COM S 578X: Optimization for Machine Learning

Lecture Note 11: ADMM and Operator Splitting

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science lowa State University, Ames, Iowa, USA

Fall 2019

Outline

In this lecture:

- Motivation and goals for ADMM
- Methods of multipliers
- Alternating direction method of multipliers
- Consensus and exchange

Motivation: Dual Decomposition and Decentralization

- Consider a convex and equality-constrained problem:

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x}) \\
\text { subject to } & \mathbf{A x}=\mathbf{b}
\end{array}
$$

where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^{m}$

- Lagrangian: $L(\mathbf{x}, \mathbf{u})=f(\mathbf{x})+\mathbf{u}^{\top}(\mathbf{A x}-\mathbf{b})$
- Dual function: $\Theta(\mathbf{u})=\inf _{\mathbf{x}} L(\mathbf{x}, \mathbf{u})$
- Dual problem: $\max _{\mathbf{u}} \Theta(\mathbf{u})$
- Recover $\mathbf{x}^{*}=\arg \min _{\mathbf{x}} L\left(\mathbf{x}, \mathbf{u}^{*}\right)$

Dual Ascent

- Gradient method for the dual problem: $\mathbf{u}_{k+1}=\mathbf{u}_{k}+s_{k} \nabla g\left(\mathbf{u}_{k}\right)$
- $\nabla g\left(\mathbf{u}_{k}\right)=\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}$, where $\tilde{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } L\left(\mathbf{x}, \mathbf{u}_{k}\right)$
x
- Dual ascent method is:

$$
\begin{array}{ll}
\mathbf{x}_{k+1}=\underset{\mathbf{x}}{\arg \min } L\left(\mathbf{x}, \mathbf{u}_{k}\right) & / / x-\text { minimization } \\
\mathbf{u}_{k+1}=\mathbf{u}_{k}+s_{k}\left(\mathbf{A} \mathbf{x}_{k+1}-\mathbf{b}\right) & / / \text { dual update }
\end{array}
$$

- It works, but with lots of assumptions

Dual Decomposition

- Suppose f is separable:

$$
f(\mathbf{x})=f_{1}\left(x_{1}\right)+\cdots+f_{N}\left(x_{N}\right), \quad \mathbf{x}=\left[x_{1}, \ldots, x_{N}\right]^{\top}
$$

- Lagrangian is separable in \mathbf{x} :

$$
L(\mathbf{x}, \mathbf{u})=L_{1}\left(x_{1}, \mathbf{u}\right)+\cdots+L_{N}\left(x_{N}, \mathbf{u}\right)-\mathbf{u}^{\top} \mathbf{b}
$$

where $L_{i}\left(x_{i}, \mathbf{u}\right)=f_{i}\left(x_{i}\right)+\mathbf{u}^{\top}[\mathbf{A}]_{i} x_{i}$

- x-minimization in dual ascent splits into N seperate minimizations

$$
\left[\mathbf{x}_{k+1}\right]_{i}=\underset{x_{i}}{\arg \min } L_{i}\left(x_{i}, \mathbf{u}_{k}\right),
$$

which can be performed in parallel

Dual Decomposition

- This yields the following dual decomposition scheme:

$$
\begin{aligned}
& {\left[\mathbf{x}_{k+1}\right]_{i}=\underset{x_{i}}{\arg \min } L_{i}\left(x_{i}, \mathbf{u}\right)} \\
& \mathbf{u}_{k+1}=\mathbf{u}_{k}+s_{k}\left(\sum_{i=1}^{N}[\mathbf{A}]_{i}\left[\mathbf{x}_{k+1}\right]_{i}-\mathbf{b}\right)
\end{aligned}
$$

- In words: Distribute \mathbf{u}_{k}; update x_{i} in parallel; gather $[\mathbf{A}]_{i}\left[\mathbf{x}_{k+1}\right]_{i}$
- Attractive for solving large-size problems $(n \gg m)$
- By iteratively solving subproblems in parallel
- Dual variable updates provide coordination
- Works but require lots of strong assumptions; often slow

Method of Multipliers

- A method to robustify dual ascent
- Based on Augmented Lagrangian [Hestenes, Powell, '69]: With $\rho>0$,

$$
L_{\rho}(\mathbf{x}, \mathbf{u})=f(\mathbf{x})+\mathbf{u}^{\top}(\mathbf{A} \mathbf{x}-\mathbf{b})+\frac{\rho}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

- Method of multiplier [Hestenes, Powell, '69, Bertsekas, '82]:

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\underset{\mathbf{x}}{\arg \min } L_{\rho}\left(\mathbf{x}, \mathbf{u}_{k}\right) \\
& \mathbf{u}_{k+1}=\mathbf{u}_{k}+\rho\left(\mathbf{A} \mathbf{x}_{k+1}-\mathbf{b}\right)
\end{aligned}
$$

(Contrast the specific dual update step size ρ to that in dual ascent)

Deriving the Dual Step in Method of Multipliers

- The KKT conditions for the original problem:

$$
\begin{aligned}
& \text { (ST): } \nabla f\left(\mathbf{x}^{*}\right)+\mathbf{A}^{\top} \mathbf{u}^{*}=\mathbf{0} \\
& \text { (PF): } \mathbf{A x ^ { * }}-\mathbf{b}=\mathbf{0}
\end{aligned}
$$

while (DF) and (CS) are automatically implied by (ST) and (PF)

- Since \mathbf{x}_{k+1} minimizes $L_{\rho}\left(\mathbf{x}, \mathbf{u}_{k}\right)$, we have

$$
\begin{aligned}
0 & =\nabla_{\mathbf{x}} L_{\rho}\left(\mathbf{x}_{k+1}, \mathbf{u}_{k}\right) \\
& =\nabla_{\mathbf{x}} f\left(\mathbf{x}_{k+1}\right)+\mathbf{A}^{\top}\left(\mathbf{u}_{k}+\rho\left(\mathbf{A x}_{k+1}-\mathbf{b}\right)\right) \\
& =\nabla_{\mathbf{x}} f\left(\mathbf{x}_{k+1}\right)+\mathbf{A}^{\top} \mathbf{u}_{k+1}
\end{aligned}
$$

- Thus, dual update $\mathbf{u}_{k}+\rho\left(\mathbf{A} \mathbf{x}_{k+1}-\mathbf{b}\right)$ enforces (ST) for $\left(\mathbf{x}_{k+1}, \mathbf{u}_{k+1}\right)$
- (PF) achieved asymptotically: $\mathbf{A x} x_{k+1}-\mathbf{b} \rightarrow \mathbf{0}$

Properties of Methods of Multipliers

Compared to dual ascent:

- Pro: Converges under much more relaxed conditions (non-smooth, taking on value ∞, \ldots)
- Con: Quadratic penalty destroys splitting of the x-update, so losing the benefits of doing decomposition

Alternating Direction Method of Multipliers

- A method:
- with good robustness of method of multipliers
- which can support decomposition
- "Robust dual decomposition" or "decomposable method of multipliers"
- Proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating Direction Method of Multipliers

- ADMM problem formulation (with f and g convex):

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x})+g(\mathbf{z}) \\
\text { subject to } & \mathbf{A x}+\mathbf{B z}=\mathbf{c}
\end{array}
$$

i.e., two sets of variables, with separable objectives

- The Augmented Lagrangian becomes:

$$
L_{\rho}(\mathbf{x}, \mathbf{y}, \rho)=f(\mathbf{x})+g(\mathbf{z})+\mathbf{u}^{\top}(\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}-\mathbf{c})+\frac{\rho}{2}\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}-\mathbf{c}\|_{2}^{2}
$$

- The ADMM Method:

$$
\begin{array}{ll}
\mathbf{x}_{k+1}=\underset{\mathbf{x}}{\arg \min } L_{\rho}\left(\mathbf{x}, \mathbf{z}_{k}, \mathbf{u}_{k}\right) & / / x-\text { minimization } \\
\mathbf{z}_{k+1}=\underset{\mathbf{z}}{\arg \min } L_{\rho}\left(\mathbf{x}_{k+1}, \mathbf{z}, \mathbf{u}_{k}\right) & / / z-\text { minimization } \\
\mathbf{u}_{k+1}=\mathbf{u}_{k}+\rho\left(\mathbf{A} \mathbf{x}_{k+1}+\mathbf{B} \mathbf{z}_{k+1}-\mathbf{c}\right) & / / \text { dual - update }
\end{array}
$$

Remarks on ADMM

- If we minimized over \mathbf{x} and \mathbf{z} jointly, reduces to method of multipliers
- Instead, we do one pass of a Gauss-Seidel method
- We get splitting since we minimize over \mathbf{x} with \mathbf{z} fixed, and vice versa

Deriving the Dual Step in ADMM

- KKT optimality conditions (for differentiable case):
- (PF): $\mathbf{A x}+\mathbf{B z}-\mathbf{c}=\mathbf{0}$
- (ST): $\nabla f(\mathbf{x})+\mathbf{A}^{\top} \mathbf{u}=\mathbf{0}$ and $\nabla g(\mathbf{z})+\mathbf{B}^{\top} \mathbf{u}=\mathbf{0}$
- Since \mathbf{z}_{k+1} minimizes $L_{\rho}\left(\mathbf{x}_{k+1}, \mathbf{z}, \mathbf{u}_{k}\right)$, we have

$$
\begin{aligned}
\mathbf{0} & =\nabla g\left(\mathbf{z}_{k+1}\right)+\mathbf{B}^{\top} \mathbf{u}_{k}+\rho \mathbf{B}^{\top}\left(\mathbf{A} \mathbf{x}_{k+1}+\mathbf{B} \mathbf{z}_{k+1}-\mathbf{c}\right) \\
& =\nabla g\left(\mathbf{z}_{k+1}\right)+\mathbf{B}^{\top} \mathbf{u}_{k+1}
\end{aligned}
$$

- Thus, with ADMM dual update, $\left(\mathbf{x}_{k+1}, \mathbf{z}_{k+1}, \mathbf{u}_{k+1}\right)$ satisfies the second (ST) condition
- (PF) and the first (ST) are achieved as $k \rightarrow \infty$

ADMM with Scaled Dual Variables

- Combine linear and quadratic terms in augmented Lagrangian:

$$
\begin{aligned}
L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{u}) & =f(\mathbf{x})+g(\mathbf{z})+\mathbf{u}^{\top}(\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}-\mathbf{c})+\frac{\rho}{2}\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}-\mathbf{c}\|_{2}^{2} \\
& =f(\mathbf{x})+g(\mathbf{z})+\frac{\rho}{2}\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}-\mathbf{c}+\mathbf{v}\|_{2}^{2}+\text { const },
\end{aligned}
$$

with $\mathbf{v}_{k}=(1 / \rho) \mathbf{u}_{k}$

- ADMM in scaled dual form:

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\underset{\mathbf{x}}{\arg \min }\left(f(\mathbf{x})+\frac{\rho}{2}\left\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{z}_{k}-\mathbf{c}+\mathbf{v}_{k}\right\|_{2}^{2}\right) \\
& \mathbf{z}_{k+1}=\underset{\mathbf{z}}{\arg \min }\left(g(\mathbf{z})+\frac{\rho}{2}\left\|\mathbf{A} \mathbf{x}_{k+1}+\mathbf{B} \mathbf{z}_{k}-\mathbf{c}+\mathbf{v}_{k}\right\|_{2}^{2}\right) \\
& \mathbf{v}_{k+1}=\mathbf{v}_{k}+\left(\mathbf{A} \mathbf{x}_{k+1}+\mathbf{B} \mathbf{z}_{k+1}-\mathbf{c}\right)
\end{aligned}
$$

Convergence of ADMM

- Assume very little:
- f, g convex, closed, proper
- L_{0} has a saddle point
- Then ADMM converges:
- Iterates approach feasibility: $\mathbf{A} \mathbf{x}_{k}+\mathbf{B} \mathbf{z}_{k}-\mathbf{c} \rightarrow \mathbf{0}$
- Objective approaches optimal value: $f\left(\mathbf{x}_{k}\right)+g\left(\mathbf{z}_{k}\right) \rightarrow p^{*}$

Historical Perspective

- Operator splitting methods (Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)
- Proximal point algorithm (Rockafellar 1976)
- Dykstra's alternating projections algorithm (1983)
- Spingarn's method of partial inverses (1985)
- Rockafellar-Wets progressive hedging (1991)
- Proximal methods (Rockafellar, many others, 1976 - present)
- Bregman iterative methods (2008 - present)
- Most of these are special cases of the proximal point algorithm

Common Patterns

- \mathbf{x}-update step requires $f(\mathbf{x})+\frac{\rho}{2}\|\mathbf{A x}-\mathbf{w}\|_{2}^{2}$ (with $\mathbf{w}=\mathbf{B z}_{k}-\mathbf{c}+\mathbf{v}_{k}$, which is a constant during x -update)
- Similar for z-update
- There are many special cases for specific problems
- Can simplify update with by exploiting special structure in these cases

Decomposition

- Suppose that f is block-separable

$$
f(\mathbf{x})=f_{1}\left(\mathbf{x}_{1}\right)+f_{2}\left(\mathbf{x}_{2}\right)+\cdots+f\left(\mathbf{x}_{N}\right), \quad \mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)
$$

- \mathbf{A} is conformably block separable: $\mathbf{A}^{\top} \mathbf{A}$ is block diagonal
- Then x-update splits into N parallel updates of \mathbf{x}_{i}

Proximal Operator

- Consider the \mathbf{x}-update when $\mathbf{A}=\mathbf{I}$. We have:

$$
\mathbf{x}^{+}=\underset{\mathbf{x}}{\arg \min }\left(f(\mathbf{x})+\frac{\rho}{2}\|\mathbf{x}-\mathbf{w}\|_{2}^{2}\right)=\operatorname{prox}_{f, \rho}(\mathbf{w})
$$

- Some special case:
- $f=\mathbb{1}_{\mathcal{C}}$, i.e., indicator function of set \mathcal{C}. Then, $\mathbf{x}^{+}=\Pi_{\mathcal{C}}(\mathbf{w})$, i.e., projection onto \mathcal{C}
- $f=\lambda\|\cdot\|_{1}$, i.e., ℓ_{1} norm. Then, $\mathbf{x}_{i}^{+}=\operatorname{soft}\left(\mathbf{w}_{i}, \frac{\lambda}{\rho}\right)$, i.e., soft thresholding $\left(\operatorname{soft}(\mathbf{w}, \mathbf{a})=(\mathbf{w}-\mathbf{a})^{+}-(-\mathbf{w}-\mathbf{a})^{-}\right)$

Quadratic Objective

- $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{\top} \mathbf{P} \mathbf{x}+\mathbf{q}^{\top} \mathbf{x}+r$
- $\mathbf{x}^{+}=\left(\mathbf{P}+\rho \mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(\rho \mathbf{A}^{\top} \mathbf{w}-\mathbf{q}\right)$
- Use SMW matrix inversion lemma when computationally advantageous

$$
\left(\mathbf{P}+\rho \mathbf{A}^{\top} \mathbf{A}\right)^{-1}=\mathbf{P}^{-1}-\rho \mathbf{P}^{-1} \mathbf{A}^{\top}\left(\mathbf{I}+\rho \mathbf{A} \mathbf{P} \mathbf{A}^{\top}\right)^{-1} \mathbf{A} \mathbf{P}^{-1}
$$

e.g., $\rho \mathbf{A}^{\top} \mathbf{A}$ is a low-rank update

Smooth Objective

- f smooth
- Can use standard methods for smooth minimization
- Gradient, Newton, or quasi-Newton
- Preconditionned CG, limited-memory BFGS (scale to very large problems)
- Can exploit:
- Warm start
- Early stopping, with tolerances decreasing as ADMM proceeds

Example 1: Constrained Convex Optimization

- Consider ADMM for generic problem:

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x}) \\
\text { subject to } & \mathbf{x} \in \mathcal{C}
\end{array}
$$

- ADMM form: Take g to be the indicator function of \mathcal{C}

$$
\begin{array}{ll}
\text { Minimize } & f(\mathbf{x})+g(\mathbf{z}) \\
\text { subject to } & \mathbf{x}-\mathbf{z}=\mathbf{0}
\end{array}
$$

- Algorithm:

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\underset{\mathbf{x}}{\arg \min }\left(f(\mathbf{x})+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{z}^{k}+\mathbf{v}_{k}\right\|_{2}^{2}\right) \\
& \mathbf{z}_{k+1}=\Pi_{\mathcal{C}}\left(\mathbf{x}_{k+1}+\mathbf{v}_{k}\right) \\
& \mathbf{v}_{k+1}=\mathbf{v}_{k}+\mathbf{x}_{k+1}-\mathbf{z}_{k+1}
\end{aligned}
$$

Example 2: LASSO

- LASSO problem:

$$
\text { Minimize } \quad \frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}
$$

- ADMM form:

$$
\begin{array}{ll}
\text { Minimize } & \frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1} \\
\text { subject to } & \mathbf{x}-\mathbf{z}=\mathbf{0}
\end{array}
$$

- Algorithm:

$$
\begin{aligned}
& \mathbf{x}_{k+1}=\left(\rho \mathbf{I}+\mathbf{A}^{\top} \mathbf{A}\right)^{-1}\left(\mathbf{A}^{\top} \mathbf{b}+\rho \mathbf{z}_{k}-\mathbf{u}_{k}\right) \\
& \mathbf{z}_{k+1}=\operatorname{soft}\left(\mathbf{x}_{k+1}+\frac{1}{\rho} \mathbf{u}_{k}, \frac{\lambda}{\rho}\right) \\
& \mathbf{u}_{k+1}=\mathbf{u}_{k}+\rho\left(\mathbf{x}_{k+1}-\mathbf{z}_{k+1}\right)
\end{aligned}
$$

Example 2: LASSO

- Dense $\mathbf{A} \in \mathbb{R}^{1500 \times 5000}$ (1500 measurements, 5000 regressors)
- Computation times

$$
\begin{array}{ll}
\text { Factorization (same as ridge regression) } & 1.3 \mathrm{~s} \\
\text { subsequent ADMM iterations } & 0.03 \mathrm{~s} \\
\text { LASSO solve (about } 50 \mathrm{ADMM} \text { iterations) } & 2.9 \mathrm{~s} \\
\text { Full regularization path (} 30 \lambda \text { 's) } & 4.4 \mathrm{~s}
\end{array}
$$

- Reasonably efficient for large-size problems

Example 3: Sparse Inverse Covariance Selection

- S: Empirical covariance of samples from $\mathcal{N}(0, \mathbf{C})$, with \mathbf{C}^{-1} sparse (i.e., Gaussian Markov random field)
- Estimate \mathbf{C}^{-1} via ℓ_{1} regularized maximum likelihood:

$$
\text { Minimize } \operatorname{Tr}(\mathbf{S X})-\log \operatorname{det} \mathbf{X}+\lambda\|\mathbf{X}\|_{1}
$$

- Method: COVSEL [Banerjee et al. '08], graphical LASSO [FHT '08]

Sparse Inverse Covariance Selection via ADMM

- ADMM form:

$$
\begin{array}{ll}
\text { Minimize } & \operatorname{Tr}(\mathbf{S X})-\log \operatorname{det} \mathbf{X}+\lambda\|\mathbf{Z}\|_{1} \\
\text { subject to } & \mathbf{X}-\mathbf{Z}=\mathbf{0}
\end{array}
$$

- ADMM:

$$
\begin{aligned}
& \mathbf{X}_{k+1}=\underset{\mathbf{X}}{\arg \min }\left(\operatorname{Tr}(\mathbf{S X})-\log \operatorname{det} \mathbf{X}+\frac{\rho}{2}\left\|\mathbf{X}-\mathbf{Z}_{k}+\mathbf{V}_{k}\right\|_{F}^{2}\right) \\
& \mathbf{Z}_{k+1}=\operatorname{soft}\left(\mathbf{X}_{k+1}+\mathbf{V}_{k}, \frac{\lambda}{\rho}\right) \\
& \mathbf{U}_{k+1}=\mathbf{U}_{k}+\left(\mathbf{X}_{k+1}-\mathbf{Z}_{k+1}\right)
\end{aligned}
$$

Example 3: Sparse Inverse Covariance Selection via ADMM

- Analytical solution for X-update:
- Compute eigenvalue decomposition: $\rho\left(\mathbf{Z}_{k}-\mathbf{V}_{k}\right)-\mathbf{S}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top}$
- Form diagonal matrix $\tilde{\mathbf{X}}$ with:

$$
[\tilde{\mathbf{X}}]_{i i}=\frac{\lambda_{i}+\sqrt{\lambda_{i}^{2}+4 \rho}}{2 \rho}
$$

- Let $\mathbf{X}_{k+1}=\mathbf{Q} \tilde{\mathbf{X}} \mathbf{Q}^{\top}$
- Cost of \mathbf{X}-update is an eigenvalue decomposition: $O\left(n^{3}\right)$

Example 3: Sparse Inverse Covariance Selection via ADMM

- \mathbf{C}^{-1} is 1000×1000 with 10^{4} non-zeros
- Graphical LASSO (Fortran): 20 sec
- ADMM (Matlab): 3-10 min
- depends on the choice of λ
- A rough experiments, no special tuning on ADMM, but comparable to recent specialized methods (for comparison, COVSEL takes 25 min when \mathbf{C}^{-1} is a 400×400 tridiagonal matrix)

ADMM for Consensus Optimization

- Want to solve objective function with N objective terms

$$
\text { Minimize } \sum_{i=1}^{N} f_{i}(\mathbf{x})
$$

e.g., f_{i} is the loss function for i th block of training data

- ADMM form:

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{N} f_{i}\left(\mathbf{x}_{i}\right) \\
\text { subject to } & \mathbf{x}_{i}-\mathbf{z}=\mathbf{0}
\end{array}
$$

- \mathbf{x}_{i} are local variables
- \mathbf{z} is the global variable
- $\mathbf{x}_{i}-\mathbf{z}=\mathbf{0}$ is consensus or consistency constraint
- Can further add regularization using $g(\mathbf{z})$ term

ADMM for Consensus Optimization

- The augmented Lagrangian:

$$
L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{u})=\sum_{i=1}^{N}\left(f_{i}\left(\mathbf{x}_{i}\right)+\mathbf{u}_{i}^{\top}\left(\mathbf{x}_{i}-\mathbf{z}\right)+\frac{\rho}{2}\left\|\mathbf{x}_{i}-\mathbf{z}\right\|_{2}^{2}\right)
$$

- ADMM:

$$
\begin{aligned}
& \mathbf{x}_{i}[k+1]=\underset{\mathbf{x}_{i}}{\arg \min }\left(f_{i}\left(\mathbf{x}_{i}\right)+\mathbf{u}_{i}^{\top}[k]\left(\mathbf{x}_{i}-\mathbf{z}[k]\right)\right)+\frac{\rho}{2}\left\|\mathbf{x}_{i}-\mathbf{z}[k]\right\|_{2}^{2} \\
& \mathbf{z}[k+1]=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{i}[k+1]+\frac{1}{\rho} \mathbf{u}_{i}[k]\right) \\
& \mathbf{u}_{i}[k+1]=\mathbf{u}_{i}[k]+\rho\left(\mathbf{x}_{i}[k+1]-\mathbf{z}[k+1]\right)
\end{aligned}
$$

- With regularization, averaging in \mathbf{z}-update is followed by $\operatorname{prox}_{g, \rho}$

ADMM for Consensus Optimization

- Using $\sum_{i=1}^{N} \mathbf{u}_{i}[k]=\mathbf{0}$, the algorithm simplifies to:

$$
\begin{aligned}
& \mathbf{x}_{i}[k+1]=\underset{\mathbf{x}_{i}}{\arg \min }\left(f_{i}\left(\mathbf{x}_{i}\right)+\mathbf{u}_{i}^{\top}[k]\left(\mathbf{x}_{i}-\overline{\mathbf{x}}[k]\right)\right)+\frac{\rho}{2}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}[k]\right\|_{2}^{2} \\
& \mathbf{u}_{i}[k+1]=\mathbf{u}_{i}[k]+\rho\left(\mathbf{x}_{i}[k+1]-\overline{\mathbf{x}}[k+1]\right)
\end{aligned}
$$

where $\overline{\mathbf{x}}[k]=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}[k]$

- In each iteration:
- Collect $\mathbf{x}_{i}[k]$ to compute average $\overline{\mathbf{x}}[k]$
- Distribute the average $\overline{\mathbf{x}}[k]$ to processors
- Update $\mathbf{u}_{i}[k]$ locally (in each processor in parallel)
- Update $\mathbf{x}_{i}[k]$ locally

Example 1: Consensus Classification

- Data samples $\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, N, \mathbf{x}_{i} \in \mathbb{R}^{N}, b_{i} \in\{-1,+1\}$
- Linear classifier $\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$, with weight \mathbf{w} and bias b
- Margin for i-th sample is $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)$; want margin to be positive
- Loss for i-th sample is: $l\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)$
- l is loss function (hinge, logistic, exponential, ...)
- Choose \mathbf{w} to minimize empirical loss: $\frac{1}{N} \sum_{i=1}^{N} l\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)+r(\mathbf{w})$
- $r(\mathbf{w})$ is regularization term $\left(\ell_{1}, \ell_{2}, \ldots\right)$
- Can split data and use ADMM to solve

Example 2: Distributed LASSO

- Dense $\mathbf{A} \in \mathbb{R}^{400000 \times 8000}$ (roughly 30 GB of data)
- Distributed solver written in C using MPI and GSL
- No optimization or tuned libraries (like ATLAS, MKL)
- Split into 80 subsystems across 10 (8-core) machines on Amazon EC2
- Computation times

Loading data	30 s
Factorization	5 m
Subsequent ADMM iterations	$0.5-2 \mathrm{~s}$
LASSO solve (about 15 ADMM iterations)	$5-6 \mathrm{~m}$

Example 3: Exchange Problem

- Problem formulation:

$$
\begin{array}{ll}
\text { Minimize } & \sum_{i=1}^{N} f_{i}\left(\mathbf{x}_{i}\right) \\
\text { subject to } & \sum_{i=1}^{N} \mathbf{x}_{i}=\mathbf{0}
\end{array}
$$

- Another canonical problem, like consensus
- in fact, it's the dual of consensus
- Can interpret as N agents exchanging n goods to minimize a total cost
- $\left(\mathbf{x}_{i}\right)_{j} \geq 0$ means agent i receives $\left(\mathbf{x}_{i}\right)_{j}$ of good j from exchange
- $\left(\mathbf{x}_{i}\right)_{j}<0$ means agent i contributes $\left|\left(\mathbf{x}_{i}\right)_{j}\right|$ of good j to exchange
- Constraint $\sum_{i=1}^{N} \mathbf{x}_{i}=\mathbf{0}$ is equilibrium or market clearing constraint
- Optimal dual variable \mathbf{u}^{*} is a set of valid prices for the goods
- Suggest real or virtual cash payments $\left(\mathbf{u}^{*}\right)^{\top} \mathbf{x}_{i}$ by agent i

Example 3: Exchange Problem

- Solve as a generic constrained convex problem with constraint set

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathbb{R}^{n N} \mid \mathbf{x}_{1}+\cdots+\mathbf{x}_{N}=\mathbf{0}\right\}
$$

- Scaled form ADMM

$$
\begin{aligned}
& \mathbf{x}_{i}[k+1]=\underset{\mathbf{x}_{i}}{\arg \min }\left(f_{i}\left(\mathbf{x}_{i}\right)+\frac{\rho}{2}\left\|\mathbf{x}_{i}-\mathbf{x}_{i}[k]+\overline{\mathbf{x}}[k]+\mathbf{v}_{k}\right\|_{2}^{2}\right) \\
& \mathbf{v}[k+1]=\mathbf{v}[k]+\overline{\mathbf{x}}[k+1]
\end{aligned}
$$

- Unscaled form ADMM

$$
\begin{aligned}
& \mathbf{x}_{i}[k+1]=\underset{\mathbf{x}_{i}}{\arg \min }\left(f_{i}\left(\mathbf{x}_{i}\right)+(\mathbf{u}[k])^{\top} \mathbf{x}_{i}+\frac{\rho}{2}\left\|\mathbf{x}_{i}-\left(\mathbf{x}_{i}[k]-\overline{\mathbf{x}}[k]\right)\right\|_{2}^{2}\right) \\
& \mathbf{u}[k+1]=\mathbf{u}[k]+\rho \overline{\mathbf{x}}[k+1]
\end{aligned}
$$

Summary and Conclusions

- ADMM is the same as, or closely related to, many methods with other names
- ADMM has been around since 1970s
- Gives simple single-processor algorithms that can be competitive with state-of-the-art
- Can be used to coordinate many processors, each solving a substantial problem, to solve a very large problem

