 – present)

Bregman iterative methods (2008 – present)

Most of these are special cases of the proximal point algorithm
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Common Patterns

x-update step requires f(x) + ρ
2‖Ax−w‖22 (with w = Bzk − c + vk, which

is a constant during x-update)

Similar for z-update

There are many special cases for specific problems

Can simplify update with by exploiting special structure in these cases
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Decomposition

Suppose that f is block-separable

f(x) = f1(x1) + f2(x2) + · · ·+ f(xN ), x = (x1,x2, . . . ,xN )

A is conformably block separable: A>A is block diagonal

Then x-update splits into N parallel updates of xi
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Proximal Operator

Consider the x-update when A = I. We have:

x+ = arg min
x

(
f(x) +

ρ

2
‖x−w‖22

)
= proxf,ρ(w)

Some special case:

I f = 1C , i.e., indicator function of set C. Then, x+ = ΠC(w), i.e., projection
onto C

I f = λ‖ · ‖1, i.e., `1 norm. Then, x+
i = soft(wi,

λ
ρ

), i.e., soft thresholding

(soft(w,a) = (w − a)+ − (−w − a)−)
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Quadratic Objective

f(x) = 1
2x
>Px + q>x + r

x+ = (P + ρA>A)−1(ρA>w − q)

Use SMW matrix inversion lemma when computationally advantageous

(P + ρA>A)−1 = P−1 − ρP−1A>(I + ρAPA>)−1AP−1

e.g., ρA>A is a low-rank update
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Smooth Objective

f smooth

Can use standard methods for smooth minimization
I Gradient, Newton, or quasi-Newton
I Preconditionned CG, limited-memory BFGS (scale to very large problems)

Can exploit:
I Warm start
I Early stopping, with tolerances decreasing as ADMM proceeds
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Example 1: Constrained Convex Optimization

Consider ADMM for generic problem:

Minimize f(x)

subject to x ∈ C

ADMM form: Take g to be the indicator function of C

Minimize f(x) + g(z)

subject to x− z = 0

Algorithm:

xk+1 = arg min
x

(
f(x) +

ρ

2
‖x− zk + vk‖22

)
zk+1 = ΠC(xk+1 + vk)

vk+1 = vk + xk+1 − zk+1
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Example 2: LASSO

LASSO problem:

Minimize
1

2
‖Ax− b‖22 + λ‖x‖1

ADMM form:

Minimize
1

2
‖Ax− b‖22 + λ‖z‖1

subject to x− z = 0

Algorithm:

xk+1 = (ρI + A>A)−1(A>b + ρzk − uk)

zk+1 = soft
(
xk+1 +

1

ρ
uk,

λ

ρ

)
uk+1 = uk + ρ(xk+1 − zk+1)
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Example 2: LASSO

Dense A ∈ R1500×5000 (1500 measurements, 5000 regressors)

Computation times

Factorization (same as ridge regression) 1.3s
subsequent ADMM iterations 0.03s
LASSO solve (about 50 ADMM iterations) 2.9s
Full regularization path (30 λ’s) 4.4s

Reasonably efficient for large-size problems
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Example 3: Sparse Inverse Covariance Selection

S: Empirical covariance of samples from N (0,C), with C−1 sparse (i.e.,
Gaussian Markov random field)

Estimate C−1 via `1 regularized maximum likelihood:

MinimizeTr(SX)− log detX + λ‖X‖1

Method: COVSEL [Banerjee et al. ’08], graphical LASSO [FHT ’08]
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Sparse Inverse Covariance Selection via ADMM

ADMM form:

Minimize Tr(SX)− log detX + λ‖Z‖1
subject to X− Z = 0

ADMM:

Xk+1 = arg min
X

(
Tr(SX)− log detX +

ρ

2
‖X− Zk + Vk‖2F

)
Zk+1 = soft

(
Xk+1 + Vk,

λ

ρ

)
Uk+1 = Uk + (Xk+1 − Zk+1)
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Example 3: Sparse Inverse Covariance Selection via ADMM

Analytical solution for X-update:

I Compute eigenvalue decomposition: ρ(Zk −Vk)− S = QΛQ>

I Form diagonal matrix X̃ with:

[X̃]ii =
λi +

√
λ2
i + 4ρ

2ρ

I Let Xk+1 = QX̃Q>

I Cost of X-update is an eigenvalue decomposition: O(n3)
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Example 3: Sparse Inverse Covariance Selection via ADMM

C−1 is 1000× 1000 with 104 non-zeros
I Graphical LASSO (Fortran): 20 sec
I ADMM (Matlab): 3-10 min
I depends on the choice of λ

A rough experiments, no special tuning on ADMM, but comparable to recent
specialized methods (for comparison, COVSEL takes 25 min when C−1 is a
400× 400 tridiagonal matrix)
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ADMM for Consensus Optimization

Want to solve objective function with N objective terms

Minimize
N∑
i=1

fi(x)

e.g., fi is the loss function for ith block of training data

ADMM form:

Minimize
N∑
i=1

fi(xi)

subject to xi − z = 0

I xi are local variables
I z is the global variable
I xi − z = 0 is consensus or consistency constraint
I Can further add regularization using g(z) term
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ADMM for Consensus Optimization

The augmented Lagrangian:

Lρ(x, z,u) =

N∑
i=1

(
fi(xi) + u>i (xi − z) +

ρ

2
‖xi − z‖22

)
ADMM:

xi[k + 1] = arg min
xi

(
fi(xi) + u>i [k](xi − z[k])

)
+
ρ

2
‖xi − z[k]‖22

z[k + 1] =
1

N

N∑
i=1

(
xi[k + 1] +

1

ρ
ui[k]

)
ui[k + 1] = ui[k] + ρ(xi[k + 1]− z[k + 1])

With regularization, averaging in z-update is followed by proxg,ρ
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ADMM for Consensus Optimization

Using
∑N
i=1 ui[k] = 0, the algorithm simplifies to:

xi[k + 1] = arg min
xi

(
fi(xi) + u>i [k](xi − x̄[k])

)
+
ρ

2
‖xi − x̄[k]‖22

ui[k + 1] = ui[k] + ρ(xi[k + 1]− x̄[k + 1])

where x̄[k] = 1
N

∑N
i=1 xi[k]

In each iteration:

I Collect xi[k] to compute average x̄[k]

I Distribute the average x̄[k] to processors

I Update ui[k] locally (in each processor in parallel)

I Update xi[k] locally
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Example 1: Consensus Classification

Data samples (xi, yi), i = 1, . . . , N , xi ∈ RN , bi ∈ {−1,+1}

Linear classifier sign(w>x + b), with weight w and bias b

Margin for i-th sample is yi(w
>xi + b); want margin to be positive

Loss for i-th sample is: l(yi(w
>xi + b))

I l is loss function (hinge, logistic, exponential, ...)

Choose w to minimize empirical loss: 1
N

∑N
i=1 l(yi(w

>xi + b)) + r(w)
I r(w) is regularization term (`1, `2, ...)

Can split data and use ADMM to solve
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Example 2: Distributed LASSO

Dense A ∈ R400000×8000 (roughly 30 GB of data)

I Distributed solver written in C using MPI and GSL

I No optimization or tuned libraries (like ATLAS, MKL)

I Split into 80 subsystems across 10 (8-core) machines on Amazon EC2

Computation times

Loading data 30s
Factorization 5m
Subsequent ADMM iterations 0.5-2s
LASSO solve (about 15 ADMM iterations) 5-6m
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Example 3: Exchange Problem

Problem formulation:

Minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

xi = 0

Another canonical problem, like consensus

in fact, it’s the dual of consensus

Can interpret as N agents exchanging n goods to minimize a total cost

(xi)j ≥ 0 means agent i receives (xi)j of good j from exchange

(xi)j < 0 means agent i contributes |(xi)j | of good j to exchange

Constraint
∑N
i=1 xi = 0 is equilibrium or market clearing constraint

Optimal dual variable u∗ is a set of valid prices for the goods

Suggest real or virtual cash payments (u∗)>xi by agent i
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Example 3: Exchange Problem

Solve as a generic constrained convex problem with constraint set

C =
{
x ∈ RnN |x1 + · · ·+ xN = 0

}
Scaled form ADMM

xi[k + 1] = arg min
xi

(
fi(xi) +

ρ

2
‖xi − xi[k] + x̄[k] + vk‖22

)
v[k + 1] = v[k] + x̄[k + 1]

Unscaled form ADMM

xi[k + 1] = arg min
xi

(
fi(xi) + (u[k])>xi +

ρ

2
‖xi − (xi[k]− x̄[k])‖22

)
u[k + 1] = u[k] + ρx̄[k + 1]
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Summary and Conclusions

ADMM is the same as, or closely related to, many methods with other names

ADMM has been around since 1970s

Gives simple single-processor algorithms that can be competitive with
state-of-the-art

Can be used to coordinate many processors, each solving a substantial
problem, to solve a very large problem
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