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Abstract—In this work, we investigate a communication-
efficient multi-hierarchical signSGD (MH-signSGD) algorithm
with an adaptive learning rate. Under the symmetric assumption
of the stochastic gradient distribution, we show that, without
the need for learning rate tuning, our proposed MH-signSGD
matches the state-of-art sublinear convergence rate O(1/

√
K) in

nonconvex settings, where K is the number of iterations. Our
adaptive learning strategy is based on stochastically approximat-
ing the learning rate found by greedily minimizing an error upper
bound between two successive iterations. Moreover, by leveraging
a normal approximation technique to characterize stochastic
gradient sign error, we are able to sharpen the convergence
analysis of MH-sighSGD with a fixed learning rate 1/

√
K and

establish a strong result in the large-system regime, which says
that the MH-signSGD algorithm asymptotically converges to a
stationary point at rate O(1/

√
M), where M is the number of

workers. In comparison, most existing work on signSGD can
only prove a weaker finite neighborhood convergence in the large
system regime. We validate our theoretical results experimentally
both on synthetic data and real-world datasets.

Index Terms—Distributed optimization, communication-
efficiency, adaptive learning rate, stochastic gradient descent.

I. INTRODUCTION

In recent years, machine learning (ML) and artificial intelli-
gence (AI) rapidly emerge as key enabling technologies that
fundamentally change our everyday life. At the heart of the
training phase of many ML/AI applications lies the problem of
empirical risk minimization (ERM), which can be written in the
form of minx∈Rd f(x) := 1

N

∑N
i=1 fi(x, ζi), where the vector

x contains the training model parameters, ζi represents the i-th
training sample, fi(·) represents a loss function that measures
the difference between the model output and the ground truth
corresponding to sample ζi, and N is the total size of the
training dataset. To date, the standard training algorithm in
most ML/AI applications remains the basic stochastic gradient
method (SGD) thanks to its low implementation complexity.
However, as most ML/AI trainings increasingly rely on big
data (which implies large N ), the standard SGD method has
become too time-consuming due to its inherent sequential
nature. To address this challenge, a viable solution is to exploit
the massive parallelism in distributed computing to implement
SGD, as evidenced in modern GPU servers or even large-scale
data centers.
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Although distributed SGD has been widely adopted, two fun-
damental challanges arise that could affect the future prospects
of ML/AI. The first challenge is the high communication cost
when the problem dimension d and dataset size N are large. To
alleviate the high communication cost, there has been a growing
interest in studying various gradient compression schemes for
distributed SGD [1]. One notable example is the so-called
signSGD method proposed by Bernstein et al. [2]. The basic
idea is to take the element-wise signs of stochastic gradient
vectors. In essence, signSGD can be viewed as taking one-
bit quantization in each gradient coordinate. Moreover, for
the distributed computing setting, Bernstein et al. [2] further
proposed a multi-hierarchical signSGD approach (called MH-
signSGD in this paper for short)1. It was shown in [2] that MH-
signSGD converges with a sublinear rate O(1/

√
K), where

K is the maximum iterations the algorithm runs. However, to
achieve this convergence rate, the batch size should also be
chosen as O(K), which could be unrealistic in practice when
K is large. In their follow-up work [3], they further proved the
convergence of signSGD with smaller batch sizes independent
on K.2 However, it is unclear whether this improved batch
size result can be extended to MH-signSGD or not. Moreover,
the convergence measure is based on a combination of `1-
and `2-norms, which makes direct convergence comparisons
to other SGD-based algorithms inconvenient. These limitations
necessitate a new convergence analysis for MH-signSGD.

Another limitation of SGD-based algorithms is that they
are highly sensitive to the choice of learning rates, which
may require a significant amount of efforts to fine-tune. One
popular approach to address this challenge is based on adaptive
learning rates (e.g., Adam [4], etc.), which utilizes historical
stochastic gradients information to adaptively adjust learning
rates. Unfortunately, it is well-known that the convergence of
SGD-based methods with such adaptive learning rates may
not be guaranteed. As a result, there is a compelling need to
explore alternative adaptive learning rate approaches that are
not based on historical stochastic gradient information. This,
to our knowledge, remains an open problem. In addition to
convergence analysis and adaptive learning rates, a fundamental
but overlooked question is how MH-signSGD performs in
the large system regime as the number of workers increases
asymptotically. In other words, it is not well-understood

1It was also named “signSGD by majority vote” in [2].
2The batch size could be as small as one.



whether the increased computing resources from a larger
number of workers always lead to better convergence.

The above limitations of the existing work on MH-signSGD
motivate us to conduct a deeper analysis for MH-signSGD with
a new adaptive learning rate design. Our main contributions
are summarized as follows:

• We show that, under the symmetric assumption of the
stochastic gradient distribution, the MH-signSGD method
achieves a sublinear O(1/

√
K) convergence rate in noncon-

vex settings, where K is the number of iterations. Moreover,
this convergence rate is achieved under arbitrary constant
batch sizes independent of K. In addition, we evaluate the
convergence rate in `2-norm rather than `1-norm [2] or a
mixture of `1- and `2 -norms [3], which facilitates direct
comparisons to other SGD-based methods.

• By leveraging a normal approximation technique to char-
acterize the error of stochastic gradient signs, we are able
to sharpen the convergence analysis and establish a strong
result in the large-system regime, which states that the MH-
signSGD algorithm asymptotically converges to a stationary
point at rate O(1/

√
M), where M is the number of workers.

This result shows that, under any finite maximum number of
iterations, the MH-signSGD method can converge arbitrarily
close to a stationary point as the number of workers
increases asymptotically. In comparison, most existing work
on signSGD can only prove a weaker finite neighborhood
convergence result in the large-system regime. This new
result advances our understanding of MH-signSGD.

• We propose a new adaptive learning rate strategy from a
statistical perspective. Specifically, our adaptive learning
rate strategy is based on stochastically approximating the
learning rate found by greedily minimizing an error upper
bound between two successive iterations. To our knowledge,
this is the first adaptive learning rate strategy based on local
sampling for first-order methods, which is different from
conventional adaptive methods using historical information
of the stochastic gradients. In addition, we prove a sufficient
condition for any adaptive learning rate to converge, which
could be used to evaluate the convergence of other adaptive
methods and hence of independent interest.

The remainder of this paper is organized as follows: Sec-
tion II focuses on the MH-signSGD algorithmic design and
performance analysis. Section III presents numerical results
and Section IV concludes this paper. Proof details are provided
in [5] due to space limitation.

II. ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we will first introduce the multi-hierarchical
signSGD (MH-signSGD) algorithm in Section II-A. Then, we
will present the convergence analysis and the design of adaptive
learning rates (and the associated convergence analysis) for the
MH-signSGD method in Section II-B. Proof sketches of the
main theoretical results are give in Section II-C.

A. The MH-signSGD Algorithm

The distributed MH-signSGD algorithm is presented in Al-
gorithm 1, where we first choose appropriate hyperparameters,
e.g., learning rate, maximum number of iterations, etc. In
each iteration, each worker returns the element-wise signs of
the current stochastic gradient (could be based on a single
sample or a minibatch). At the parameter server side, upon
the receptions of all sign information from the workers, the
parameter server takes another sign operation of the aggregated
signs and updates the model parameters using the aggregated
sign, hence the name “multi-hierarchical signSGD.”

Algorithm 1 The distributed MH-signSGD method.
1: Input: Learning rate {ηk}, worker number M , initial

parameter {x0}, maximum number of iterations K.
2: for k = 0, 1, ...,K − 1 do
3: On each worker:

sign{g̃k,j} ← Sign of gradient returned by the
jth worker (j ∈ [M ]) at iteration k

4: On parameter server (PS):
ĝk = sign{

∑M
j=1 sign(g̃k,j)}

xk+1 = xk − ηkĝk
5: end for

We note that the idea of MH-signSGD can also be imple-
mented in a centralized fashion as shown in Algorithm 2 if we
interpret the number of workers in the distributed setting as the
size of minibatch in a centralized setting (note that the only
difference is that the batch size parameter m in Algorithm 2
replaces the number of workers M in Algorithm 1).

Algorithm 2 The centralized MH-signSGD method.
1: Input: Learning rate {ηk}, batch size m, initial parameter
{x0}, maximum number of iterations K.

2: for k = 0, 1, ...,K − 1 do
3: g̃k,j ← Stochastic gradient of the jth data sample (j ∈

[m]) at iteration k
4: ĝk = sign{

∑m
j=1 sign(g̃k,j)}

5: xk+1 = xk − ηkĝk
6: end for

In what follows, we will present our main theoretical results
for the MH-signSGD method.

B. Main Theoretical Results

We first state the assumptions that are needed for later results:

Assumption 1 (Lower Boundedness). For all x ∈ Rd, there
exists f∗ such that f(x) ≥ f∗.

Assumption 2 (Unbiased Gradient Estimator). The stochastic
gradient g̃(x) satisfies E[g̃(x)] = g(x), for all x ∈ Rd.

Assumption 3 (Lipschitz continuous gradient). There exists
a constant L > 0, such that ∀x,y, ‖∇fi(x) − ∇fi(y)‖ ≤
L‖x− y‖, ∀i.



Assumption 4 (Symmetric Gradient Noise). For every data
sample (or a mini-batch data), the stochastic gradient g̃(x)
has a symmetric distribution around the mean.

Assumptions 1-3 are standard assumptions used in conver-
gence analysis for SGD algorithms (e.g., [6], [7]). Assumption
2 and 4 directly imply P[sign(g̃(x)) = sign(g(x))] ≥ 1

2 ,
∀x. We note that the symmetry assumption is reasonable in
many practical cases where the samples are i.i.d., for which the
Central Limit Theorem (CLT) suggests that the gradient noise
distribution under a reasonable batch size is near Gaussian [2],
[3]3. Empirical studies [10] have also found that gradient noises
are highly likely distributed as symmetric α-stable distributions
even in situations where CLT may not applicable.

Under these assumptions, our first main result is on the
convergence rate of the distributed MH-sign-SGD method:

Theorem 1 (Convergence of Distributed MH-signSGD). In a
distributed system with M workers, under Assumptions 1–4,
the sequence of output {xk} generated by Algorithm 1 with a
fixed learning rate ηk = 1√

K
satisfies:

min
k∈[K]

E‖g(xk)‖22 /
1

c
√
K

(
f0 − f∗ +

L

2

)
,

where c = b1
√
M + b2 > 0, and b1 > 0, b2 < 0 are constants.

Remark 1. Three remarks for Theroem 1 are in order: 1)
Theorem 1 implies that, under the symmetric assumption of
the stochastic gradient distribution, the MH-signSGD method
converges to a stationary point at a sublinear rate O(1/

√
K),

which matches the state of the art. Also, the convergence rate is
characterized by the conventional `2-norm, which allows direct
comparisons with other SGD-based methods. 2) The O(1/

√
K)

convergence rate is achieved by any arbitrary constant batch
size. By contrast, the existing works on signSGD [2], [3] either
require batch size K or a smaller batch size that is only limited
to the centralized setting. 3) Note also that Theorem 1 implies
that the convergence to a stationary point can be arbitrarily
close in the large-system regime, where the number of workers
increases asymptotically. This is a consequence of the use of
a new proof technique based on normal approximation. This
result is stronger than the existing works [2], [3], where only a
convergence to a stationary point neighborhood can be proved.

Recall that by viewing the number of workers M as the
batch size m, the MH-signSGD method can be implemented
in the centralized setting straightforwardly. Hence, the result
below for the centralized setting immediately follows:

Corollary 2 (Convergence of Centralized MH-signSGD).
In a centralized system with batch size m and under
Assumptions 1–4, the sequence of output {xk} generated by
Algorithm 1 with a fixed learning rate ηk = 1√

K
satisfies:

min
k∈[K]

E‖g(xk)‖22 /
1

c
√
K

(
f0 − f∗ +

L

2

)
,

3The Gaussian gradient noise assumption has also been adopted in several
studies for SGD, see, e.g., [8], [9].

where c = b1
√
m+ b2 > 0, and b1 > 0, b2 < 0 are constants.

Remark 2. Note that in the centralized setting, if we adaptively
choose the batch size m = Θ(K), then Corollary 2 implies
an O(1/K) convergence rate, which matches the convergence
rate of the standard gradient descent method.

Notice that in Theorem 1, Corollary 2, and existing work of
signSGD [2], [3], the learning rate is chosen as 1/

√
K, which

depends on the maximum number of iterations. In practice, K is
usually large, which implies an extremely conservative learning
rate and slow convergence. This motivates us to consider the
design of adaptive learning rate to address this limitation.
Toward this end, we first establish a sufficient condition that
guides the development of our adaptive learning rate strategy:

Proposition 3 (Sufficient Condition of Learning Rate). In each
iteration, if the learning rate is in the interval (0, 2η∗k), where

η∗k=

∑d
i=1 |[gk]i|(1− 2P[sign([g̃k]i) 6= sign([gk]i)])

L
, (1)

then the sequence {fk} produced by Algorithm 1 converges.

Remark 3. The proof of Propostion 3 is based on the following
observation in the proof of Theorem 1:

E[fk+1 − fk|ζk] ≤ L

2
η2k−

ηk

d∑
i=1

|[gk]i|(1− 2P[sign([g̃k]i) 6= sign([gk]i)]). (2)

If the learning rate is chosen in such a way that the right-hand
side (RHS) is negative, a decrement of f is guaranteed in each
iteration. Then, greedily minimizing the upper bound on the
RHS in each iteration (a quadratic function of ηk) yields the
stated result in Proposition 3. This offers new opportunities in
developing an adaptive learning rate strategy.

Proposition 3 provides a hint that when η∗k is adopted,
the upper bound of average decrement E[fk+1 − fk|ζk] is
minimized. This gives rise to a potential learning rate choice
provided that the sign error probability and the problem’s
smoothness parameter L are available or can be accurately
estimated. Although having these conditions, adopting learning
rate based on η∗k could be more advantageous compared to the
learning rate choice in SGD. In SGD, a good learning rate often
relies on the knowledge of variance E[‖g̃k‖22], which may not
be available in practice. By contrast, the η∗k in Proposition 3
does not rely on stochastic gradient variance explicitly. The
following result characterizes the convergence performance
when the idealized learning rate η∗k is adopted.

Theorem 4 (Greedy-Based Adaptive Learning Rate). Under
Assumptions 1–4, the output {xk} generated by Algorithm 1
with an greedy-based adaptive learning rate ηk = η∗k satisfies:

min
k∈[K]

‖gk‖22 /
1

c
√
K

√
2L(f0 − f∗),

where c = b1
√
M + b2 > 0, and b1 > 0, b2 < 0 are constants.



Remark 4. With the greedy-based adaptive learning η∗k, the
convergence rate of MH-signSGD is O(1

√
K), i.e., the conver-

gence rate remains the same in order sense. Adopting η∗k as the
learning rate can be viewed as an adaptive approach due to the
following reasons: in the initial stage where the magnitude of
stochastic gradient norm dominates the gradient variance, the
sign error probability P[sign([g̃k]i) 6= sign([gk]i)] is small
and hence a large learning rate (cf. Eq. (1)). On the other hand,
when the iterates approach a stationary point, the variance of
stochastic gradients is no longer negligible compared to the
norm of stochastic gradients (or even dominates the norm), the
sign error probability P[sign([g̃k]i) 6= sign([gk]i)] is large,
which implies a small learning rate (cf. Eq. (1)).

Note that the rationale behind our adaptive learning rate
approach is quite different from those of the conventional
adaptive counterparts (e.g., Adam [4] and many others [11]),
most of which rely on past stochastic gradient information.4

Our adaptive strategy can be viewed as a statistical approach
that is only based on the current stochastic gradient information
(see the g̃k-terms in Eq. (1)), thus eliminating the need for
intricate manipulations of the relationship between current and
past stochastic gradients. To our knowledge, this work is the
first statistical adaptive learning rate approach.

Note that to adopt η∗k as the learning rate, it remains to know
the sign error probability P[sign([g̃k]i) 6= sign([gk]i)] and
the Lipschitz constant L. So far, there has been a vast body of
work on estimating L (e.g., [13]). To estimate the sign error
probability, one can use the empirical average of the stochastic
gradients in a minibatch to approximate the true gradient gk
and count the number of sign mismatches between g̃k and
estimated true gradient.

C. Proofs of the Main Results

Due to space limitation, we provide proof sketches for the
main results in this section and relegate the full proofs to [5].

Proof Sketch for Theorem 1. The first step of the proof is to
bound the per-iteration decrement of the objective function
f(·), for which we have:

E[fk+1 − fk|ζk] ≤ L

2
η2k − ηk×

d∑
i=1

|[gk]i|
(

1−2P
[
sign

( M∑
j=1

sign([g̃k,j ]i)

)
6=sign([gk]i)

])
.

After taking full expectation, telescoping, and rearranging, we
can derive that:

min
k∈[K]

{
E
[
ηk

d∑
i=1

|[gk]i|(1−2P
[
sign(

M∑
j=1

sign([g̃k,j ]i))

]
6=

sign([gk]i)

]
)

}
≤
f0 − f∗ + L

2

∑K−1
k=0 η2k

K
. (3)

4The effectiveness of using historical gradient information for adaptive
learning rates and exploring modifications to such adaptive methods remains
an active research field [12].

Note that the most challenging part in simplifying the left-
hand-side is the product of the probability and norm terms.
Toward this end, we use a normal approximation technique
due to CLT to bound the probability term as follows:(

1−2P
[
sign

( M∑
j=1

sign([g̃k,j ]i)

)])
6=sign([gk]i)])≥c[gk]i.

Plugging the above results into (3) and setting ηk = 1/
√
K

yields the final results and the proof is complete.

Proof Sketch for Proposition 3. We again start by analyzing
the per-iteration decrement of the objective function and obtain
Eq. (2). By choosing ηk ∈ (0, 2η∗k), where η∗k is defined in
(1), the RHS of Eq. (2) is negative, which means the sequence
{fk} is monotonically decreasing. Note that fk is bounded
from below by Assumption 1. Then, the convergence with ηk ∈
(0, 2η∗k) follows from the Monotone Convergence Theorem.

Proof Sketch for Theorem 4. Consider the per-iteration decre-
ment in Eq. (2). Once the stochastic gradient g̃k] is given, the
upper bound in the RHS of Eq. (2) reduces to a quadratic
function of the learning rate ηk. Therefore, minimizing the
upper bound amounts to solving a quadratic minimization
problem as follows:

min
ηk

{
−ηk

d∑
i=1

|[gk]i|(1−2P[sign([g̃k]i)6=sign([gk]i)])+
L

2
η2k

}
.

The solution to the above problem is exactly the η∗k as shown
in Eq. (1). Plugging η∗k into above equation, we have:

min
ηk

{
−ηk

d∑
i=1

|[gk]i|(1−2P[sign([g̃k]i)6=sign([gk]i)])+
L

2
η2k

}

=
[
∑d
i=1 |[gk]i|(1− 2P[sign([g̃k]i) 6= sign([gk]i)])]

2

2L
.

By taking expectation, telescoping, and rearranging, we have:

min
k∈[K]

E
{ d∑
i=1

|[gk]i|(1− 2P[sign([g̃k]i)

6= sign([gk]i)])

}2

≤ 2L(f0 − f∗)
K

. (4)

Using the same normal approximation technique as in the
proof of Theorem 1, we have:

E[

d∑
i=1

|[gk]i|(1− 2P[sign([g̃k]i) 6= sign([gk]i)])]
2

' E{
d∑
i=1

c|[gk]i|2}2 ≥ E
K∑
k=1

c2‖gk‖42. (5)

Combining (4) and (5), we have

min
k∈[K]

‖gk‖22 /
1

c
√
K

√
2L(f0 − f∗).

This completes the proof.
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III. NUMERICAL RESULTS

In this section, we conduct numerical experiments to evaluate
the performance of MH-signSGD with various learning rate
choices and compare them with those of the existing work.

1) Synthetic Data: We first evaluate the convergence
performance of MH-signSGD using synthetic data. For fair
comparisons, we adopt the same problem setting as in [2],
[14], where the objective function is f(x) = 1

2x
2. Gaussian

noise drawn from N(0, 1002) is added to the first component
of the gradient. Here, we compare MH-signSGD with SGD
and signSGD with the same learning rate 0.05. We also test
MH-signSGD with the proposed adaptive approach. The results
are shown in Fig. 1, where each curve is averaged over 10 trials
with batch size 256. From Fig. 1, we can see that MH-signSGD,
signSGD, and SGD perform similarly under the same fixed
learning rate. In comparison, the training loss of MH-signSGD
with the proposed adaptive learning rate is approximately one
order of magnitude better after 104 iterations. To understand
our adaptive learning rate, we also plot the ideal case where the
noise of gradient is zero. We can see that MH-signSGD with
adaptive learning rates closely tracks the curve of the ideal
case in the initial stage. This confirms our intuition that, in the
initial stage where the gradients noise negligible compared to
its magnitude, the sign error probability is small (cf. Remark 4).

2) Real-World Data: Next, we perform the same set of
comparisons on the MNIST dataset using convolutional neural
networks (CNN). The architecture of CNN has two convolution
layers (size 5×5), each of which is followed by a max polling
layer over a 2× 2 area with stride two, and a fully-connected
layer with 512 units. The ReLU activation function is used
for all layers. The batch size for all algorithms is 256. For
MH-signSGD, we use four workers, each of which has a
mini-batch size 64. For the Lipschitz constant in adaptive
MH-signSGD, we use the dimension of the parameter vector
as an approximation. We compare the learning accuracy
performances of MH-signSGD with SGD. Comprehensive
learning rate choices from 10−5 to 0.1 are explored and the
best learning rate results are shown in Fig. 2. We can observe
that all algorithms achieve similar learning accuracy. It is
worth pointing out that our adaptive MH-signSGD achieves
this learning accuracy without tuning the learning rate, while
the other algorithms require significant efforts in identifying
good learning rates.

IV. CONCLUSION

In this paper, we considered a multi-hierarchical signSGD
(MH-signSGD) algorithm, with the goal to achieve both
easy learning rate selection and communication efficiency for
distributed optimization. With a fixed learning rate and under
the symmetric assumption of the stochastic gradient distribution,
we proved a stronger O(1/

√
K) result in the sense that the

convergence of MH-signSGD can be arbitrarily close to a
stationary point when the number of workers increases asymp-
totically in the large-system regime. We further developed a
new adaptive learning rate strategy based on stochastically
approximating the learning rate found by greedily minimizing
an error upper bound between two successive iterations. Our
approach does not require any intricate manipulations of the
relationships between current and past stochastic gradients. We
conducted extensive numerical studies based on synthetic data
and real-world datasets, and the numerical results confirmed
our theoretical findings.

REFERENCES

[1] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in Fifteenth Annual Conference of the International Speech
Communication Association, 2014.

[2] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” vol. 80.
PMLR, 2018, pp. 560–569.

[3] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar,
“signSGD with majority vote is communication efficient and fault
tolerant,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=BJxhijAcY7

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[5] H. Yang, X. Zhang, M. Fang, and J. Liu, “Adaptive multi-hierarchical
signSGD for communication-efficient distributed optimization,” Iowa
State University, Tech. Rep., February 2020. [Online]. Available:
http://web.cs.iastate.edu/~jialiu/publications/MH_signSGD_TR.pdf

[6] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[7] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311,
2018.

[8] W. Hu, C. J. Li, L. Li, and J.-G. Liu, “On the diffusion approximation of
nonconvex stochastic gradient descent,” Annals of Mathematical Sciences
and Applications, vol. 4, no. 1, pp. 3–32, 2019.
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