COM S 578X: Optimization for Machine Learning

Lecture Note 1: Course Info \& Introduction

Jia (Kevin) Liu
Assistant Professor
Department of Computer Science
lowa State University, Ames, Iowa, USA

Fall 2019

Course Info (1)

- Instructor: Jia (Kevin) Liu, Asst. Professor
- Office: 209 Atanasoff Hall
- Email: jialiu@iastate.edu
- Time: TuTh 8:00am - 9:20am
- Location: Sweeney Hall 1126
- Office Hour: Wed 5-6pm or by appointment
- TA: Menglu Yu (mengluy@iastate.edu) Thu 10-11
- Websites:
http://web.cs.iastate.edu/~jialiu/teaching/COMS578X_F19/ (Canvas: announcements, grade management; Piazza: discussions)
- Prerequisite:
- Working knowledge of Linear Algebra, Probability, and some Real Analysis
- Exposure to optimization, Com $S 572 / 573 / 472 / 474$ is a plus but not required

Course Info (2)

Grading Policy:

- Homework (30\%)
- Assigned biweekly (approximately)
- May involve open-ended questions
- Must be typeset using ATEX
- Some problems could be challenging!
- Midterm (30\%)
- Final Project (40%)
- Could be individual or team of 2. Project proposal due soon after midterm
- Project report due in the final exam week. Follow NeurIPS format (It could become a publication of yours! ())
? 15-minute in-class presentation at the end of the semester. Final report due by
- the beginning of final exam week (Dec. 9)
- Potential ideas of project topics (should contain something new \& useful):
- Nontrivial extension of the results introduced in class
- Novel applications in your own research area
- New theoretical analysis/insights of an existing algorithm
- It is important that you justify its novelty!

Course Info (3)

Course Materials:

- No required textbook
- Lecture notes are developed based on:
- [BV] S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004 (available online)
- [BSS] M. Bazarra, H.D. Sherali, and C.M. Shetty, "Nonlinear Programming: Theory and Algorithms," John Wiley \& Sons, 2006
- [NW] J. Nocedal and S. Wright, "Numerical Optimization," Ed. 2, Springer, 2006
- [Nesterov] Y. Nesterov, "Introductory Lectures on Convex Optimization: A Basic Course," Springer, 2004
- Important \& trending papers in the field

Tentative Topics

- Fundamentals of Convex Analysis
- Convexity, optimality conditions, duality, ...
- First-Order Methods
- Gradient descent, momentum, Nesterov, conjugate gradient, mirror descent, ...
- Stochastic First-Order Methods
- SGD, SVRG, SAGA, ...
- Sparse/Regularized Optimization
- Compressed sensing, matrix completion, ...
- Augmented Lagrangian Methods
- ADMM methods, proximal methods, coordinate descent, ...
- If time allows:
- Non-Convex Optimization
- Multi-Arm Bandits

Special Notes

- Advanced, research-oriented, but not seminar type of course
- There will be assignments and a midterm exam
- Goal: Prepare \& train students for theoretical research
- But will (briefly) mention relevant applications in ML:
- Deep Learning
- Big data analytics
- ...
- Caveat: Focus on theory \& proofs, rather than "coding/programming"
- No "one book fits all" \Rightarrow Many readings required
- Will try to cover a wide range of major topics
- Background materials will be introduced but at very fast pace
- So, mathematical maturity is essential!

How to Best Prepare for the Lectures?

Read, read, read!

- Especially if you're unfamiliar with the background (e.g., linear algebra, probability, ...)
- Will quickly go over some related background in class
- Appendices in [BV] and [BSS] provide lots of math background
- You are welcome to ask questions in office hours
- But careful self-studies may still be needed

Mathematical Optimization

Mathematical optimization problem:

$$
\begin{array}{ll}
\text { Minimize } & f_{0}(\mathbf{x}) \quad \text { General. } \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $\mathbf{x}=\left[x_{1}, \ldots, x_{N}\right]^{\top} \in \mathbb{R}^{N}$: decision variables
- $f_{0}: \mathbb{R}^{N} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}, i=1, \ldots, m$: constraint fucntions

Solution or optimal point \mathbf{x}^{*} has the smallest value of f_{0} among all vectors that satisfy the constraints

Solving Optimization Problems

- General optimization problems
- Very difficult to solve (NP-hard in general)
- Often involve trade-offs: long computation time, may not find an optimal solution (approximation may be acceptable in practice)
- Exceptions: Problems with special structures
- Linear programming problems
- Convex optimization problems

- Some non-convex optimization problems with strong-duality matrix completion phase retrieval geometric programming

Brief History of Optimization

Theory:

- Early foundations laid by many all-time great mathematicians (e.g., Newton, Gauss, Lagrange, Euler, Fermat, ...)
- Convex analysis 1900-1970 (Duality by von Neumann, KKT conditions...) Algorithms
- 1947: simplex algorithm for linear programming (Dantzig)
- 1970s: ellipsoid method (Khachiyan 1979), 1st polynomial-time alg. for LP
- 1980s \& 90s: polynomial-time interior-point methods for convex optimization (Karmarkar 1984, Nesterov \& Nemirovski 1994)
- since 2000s: many methods for large-scale convex optimization Applications Alq. is Cess complicated on ML.
- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, networking and communications, circuit design,...)
- since 2000s: machine learning

Applying Optimization Tools in Machine Learning

- Linear Regression
- Variable Selection \& Compressed Sensing
- Support Vector Machine
- Logistic Regression (+ Regularization)
- Matrix Completion
- Deep Neural Network Training

- Reinforcement Learning
- ...

Example 1: Linear Regression

Minimize $_{\beta} \quad\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}$

- Given data samples: $\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, m\right\}$, where $\mathbf{x}_{i} \in \mathbb{R}^{n}, \forall i$
- Find a linear estimator: $y=\boldsymbol{\beta}^{\top} \mathbf{x}$, so that "error" is small in some sense
- Let $\mathbf{X} \triangleq\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right]^{\top} \in \mathbb{R}^{m \times n}, \mathbf{y} \triangleq\left[y_{1}, \ldots, y_{m}\right]^{\top} \in \mathbb{R}^{m}$
- Linear algebra for $\|\cdot\|_{2}: \boldsymbol{\beta}^{*}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}$ (analytical solution)
- Computation time proportional to $n^{2} m$ (less if structured)
- Stochastic gradient if m, n are large

Example 2: Support Vector Machine (SVM)

- Given data samples: $\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, m\right\}$
- $\mathbf{x}_{i} \in \mathbb{R}^{n}$ called "feature vectors", $\forall i$
- $y_{i} \in\{-1,+1\}$ are "labels"
- Linear classifier: $f(\mathbf{x})=\operatorname{sgn}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$:
- $\mathrm{w} \in \mathbb{R}^{n}$: weight vector for features
- $b \in \mathbb{R}$: Some "bias" if $\left.y_{i}=1, \quad \underline{w}^{\top} \underline{x}_{i}+b \geqslant 1\right\}$

$$
\left.y_{i}=-1, \quad w^{\top} x_{i}+b \leq-1\right]
$$

- Goal: To find a pair (\mathbf{w}, b) to minimize a weighted sum such that
- Minimize classification error on training samples
- Robust to random noise in the training samples

$\underset{\mathbf{w}, b, \epsilon}{\operatorname{Minimize}} \quad \underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}+C \sum_{i=1}^{m} \epsilon_{i} \quad$ min classification error. subject to

$$
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\epsilon_{i}, \quad \epsilon_{i} \geq 0, \quad i=1, \ldots, m
$$

Optimization Algorithms for SVM

- Coordinate Descent (Platt, 1999; Chang and Lin, 2011)
- Stochastic gradient (Bottou and LeCun, 2004; Shalev-Shwartz et al., 2007)
- Higher-order methods (interior-point) (Ferris and Munson, 2002; Fine and Scheinberg, 2001); (on reduced space) (Joachims, 1999)
- Shrink Algorithms (Duchi and Singer, 2009; Xiao, 2010)
- Stochastic gradient + shrink + higher-order (Lee and Wright, 2012)

Example 3: Compressed Sensing

Interested in solving undetermined systems of linear equations:

- Estimate $\mathbf{x} \in \mathbb{R}^{n}$ from linear measurements $\mathbf{b}=\mathbf{A x} \in \mathbb{R}^{m}$, where $m \ll n$.
- Seems to be hopelessly ill-posed, since more unknowns than equations...
- Or does it?

A Little History of Compressive Sensing (CS)

- Name coined by David Donoho
- Pioneered by Donoho and Candès, Tao and Romberg in 2004

Compressed sensing

DL Donoho - Information Theory, IEEE Transactions on, 2006 - ieeexplore.ieee.org Abstract-Suppose is an unknown vector in(a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by

[^0]
Sensing and Signal Recovery

Conventional paradigm of data acquisition: Acquire then compress

Q: Why compression works?
A: Quite often, there's only marginal loss in "quality" between the raw data and its compression form.
Q: But still, why marginal loss?

Sparse Representation

- Sparsity: Many real world data admit sparse representation. The signal $\mathbf{s} \in \mathbb{C}^{n}$ is sparse in a basis $\boldsymbol{\Phi} \in \mathbb{C}^{n \times n}$ if

$$
\mathbf{s}=\boldsymbol{\Phi} \mathbf{x} \quad \text { and } \quad \mathbf{x} \in \mathbb{R}^{n} \text { only has very few non-zero elements }
$$

- For example, images are sparse in the wavelet domain

- The \# of large coefficients in the wavelet domain is small \Rightarrow compression

Compressed Sensing: Compression on the Fly!

Q: Could we directly compress data and then reconstruct?

- Goal: To learn (recover) x"s value through some given (noisy) samples y_{i} ?
- Mathematically, this gives rise to an underdetermined system of equations, where the signal of interests is sparse

Sparse Recovery

In optimization, CS can be written indthe form of:

In machine learning context, questions of interests include:

- How to design the measurement/sampling matrix $\boldsymbol{\Phi}$?
- What are the efficient algorithms to search for x ? \leftarrow opt.
- Are they stable under noisy inputs?
- How many measurements/samples are necessary/sufficient (i.e., size of \mathbf{y})? stats.
Insight: Turns out $m=\Omega(\log (n))$ random samples will suffice

Some Optimization Algorithms for Compressed Sensing

- Shrink algorithms (for l_{1} term) (Wright et al., 2009)
- Accelerated gradient (Beck and Teboulle, 2009b)
- ADMM (Zhang et al., 2010)
- Higher-order: Reduced inexact Newton (Wen et al., 2010); Interior-point (Fountoulakis and Gondzio, 2013)

Example 4: Matrix Completion - The Netflix Problem

In 2006, Netflix offered $\$ 1$ million prize to improve movie rating prediction

- How to estimate the missing ratings?

- About a million users, and 25,000 movies, with sparsely sampled ratings
- In essence, a low-rank matrix completion problem

RMSE

Low-Rank Matrix Completion

- Completion Problem: Consider $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{2}}$ to represent Netflix data, we may model it through factorization:

- In other words, the rank r of \mathbf{M} is much smaller than its dimension $r \ll \min \left\{n_{1}, n_{2}\right\}$

Low-Rank Matrix Completion

In optimization, the low-rank matrix completion problem can be written as:

$$
\begin{array}{ll}
\underset{\mathbf{X}}{\text { Minimize }} & \operatorname{rank}(\mathbf{X})
\end{array} \quad N P \text {-Hard. } . ~(\mathbf{X})_{i j}=(\mathbf{M})_{i j}, \quad \forall i, j \in \text { observed entries }
$$

In machine learning context, questions of interests include:

- What are the efficient algorithms to search for \mathbf{X} ? \leftarrow Opt .
- Are they stable under noisy inputs and outliers?
- How many samples are necessary/sufficient (i.e., size of $\left.(\mathbf{M})_{i, j}\right)$? $\sqrt{ }$

Some Optimization Algorithms for Matrix Completion

- (Block) Coordinate Descent (Wen et al., 2012)
- Shrink (Cai et al., 2010a; Lee et al., 2010)
- Stochastic Gradient (Lee et al., 2010)

Next Class...

We will start from some related math background.

[^0]: 24206 transform coding with a known transform, and we reconstruct via the nonlinear procedure ... Citedby 3070 Related articles All 31 versions Cite Save More

 Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
 EJ Candès, J Romberg, T Tao - Information Theory, IEEE ..., 2006 - ieeexplore.ieee.org
 Abstract-This paper considers the model problem of recon-structing an object from
 incomplete frequency samples. Consider a discrete-time signal and a randomly chosen set
 [4 772 of frequencies. Is it possible to reconstruct from the partial knowledge of its Fourier ...
 Related articles All 38 versions Cite Save

