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Course Info (1)
Instructor: Jia (Kevin) Liu, Asst. Professor

O�ce: 209 Atanaso↵ Hall

Email: jialiu@iastate.edu

Time: TuTh 8:00am – 9:20am

Location: Sweeney Hall 1126

O�ce Hour: Wed 5–6pm or by appointment

TA: Menglu Yu (mengluy@iastate.edu)

Websites:
http://web.cs.iastate.edu/~jialiu/teaching/COMS578X_F19/

(Canvas: announcements, grade management; Piazza: discussions)

Prerequisite:
I Working knowledge of Linear Algebra, Probability, and some Real Analysis
I Exposure to optimization, Com S 572/573/472/474 is a plus but not required
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Course Info (2)
Grading Policy:

Homework (30%)
I Assigned biweekly (approximately)
I May involve open-ended questions
I Must be typeset using LATEX
I Some problems could be challenging!

Midterm (30%)

Final Project (40%)
I Could be individual or team of 2. Project proposal due soon after midterm
I Project report due in the final exam week. Follow NeurIPS format

(It could become a publication of yours! ,)
I 15-minute in-class presentation at the end of the semester. Final report due by

the beginning of final exam week (Dec. 9)
I Potential ideas of project topics (should contain something new & useful):

• Nontrivial extension of the results introduced in class
• Novel applications in your own research area
• New theoretical analysis/insights of an existing algorithm
• It is important that you justify its novelty!
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Course Info (3)

Course Materials:

No required textbook

Lecture notes are developed based on:

- [BV] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge
University Press, 2004 (available online)

- [BSS] M. Bazarra, H.D. Sherali, and C.M. Shetty, “Nonlinear Programming:

Theory and Algorithms,” John Wiley & Sons, 2006

- [NW] J. Nocedal and S. Wright, “Numerical Optimization,” Ed. 2, Springer,
2006

- [Nesterov] Y. Nesterov, “Introductory Lectures on Convex Optimization: A

Basic Course,” Springer, 2004

- Important & trending papers in the field
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Tentative Topics

Fundamentals of Convex Analysis
- Convexity, optimality conditions, duality, ...

First-Order Methods
- Gradient descent, momentum, Nesterov, conjugate gradient, mirror descent, ...

Stochastic First-Order Methods
- SGD, SVRG, SAGA, ...

Sparse/Regularized Optimization
- Compressed sensing, matrix completion, ...

Augmented Lagrangian Methods
- ADMM methods, proximal methods, coordinate descent, ...

If time allows:
I Non-Convex Optimization
I Multi-Arm Bandits
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Special Notes

Advanced, research-oriented, but not seminar type of course
- There will be assignments and a midterm exam

Goal: Prepare & train students for theoretical research

But will (briefly) mention relevant applications in ML:
- Deep Learning
- Big data analytics
- ...

Caveat: Focus on theory & proofs, rather than “coding/programming”
I No “one book fits all” ) Many readings required
I Will try to cover a wide range of major topics
I Background materials will be introduced but at very fast pace
I So, mathematical maturity is essential!
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How to Best Prepare for the Lectures?

Read, read, read!

Especially if you’re unfamiliar with the background (e.g., linear algebra,
probability, ...)

I Will quickly go over some related background in class

Appendices in [BV] and [BSS] provide lots of math background

You are welcome to ask questions in o�ce hours

But careful self-studies may still be needed
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Mathematical Optimization

Mathematical optimization problem:

Minimize f0(x)

subject to fi(x)  0, i = 1, . . . ,m

x = [x1, . . . , xN ]> 2 RN : decision variables

f0 : RN ! R: objective function

fi : RN ! R, i = 1, . . . ,m: constraint fucntions

Solution or optimal point x⇤ has the smallest value of f0 among all vectors that
satisfy the constraints
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Solving Optimization Problems

General optimization problems

I Very di�cult to solve (NP-hard in general)

I Often involve trade-o↵s: long computation time, may not find an optimal
solution (approximation may be acceptable in practice)

Exceptions: Problems with special structures

I Linear programming problems

I Convex optimization problems

I Some non-convex optimization problems with strong-duality
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Brief History of Optimization

Theory:

Early foundations laid by many all-time great mathematicians
(e.g., Newton, Gauss, Lagrange, Euler, Fermat, ...)

Convex analysis 1900–1970 (Duality by von Neumann, KKT conditions...)

Algorithms

1947: simplex algorithm for linear programming (Dantzig)

1970s: ellipsoid method (Khachiyan 1979), 1st polynomial-time alg. for LP

1980s & 90s: polynomial-time interior-point methods for convex optimization
(Karmarkar 1984, Nesterov & Nemirovski 1994)

since 2000s: many methods for large-scale convex optimization

Applications

before 1990: mostly in operations research, a few in engineering

since 1990: many applications in engineering (control, signal processing,
networking and communications, circuit design,...)

since 2000s: machine learning
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Applying Optimization Tools in Machine Learning

Linear Regression

Variable Selection & Compressed Sensing

Support Vector Machine

Logistic Regression (+ Regularization)

Matrix Completion

Deep Neural Network Training

Reinforcement Learning

...
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Example 1: Linear Regression

Minimize� ky �X�k22

Given data samples: {(xi, yi), i = 1, . . . ,m}, where xi 2 Rn, 8i
Find a linear estimator: y = �>x, so that “error” is small in some sense

Let X , [x1, . . . ,xm]> 2 Rm⇥n, y , [y1, . . . , ym]> 2 Rm

Linear algebra for k · k2: �⇤ = (X>X)�1X>y (analytical solution)

Computation time proportional to n2m (less if structured)

Stochastic gradient if m,n are large
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Example 2: Support Vector Machine (SVM)

Given data samples: {(xi, yi), i = 1, . . . ,m}
I xi 2 Rn called “feature vectors”, 8i
I yi 2 {�1,+1} are “labels”

Linear classifier: f(x) = sgn(w>x+ b):
I w 2 Rn: weight vector for features
I b 2 R: Some “bias”

Goal: To find a pair (w, b) to minimize a weighted sum such that
I Minimize classification error on training samples
I Robust to random noise in the training samples

Minimize
w,b,✏

1

2
kwk2 + C

mX

i=1

✏i

subject to yi(w
>xi + b) � 1� ✏i, ✏i � 0, i = 1, . . . ,m
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Optimization Algorithms for SVM

Coordinate Descent (Platt, 1999; Chang and Lin, 2011)

Stochastic gradient (Bottou and LeCun, 2004; Shalev-Shwartz et al., 2007)

Higher-order methods (interior-point) (Ferris and Munson, 2002; Fine and
Scheinberg, 2001); (on reduced space) (Joachims, 1999)

Shrink Algorithms (Duchi and Singer, 2009; Xiao, 2010)

Stochastic gradient + shrink + higher-order (Lee and Wright, 2012)
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Example 3: Compressed Sensing

Interested in solving undetermined systems of linear equations:

Estimate x 2 Rn from linear measurements b = Ax 2 Rm, where m ⌧ n.

Seems to be hopelessly ill-posed, since more unknowns than equations...

Or does it?
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A Little History of Compressive Sensing (CS)

Name coined by David Donoho

Pioneered by Donoho and Candès, Tao and Romberg in 2004
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Sensing and Signal Recovery

Conventional paradigm of data acquisition: Acquire then compress

Q: Why compression works?

A: Quite often, there’s only marginal loss in “quality” between the raw data and
its compression form.

Q: But still, why marginal loss?
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Sparse Representation

Sparsity: Many real world data admit sparse representation. The signal
s 2 Cn is sparse in a basis � 2 Cn⇥n if

s = �x and x 2 Rn only has very few non-zero elements

For example, images are sparse in the wavelet domain

The # of large coe�cients in the wavelet domain is small ) compression
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Compressed Sensing: Compression on the Fly!

Q: Could we directly compress data and then reconstruct?

yi = hai,xi, i = 1, . . . ,m

Goal: To learn (recover) x’s value through some given (noisy) samples yi?

Mathematically, this gives rise to an underdetermined system of equations,
where the signal of interests is sparse
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Sparse Recovery

In optimization, CS can be written in the form of:

Minimize
x2Rn

��(x) , f(y,�;x) + �kxk1

In machine learning context, questions of interests include:

How to design the measurement/sampling matrix �?

What are the e�cient algorithms to search for x?

Are they stable under noisy inputs?

How many measurements/samples are necessary/su�cient (i.e., size of y)?

Insight: Turns out m = ⌦(log(n)) random samples will su�ce
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Some Optimization Algorithms for Compressed Sensing

Shrink algorithms (for l1 term) (Wright et al., 2009)

Accelerated gradient (Beck and Teboulle, 2009b)

ADMM (Zhang et al., 2010)

Higher-order: Reduced inexact Newton (Wen et al., 2010); Interior-point
(Fountoulakis and Gondzio, 2013)
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Example 4: Matrix Completion – The Netflix Problem

In 2006, Netflix o↵ered $1 million prize to improve movie rating prediction

How to estimate the missing ratings?

About a million users, and 25,000 movies, with sparsely sampled ratings

In essence, a low-rank matrix completion problem
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Low-Rank Matrix Completion

Completion Problem: Consider M 2 Rn1⇥n2 to represent Netflix data, we
may model it through factorization:

In other words, the rank r of M is much smaller than its dimension
r ⌧ min{n1, n2}
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Low-Rank Matrix Completion

In optimization, the low-rank matrix completion problem can be written as:

Minimize
X

rank(X)

subject to (X)ij = (M)ij , 8i, j 2 observed entries

In machine learning context, questions of interests include:

What are the e�cient algorithms to search for X?

Are they stable under noisy inputs and outliers?

How many samples are necessary/su�cient (i.e., size of (M)i,j)?

Insight: Turns out m = ⌦(rmax{n1, n2} log2(max{n1, n2})) samples will su�ce
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Some Optimization Algorithms for Matrix Completion

(Block) Coordinate Descent (Wen et al., 2012)

Shrink (Cai et al., 2010a; Lee et al., 2010)

Stochastic Gradient (Lee et al., 2010)
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Next Class...

We will start from some related math background.
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