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Abstract—Massive MIMO and millimeter-wave communica-
tion (mmWave) have recently emerged as two key technologies
for building 5G wireless networks and beyond. To reconcile the
conflict between the large antenna arrays and the limited amount
of radio-frequency (RF) chains in mmWave systems, the so-
called hybrid beamforming becomes a promising solution and
has received a great deal of attention in recent years. However,
existing research on hybrid beamforming focused mostly on the
physical layer or signal processing aspects. So far, there is a
lack of theoretical understanding on how hybrid beamforming
could affect mmWave network optimization. In this paper, we
consider the impacts of hybrid beamforming on utility-optimality
and queueing delay in mmWave cellular network optimization.
Our contributions in this paper are three-fold: i) we develop
a joint hybrid beamforming and congestion control algorithmic
framework for mmWave network utility maximization; ii) we
reveal a pseudoconvexity structure in the hybrid beamforming
scheduling problem, which leads to simplified analog beamform-
ing protocol design; and iii) we theoretically characterize the
scalings of utility-optimality and delay with respect to channel
state information (CSI) accuracy in digital beamforming.

I. INTRODUCTION

In recent years, millimeter wave communication (mmWave)
has emerged as a promising technology for building 5G
wireless networks and beyond. The excitements of mmWave
communications are primarily due to: i) the rich unlicensed
spectrum resources in 60 GHz bands; ii) the ease of packing
large antenna arrays into small form factors (a consequence of
the short wavelengths); and iii) a much simplified interference
management thanks to the highly directional “pencil-beam-
like” mmWave signals. Moreover, recent field tests (see, e.g.,
[1], [2], etc.) have shown that the large directivity gains
of mmWave transceivers can offset the high atmospheric
attenuation in mmWave bands, dispelling the common concern
that mmWave is not suitable for outdoor communications. The
potential of mmWave networks has also stimulated many stan-
dardization activities (e.g., IEEE 802.15.3 wireless personal
area networks, 802.11ad wireless local area networks, and fast-
growing interests in mmWave cellular networks [3]).

However, the highly directional propagation of mmWave
signals and the special mmWave hardware requirements also
introduce several unique technical challenges for network sys-
tems. A main technical challenge is the beamforming architec-
ture design, which lies at the heart of mmWave directional net-
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working. Although large antenna arrays can be easily deployed
in mmWave systems, the high power consumption of mixed
mmWave signal components significantly limits the number
of radio-frequency chains (RF chains), rendering full digital
beamforming (requiring one RF chain per antenna) impractical
[4]. Moreover, most of the digital beamforming schemes in tra-
ditional MIMO systems require full channel state information
(CSI), which is difficult to acquire in mmWave systems due
to the fast fading in mmWave spectrum and the low signal-to-
noise ratio (SNR) before beamforming [5]. Because of the RF
chain limitations in mmWave systems, analog beamforming
approaches have been proposed (see, e.g., [6], [7]). The basic
idea of analog beamforming is to control the phase shifters
of antenna elements, so that the energy of the transmitted
data stream is concentrated in a single direction to obtain
a high directivity gain. Compared to digital beamforming,
analog beamforming can be achieved by only one RF chain
without requiring any CSI at the transmitter. However, analog
beamforming can only transmit in a single beam direction and
cannot leverage any spatial multiplexing capability of the large
mmWave antenna array.

In light of the limitations of analog and digital beamform-
ings, there is a growing consensus that the more suitable
architecture for mmWave cellular networks is the hybrid
beamforming architecture, which exploits the large mmWave
antenna arrays and yet only requires a limited number of RF
chains [5], [8]–[11]. Hybrid beamforming enjoys the best of
both worlds: On one hand, it uses analog beamforming to offer
spatial division and directivity gains to combat large mmWave
channel attenuations. On the other hand, digital beamforming
provides multiplexing gains for the lower dimensional effective
channels, for which the CSI is relatively easier to acquire.
It has been shown in [5], [12] that hybrid beamforming
achieves a data rate performance comparable to full digital
beamforming with 8 to 16 times fewer RF chains.

So far, however, the existing works on mmWave hybrid
beamforming are mostly concerned with problems at the phys-
ical layer or signal processing aspects. To date, there remains a
lack of theoretical understanding on how hybrid beamforming
could affect the performances of mmWave network control,
scheduling, and resource optimization algorithms. In this pa-
per, our goal is to fill this gap by conducting an in-depth study
on the impacts of hybrid beamforming on throughput and
delay performances in mmWave cellular network optimization.

Specifically, in this paper, we focus on the algorithmic
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design and the throughput-delay analysis for the celebrated
queue-length-based congestion control and scheduling frame-
work (QCS) (see, e.g., [13], [14], and [15] for a survey) in
hybrid-beamforming-based mmWave cellular networks. Our
main results and technical contributions are as follows:
• We develop an accurate analytical model that captures
the essence of hybrid beamforming in mmWave cellular
networks, while being tractable enough to enable network-
level understanding and analysis. Based on this analytical
model, we formulate the problem of joint hybrid beamform-
ing and congestion control for network utility maximization.
We show that the joint hybrid beamforming and congestion
control optimization is non-convex by nature, which creates
challenges for the algorithmic designs in the MaxWeight
scheduling component in the QCS framework.
• By exploiting the special problem structure of the mmWave
MaxWeight scheduling component, we show that the non-
convex scheduling subproblem admits a pseudoconvex ap-
proximation under a wide range of hybrid beamforming
parameters of practical interests. Moreover, our analysis
reveals that, to solve the scheduling subproblem, one only
needs to adjust the analog beamwidth at the base station
(BS), while the analog beamwidth adjustment at the mo-
bile station (MS) side is unnecessary. This insight greatly
simplifies the analog beamforming training protocol design.
• We investigate the impact of CSI inaccuracy on network
performance with hybrid beamforming, where we assume
that the true CSI is quantized by Q bits. We reveal a pair of
interesting phase transition phenomena in utility-optimality
and delay in the following sense: There exists a critical
value Q] such that: i) if 0 < Q < Q], then the deviations
of steady-state queue-length grows linearly and congestion
control rate is bounded by a constant; ii) If Q ≥ Q], the
deviations of queue-lengths and congestion control rates
have the same scaling laws as in the full CSI case.
Collectively, these results not only deepen our theoretical

understanding of mmWave network optimization with hybrid
beamforming, but also provide insights for low-complexity
analog beam training and effective CSI quantization in prac-
tice. The remainder of this paper is organized as follows: In
Section II, we introduce network models and the problem for-
mulation. Section III presents the mmWave congestion control
and scheduling framework, as well as the algorithmic design
for analog beam training. Section IV studies the impacts of
inaccurate CSI on digital beamforming. Section V provides
numerical results and Section VI concludes this paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

Notation: We use boldface to denote matrices/vectors. A†

denotes the conjugate transpose of A. We use ‖ · ‖ and ‖ · ‖1
to denote L2- and L1-norms, respectively. We let I denote the
identity matrix, whose dimension is conformal to the context.
We let R and C denote real and complex spaces, respectively.

1) Hybrid-Beamforming-Based mmWave Downlink: As
shown in Fig. 1, we consider a mmWave cellular downlink
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Fig. 1. A mmWave cellular downlink with a MBS-antenna base station and
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Fig. 2. Frame structure of a time-slot in mmWave cellular networks with
hybrid beamforming.

system with N users. The BS and each user have MBS and
MMS antennas, respectively. The mmWave downlink adopts
a hybrid beamforming architecture with MB

RF and MM
RF RF

chains at the BS and each user’s MS, respectively (see Fig. 3).
The system operates in a time-slotted mode. The time-slots are
indexed by t ∈ {0, 1, 2, . . .}. As shown in Fig. 2, each time-
slot is of period T and contains two phases. The first phase is
further divided into N mini-slots corresponding to the N users.
Each mini-slot contains two parts τAn and τDn . In τAn , both the
BS and user n perform analog beam search to refresh their
beam directions to mitigate link breakage caused by user n’s
movements [3], [16]. In τDn , the BS estimates the CSI of user n
for digital beamforming. In the data transmission phase, based
on the analog beam and digital CSI training results, the BS
picks one of the N users and steers analog beams to this user.
Likewise, the scheduled user also steers analog beams toward
the BS. Further, by leveraging the learned CSI to perform
spatial multiplexing, the BS and a scheduled user communicate
via K data streams. For mmWave systems in practice, we
usually have: i) K ≤ MB

RF ≤ MBS; ii) K ≤ MM
RF ≤ MMS;

iii) MM
RF ≤MB

RF; and iv) MMS ≤MBS.
a) Analog beamforming process: In time-slot t, the analog

beamformers on the BS and user sides are determined by
a beam training process, during which the BS and user n
search over all possible direction combinations within their
corresponding sectors1, as shown in Fig. 4 (this exhaustive
beam training process has been adopted in IEEE 802.11ad and
IEEE 802.15.3c standards). Let Tp denote the time required
for transmitting and receiving a pilot symbol. Let ψB

n and
ψM
n denote the sector-level beamwidth at the BS and user n,

respectively. Also, let θB [t] and θM [t] denote the beam-level
beamwidth at the BS and user n’s MS, respectively. Then, the
beam search time τAn can be computed as: τAn =

ψB
n

θB [t]
ψM
n

θM [t]Tp.
In this paper, we adopt a widely used sectored antenna

pattern model (see, e.g., [17]–[19]): We assume that the gains

1In this paper, we assume that both the BS and user know the sectors of each
other’s location in each time-slot. This is a reasonable assumption because the
sector information can be inferred with high accuracy from the beam direction
in the previous time-slot and the mobility/trajectory information of the user.
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Fig. 3. Block diagram of a mmWave cellular network with hybrid beamforming.
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Fig. 4. The analog beamforming training procedure.

are a constant for all angles within the main lobe and equal to
a smaller constant in the side lobes. As shown in Fig. 4, we let
ωB
n and ωM

n represent the angles deviating from the strongest
path between the BS and user n, respectively (the strongest
path needs not be line-of-sight and Fig. 4 is only for illustrative
purposes). Let gB

n (ωB
n , θB [t]) and gM

n (ωM
n , θM [t]) denote the

transmission and reception gains at the BS and user n. In this
paper, we adopt the following widely used antenna radiation
pattern model [17]–[19]:

gB
n (ωB

n , θB [t]) =

{
2π−(2π−θB [t])η

θB [t] , if |ωB
n | ≤

θB [t]
2 ,

η, otherwise,
(1)

gM
n (ωM

n , θM [t]) =

{
2π−(2π−θM [t])η

θn[t] , if |ωM
n | ≤

θM [t]
2 ,

η, otherwise,
(2)

where η ∈ [0, 1) is the side lobe gain. In practice, η � 1
for narrow beams (i.e., θB [t] and θM [t] are small). This
model captures the essential features of antenna patterns (e.g.,
directive gains, front-to-back ratio, half-power beamwidth,
etc. [19]). Once the optimal directions for transmission and
reception have been determined, the communication link can
be established, and data transmission phase starts. The beam
training is finished when the BS and the user’s beams are
aligned with the strongest path, i.e., the conditions |ωB

n | ≤
θB [t]

2 in (1) and |ωM
n | ≤

θM [t]
2 in (2) are satisfied.

b) Digital beamforming process: Once the analog beam
search is completed, the analog beamformers are known.
Therefore, we can estimate the CSI of the effective channel
H

(n)
E [t], which is assumed to take τD = βTp amount of time

(cf. Fig. 2), where β > 0 is some constant. With the learned
CSI, the BS and user n jointly choose baseband beamform-
ers based on some digital beamforming strategies, such as
singular value decomposition (SVD), zero-forcing (ZF), etc.
One particularly interesting case arises when MB

RF �MM
RF.

In this case, the row vectors in the effective channel H(n)
E [t]

are asymptotically orthogonal to each other as MB
RF gets large.

Thanks to this nice property, one can use the so-called conju-
gate beamforming, which has been shown to be asymptotically
capacity-achieving in the high SNR regime [20]. We will
further discuss conjugate beamforming in Section IV.

Regardless the choice of digital beamforming schemes,
the digital beamforming process converts H

(n)
E [t] into K ≤

min{MB
RF,M

M
RF} spatial channels (depending on the rank of

H
(n)
E [t]). We let g(k)

n [t] denote the effective gain of the k-th

spatial channel. Based on the models of hybrid analog/digital
beamforming, we have that the hybrid beamforming achiev-
able rate of user n can be computed as:2

rn(θB [t], θn[t]) =

(
1− τA +NτD

T

)∑K

k=1
log2

(
1+

Pmax

KN0
gB
n (ωB

n , θB [t])gM
n (ωM

n , θM [t])g(k)
n [t]

)
, (3)

where τA ,
∑N
n=1 τ

A
n and Pmax denotes the maximum

transmission power at the BS. Then, for a given channel state
in time-slot t, we let Cn[t] denote the instantaneous achievable
rate region under a chosen digital beamforming scheme:

Cn[t],

{
rn(θB [t], θn[t])

∣∣∣∣ θB [t] ∈ (0, ψB
n ],

θM [t] ∈ (0, ψM
n ].

}
. (4)

It can be seen from (3) that the beamwidths θB [t] and θM [t]
need to be chosen judiciously: On one hand, from (1) and (2),
gB
n (ωB

n , θB [t]) and gM
n (ωM

n , θM [t]) increase as θB [t] and θM [t]
decrease, leading to a higher SNR and hence a higher data
rate. However, the smaller the beamwidths θB [t] and θM [t],
the shorter the transmission phase, i.e., there exists a trade-off
between data rate and transmission time.

2) Queueing Model: As shown in Fig. 1, the BS maintains
a separate queue for each user. Let an[t] denote the number
of packets injected into queue n in time-slot t. The arrival
processes {an[t]}, ∀n, are controlled by a congestion con-
troller. We assume that there exists a finite constant Amax

such that an[t] ≤ Amax, ∀n, t. Let s[t] , [s1[t], . . . , sN [t]]>

denote the scheduled service rate vector in time-slot t (the
scheduling algorithm that determines s[t] will be presented
in Section III). Then, the queue-length of user n evolves as:
qn[t + 1] =

(
qn[t] − sn[t] + an[t]

)+
, ∀n, where (·)+ ,

max(0, ·). Let q[t] = [q1[t]], . . . , qN [t]]>. In this paper, we
adopt the following notion of queue-stability (same as in [13],
[14]): We say that a network is stable if the steady-state total
queue-length is finite, i.e., lim supt→∞ E {‖q[t]‖1} <∞.

3) Problem Formulation: Let ān, limT→∞
1
T

∑T−1
t=0 an[t]

denote the average controlled arrival rate of user n. We
associate each user n with a utility function Un(ān), which

2In this paper, equal power allocation is used for lower rate evaluation
complexity in the effective MIMO channel. It has been shown that the rate
loss of equal power allocation is negligible under high SNR. Also, equal power
allocation is asymptotically capacity-achieving in high SNR regime [21].
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is assumed to be strongly concave, increasing, and twice con-
tinuously differentiable. Un(ān) represents the utility gained
by user n when data is injected at rate ān. Then, the joint
congestion control and scheduling (JCS) optimization problem
for network utility maximization can be written as:

JCS: Maximize
∑N
n=1 Un(ān)

subject to Queue-length stability constraints,
sn[t] ∈ Cn[t], an[t] ∈ [0, Amax] ∀n, t.

In Section III, we will first consider the algorithmic design for
solving Problem JCS under perfect CSI. Then, in Section IV,
we will conduct an in-depth investigation on the impacts of
CSI inaccuracy on throughput and delay.

III. ALGORITHMIC DESIGN UNDER PERFECT CSI

Based on the Lagrangian dual formulation, it can be shown
that Problem JCS can be solved by the queue-length-based
congestion control and scheduling (QCS) framework (see, e.g.,
[13]–[15]) in the following sense: The congestion control rate
ā achieves an optimality gap O(ε) at the price of an O(1/ε)
queue-length, where ε> 0 controls the utility-optimality gap.
Hence, the utility-optimality gap can be made arbitrarily small
by decreasing ε. Now, consider the following QCS algorithm
specialized for hybrid beamforming in mmWave networks:

A. The QCS Algorithm Specialized for Hybrid Beamforming

Algorithm 1: Queue-Length-Based Congestion Control and
Scheduling in mmWave Cellular Network.

Initialization: Choose parameters ε > 0. Set t = 0.
Main Loop:
1. MaxWeight Scheduler: In time t≥ 1, given queue-lengths

q[t] and CSI H[t], the scheduler chooses a service rate
vector s[t] from Cn[t] by hybrid beamforming such that:

s[t] = arg max
rn∈Cn[t],∀n

{ N∑
n=1

qn[t]rn

}
, (5)

where Cn[t] is defined in (4).
2. Congestion Controller: Given queue-lengths q[t], the con-

gestion controller chooses data injection rates an[t], ∀n,
which are integer-valued random variables satisfying:

E{an[t]|qn[t]} = min
{
U

′−1
n (εqn[t]) , Amax

}
, (6)

E{a2
n[t]|qn[t]} ≤ Amax

2 <∞, ∀qn[t], (7)

where U
′−1
n (·) represents the inverse function of first-order

derivative of Un(·). In (6) and (7), Amax and Amax
2 are

some predefined sufficiently large positive constants.
3. Queue-Length Updates: Update the queue-lengths as qn[t+

1] = (qn[t]− sn[t] + an[t])
+, ∀n. Let t = t+1. Go to Step

1 and repeat the process.

Although being optimal, the QCS framework has a major
limitation in that the MaxWeight scheduling problem is dif-
ficult to solve in general and could be NP-Hard for many
wireless networks [15]. Surprisingly, in what follows, we will

show that the physical layer properties of mmWave hybrid
beamforming imply several special mathematical structures
that lead to efficient solution for the MaxWeight subproblem.

B. The MaxWeight Scheduling Subproblem

To solve the MaxWeight scheduling subproblem, we start
by examining the properties of the set of instantaneous hybrid
beamforming achievable rates {rn ∈ Cn[t], ∀n}. First, we note
that the BS forms only one beam to one of the N users in
each time-slot, say user n. This implies that rn′ = 0, ∀n′ 6= n.
Hence, the MaxWeight problem in (5) can be simplified as:

max
rn∈Cn[t],∀n

{ N∑
n=1

qn[t]rn

}
= max
n∈{1,...,N}

{
qn[t]rn

∣∣∣rn ∈ Cn[t]
}

(a)
= max
n∈{1,...,N}

{
qn[t]

[
max

θB [t],θM [t]

{
rn(θB [t], θM [t])

}]}
, (8)

where (a) follows from the fact that rn(θB [t], θM [t]) does
not depend on qn[t]. As a result, solving the MaxWeight
scheduling problem in (5) boils down to first solving the
inner rate maximization problem in (8) for each user, and
then choosing the user who has the largest rate-queue-length
product. Toward this end, we explicitly write down the inner
maximization problem in (8) for each user n as follows:

Maximize

(
1− τA + τD

T

) K∑
k=1

log2

(
1 +

Pmax

KN0
gB
n (ωB

n , θB [t])

gM
n (ωM

n , θM [t])g(k)
n [t]

)
(9)

subject to θB [t] ∈ (0, ψB
n ], θM [t] ∈ (0, ψM

n ].

Unfortunately, due to the multiplication between the time
fraction and the rate in the objective function, Problem (9) falls
into the class of polynomial programming problems, which is
non-convex [22]. However, it turns out that if the side lobe gain
η is small, Problem (9) can be approximated by a univariate
pseudoconvex problem. We state this result as follows:

Theorem 1 (Univariate pseudoconvex approximation). If the
side lobe gain satisfies η � 1

3 , then Problem (9) can be ap-
proximated by the following univariate optimization problem:

Maximize

(
b0 −

b1

θ̃[t]

) K∑
k=1

log2

(
1 +

4π2c
(k)
n

θ̃[t]

)
(10)

subject to θ̃[t] ∈
[
b1/b0, ψ

B
nψ

M
n

]
,

where b0 , 1−(NβTp/T ), b1 , Tp
T

∑N
n=1 ψ

B
nψ

M
n , and c(k)

n ,

(Pmax/KN0)g
(k)
n [t] are constants. Moreover, Problem (10) is

a pseudoconvex optimization problem.

Theorem 1 can be proved by substituting the antenna radi-
ation pattern model in (1) and (2) into the objective function
of Problem (9) and then exploiting the condition η � 1

3
to simplify. Since Problem (10) is a maximization problem
with one simple box constraint, showing its pseudoconvexity
is equivalent to showing the pseudoconcavity of the objective
function. We refer readers to the appendix for proof details.
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Remark 1. Three remarks of Theorem 1 are in order: i) In
practice, the conditions Tp � T and η � 1

3 can usually be
satisfied because a pilot symbol is much shorter compared
to a time-slot and the mmWave beams are sharp; ii) The
pseudoconvex (which further implies strictly quasiconvex)
and univariate properties suggest that Problem (10) can be
solved by simple one-dimensional line search methods [22,
Theorem 8.1.1] (e.g., the bisection or the golden section
methods); iii) It can be seen from the proof of Theorem 1
that we have defined θ̃[t] , θB [t]θM [t]. Note that the optimal
objective value of Problem (10) is only a function of θ̃∗[t] and
does not depend on the specific values of θB [t] and θM[t], as
long as their product is equal to θ̃∗[t]. This implies that we
can simply set θM [t] to some appropriate fixed value and only
adjust θB [t] at the BS side. In other words, there is no need to
jointly adjust θB [t] and θM [t]. This insight greatly simplifies
the protocol designs in the analog beamforming phase.

Collectively, the results in this section provide an algorith-
mic solution to Problem JCS assuming that the CSI learned in
τD (hence the digital beamforming gains g(k)

n [t]) is accurate.
However, it remains unclear how the network utility and delay
performance of Algorithm 1 will be affected if the CSI is
inaccurate. This problem will be addressed in the next section.

IV. THE IMPACTS OF INACCURATE CSI ON THE QCS
ALGORITHM WITH HYBRID BEAMFORMING

Due to the short coherence time of mmWave channels
(around an order of magnitude lower than that of microwave
bands since Doppler shifts scale linearly with frequencies [3]),
traditional CSI feedback approach is not suitable for mmWave-
based cellular networks. Also, due to the limited transmit
power at the MSs and the lack of beamforming gains for
the uplink pilot symbols, the accuracy of TDD-based CSI
estimation based on channel reciprocity is limited. Given these
CSI estimation challenges, it is likely that the CSI learned
during the τD period (cf. Fig. 2) is inaccurate. In this paper,
we assume that the number of RF chains at the BS is much
greater than that at the MSs, (e.g., tens of times larger). This
setting is relevant for cases where the physical size, hardware
costs, and power constraint of the BS are not limiting factors of
the system. The cases where the BS and MSs have comparable
numbers of RF chains will be left for our future studies.
In what follows, we start with the digital beamforming for
effective mmWave channels with a large number of RF chains
at the BS and its operations under a limited CSI model.

1) Digital Beamforming for Effective Channels with
MB

RF � MM
RF: As mentioned in Section II, due to the near

orthogonality between the rows in the effective channel in
this case, the simple conjugate digital beamforming technique
can be used. Recall that the received signal of user n can
be written as: y[t] = H

(n)
E [t]F

(n)
D [t]un[t] + ñ[t], where

H
(n)
E [t] ∈ CMM

RF×M
B
RF is the effective channel by taking into

account the effects of analog beamforming; and F
(n)
D [t] is the

transmit digital beamformer. Under conjugate beamforming,
we let F(n)

D [t] = H
(n)
E [t]†. Also, we assume that the effective

channel H
(n)
E [t] is of full row rank so that K = MM

RF (i.e.,
all receiver RF chains are utilized). Then, thanks to the near
orthogonality between the rows in H

(n)
E [t]†, the achievable rate

under conjugate beamforming can be computed as:

rn[t]≈
(

1− τ
A+τD

T

) K∑
k=1

log2

(
1+

Pmax

KN0
‖h(n)

E,k[t]‖2
)
, (11)

where h
(n)
E,k[t] denotes the k-th row of H(n)

E [t]. Note that (11)
and (3) are equivalent since h

(n)
E,k[t] has absorbed the analog

beamforming gains gB
n (ωB

n , θB [t]) and gM
n (ωM

n , θn[t]).

2) CSI Inaccuracy Modeling: Given the inevitable CSI
errors and to alleviate the CSI estimation burden for digital
beamforming, we adopt the limited CSI model in the literature
(see, e.g., [21] and references therein). Such limited CSI can be
obtained by Q bits of feedback from each user. Alternatively,
based on the channel reciprocity, the BS could use Q bits to
rapidly quantize the uplink CSI (see Fig. 1). In either case, the
value of Q depends on the CSI learning time τD and efficiency
of the specific CSI learning algorithm. The Q-bit limited CSI
for each RF chain k can be determined by a vector quantization
codebook Bk , {c1

k, . . . , c
2Q

k }, where cik ∈ CMB
RF , i =

1, . . . , 2Q, represents a codeword. Given an effective channel
H

(n)
E [t], the codeword for its k-th row vector h(n)

E,k[t] is chosen
by picking the one that is closest to h

(n)
E,k[t] in the following

sense [21]: i∗k[t] = arg minj∈{1,...,2Q} sin2(∠(h
(n)
E,k[t], cjn)),

where i∗k[t] denotes the index of the chosen codeword in time-
slot t. Let Ĥ(n)

E [t]∈CMM
RF×M

B
RF denote the estimated channel

matrix by collecting all codewords i∗k[t], ∀k. Then, based on
Ĥ

(n)
E [t], the BS performs conjugate beamforming to construct

K spatial channels. However, due to the errors in Ĥ
(n)
E [t],

inter-channel interference is not negligible under conjugate
beamforming, and the amount of interference depends on the
codebook size 2Q and the choice of the quantization scheme.

Let r̂Qn [t] denote the actual conjugate beamforming achiev-
able rate under the true CSI H

(n)
E [t] while the system is

treating the Q-bit limited CSI Ĥ(n)
E [t] as if it is accurate. Also,

let Ĥ
(n)
E,1[t] and Ĥ

(n)
E,2[t] represent two estimated CSI values

obtained by using Q1 and Q2 bits, respectively. Then, we can
show that the following monotonicity result of the conjugate
beamforming achievable rate holds under limited CSI, which
will be used in our subsequent analysis (the proof is relegated
to our online technical report [23] due to space limitation):

Lemma 1 (Monotonicity of beamforming achievable rate). If
Q1 ≤ Q2, then there exists a CSI quantization scheme under
which r̂Q1

n [t] ≤ r̂Q2
n [t]. Further, r̂Qn [t] ↑ rn[t] as Q→∞.

3) Algorithmic Changes to the QCS Framework: Due to
the use of Q-bit limited CSI in mmWave hybrid beamforming,
the QCS algorithmic framework in Algorithm 1 also needs to
be modified accordingly as follows:

Algorithm 2: Queue-Length-Based Congestion Control and
Scheduling in mmWave Cellular Network with Q-Bit CSI.

Initialization: Choose parameters ε > 0. Set t = 0.
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Main Loop:
1. MaxWeight Scheduler: In time-slot t ≥ 1, given the queue-

length vector q[t] and the Q-bit estimated CSI Ĥ(n)
E [t], ∀n,

we let r̃n[t] be the believed conjugate beamforming achiev-
able rate under Ĥ(n)

E [t], ∀n. Then, the scheduler chooses a
user n such that n = arg maxn′∈{1,...,N}{qn′ [t]r̃n′ [t]}. As
a result, the actual achievable service rates are sQ,n[t] =
r̂Qn [t] and sQ,n′ [t] = 0, ∀n′ 6= n.

2. Congestion Controller: Same as in Algorithm 1.
3. Queue-Length Updates: Same as in Algorithm 1.

4) Performance Analysis: To describe our main theoretical
results, we first need the following deterministic problem,
where we assume that the channel state process is not random
and fixed at its mean. We let C̄Q , {rQn ,∀n : rQn = E{r̂Qn [t]}}
denote the mean achievable rate region. Also, the congestion
control and scheduling variables are time-invariant and de-
noted as an and sQ,n, ∀n, respectively. Then, the deterministic
congestion control and scheduling problem can be written as:

Maximize

1

ε

N∑
n=1

Un(an)

∣∣∣∣∣∣
an − sQ,n ≤ 0,∀n,
sQ,n ∈ C̄Q,∀n,
an ∈ [0, amax], ∀n.

 . (12)

Based on the convex approximation argument in Theorem 1,
it is clear that Problem (12) is approximately convex. Thus,
there exists a unique optimal solution. Associating dual vari-
ables qQ,n ≥ 0, ∀n with the constraints an − sQ,n ≤
0, ∀n, we obtain the Lagrangian as follows: Θε(qQ) ,
maxa,sQ∈C̄Q{

1
ε

∑N
n=1Un(an)+

∑N
n=1 qQ,n(sQ,n−an)}, where

the notation Θε(·) signifies the Lagrangian’s dependence on ε
and the vector qQ , [qQ,1, . . . , qQ,N ]> ∈ RN+ contains all dual
variables. Then, the Lagrangian dual problem of Problem (12)
can be written as:

Minimize Θε(qQ), subject to qQ ∈ RN+ . (13)

Let (a∗Q, s
∗
Q) and q∗Q,(ε) be the optimal primal and dual

solutions to Problems (12) and (13), respectively. Then, it can
be shown that q∗Q,(ε) satisfies the following properties (the
proof is based on the Karush-Kuhn-Tucker (KKT) conditions
[22] and is relegated to [23] due to space limitation):

Lemma 2 (Primal and dual solutions). q∗Q,(ε) = 1
εq
∗
Q,(1),

i.e.,, q∗Q,(ε) grows linearly and the slope depends on q∗Q,(1).
Further, if Q1 ≤ Q2, then the slopes satisfy q∗Q1,(1) ≥ q∗Q2,(1).
The congestion control solution a∗Q is independent of ε and
equal to the service rate s∗Q.

With Lemma 2, we are now ready to present the main
results. Our first result says that the steady-state queue-length
vector q∞ lies in a bounded neighborhood of the dual solution
q∗Q,(ε) of Problem (13). Further, the size of the neighborhood
manifests a phase-transition phenomenon.

Theorem 2 (Queueing delay phase transition). Under Algo-
rithm 2 with any given Q-bit CSI quantization scheme, there
exists a critical value Q] independent of the performance
control parameter K of Algorithm 2, such that:

• If 0 < Q < Q], then E{‖q∞ − q∗Q,(ε)‖} = O(C(Q)
1
ε ),

where C(Q) ≥ 0 is a constant depending on the quantiza-
tion codebook, and C(Q) decreases as Q increases;

• If Q ≥ Q], then E{‖q∞ − q∗Q,(ε)‖} = O(1/
√
ε).

Remark 2. Note that the O(1/
√
ε)-scaling of queue-length

deviation when Q ≥ Q] is the same as that under the full
CSI case [14]. This shows an unexpected insight that full CSI
is not necessary to induce in order sense the original QCS
queue-length scaling behavior.

Now, let a∞Q,n , E{min{U ′−1
n (εq∞n ), amax}}, ∀n, be the

steady-state congestion control rates under a given Q-bit CSI
quantization scheme and let a∞Q , [a∞Q,1, . . . , a

∞
Q,N ]>. The

next main result characterizes the phase transition of the scal-
ing of a∞Q ’s deviation from the solution a∗Q of Problem (12):

Theorem 3 (Congestion control phase transition). Under
Algorithm 2 with any Q-bit CSI quantization scheme, there
exists a critical value Q], same as in Theorem 2, such that:
• If 0 < Q < Q], then ‖a∞Q −a∗Q‖ = O(C(Q)), where C(Q) ≥

0 is the same constant as defined in Theorem 2;
• If Q ≥ Q], then ‖a∞Q − a∗Q‖ = O(

√
ε).

Both Theorems 2 and 3 can be proved by Lyapunov stability
analysis, and the details are relegated to the appendix.

V. NUMERICAL RESULTS

In this section, we conduct simulations to demonstrate the
theoretical results in Sections III and IV. We first verify the
approximation accuracy and the pseudoconvexity of Prob-
lem (10). We set SNR to 30 dB and set the Tp/T ratios to
0.01 and 0.001. We vary the side lobe gain η from 0.1 to
0.5 and the results are shown in Figs. 5 and 6. We can see
that, under both Tp/T ratios, the approximation gaps shrinks
as η decreases. In these examples, the gaps under η = 0.1 are
almost negligible. Moreover, we note that the approximation
function is indeed pseudoconcave, as predicted by Theorem 1.

Next, we examine the impacts of Q on the queue-lengths
and the results are shown in Fig. 7. In our simulations, the
BS and each MS have 64 and 2 RF chains, respectively. The
total SNR is 30 dB. We use log(·) as the utility function
for each user (i.e., the proportional fairness metric [15]) and
adopt random vector quantization (RVQ) as our Q-bit CSI
quantization codebook [21], with Q = 1, 2, 4, 8, 16, 32, 48,
and 64. We also draw an accompanying dash line to show the
scaling trend of each curve in Fig. 7. For small Q values, we
can see that the mean queue-length deviation increases faster
than the square root law, roughly displaying a linear scaling
with respect to ε as indicated in Theorem 2. For this example,
the critical value of Q is 8. Once Q ≥ 8, the queue-length
deviations scale as O(1/

√
ε), also confirming Theorem 2.

Lastly, we study the impacts of Q-bit CSI on the congestion
control rates and the results are illustrated in Fig. 8. For small
Q values, we can see that a∞Q is only affected by Q and is
a constant independent of ε. Also, a∞Q ’s gap to the full CSI
case shrinks as Q increases, which confirms Lemma 2 and
Theorem 3. Again, we can observe that the critical value of
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Q is 8: When Q ≥ 8, a∞Q displays an O(
√
ε) diminishing gap

to a∗Q, which agrees with Theorem 3.

VI. CONCLUSION

In this paper, we studied the problem of hybrid-
beamforming-based mmWave cellular network optimization.
We first showed that the hybrid beamforming scheduling sub-
problem in this framework enjoys a hidden pseudoconvexity
structure, which leads to simplified analog beam training
design. We then characterized two phase transition phenom-
ena in throughput and delay with respect to CSI accuracy
in digital beamforming. Collectively, these results deepen
our understanding of mmWave network optimization. Hybrid
beamforming in mmWave networking is an exciting and under-
explored research area. Our future directions include multi-cell
mmWave networks with hybrid beamforming and the impacts
of CSI inaccuracy on limited RF chains at the BS side.

APPENDIX

1) Proof of Theorem 1: We let rn[t] denote the objective
function of Problem (9). Substituting (1) and (2) into rn[t] with
the defined constants, we can rewrite the objective function as:

rn[t] =

(
b0 −

b1
θB [t]θM [t]

) K∑
k=1

log2

(
1 + ∆0c

(k)
n

)
, (14)

where the term ∆0 can be further written as:

∆0 =

(
4π2(1− η)2

θ̃[t]
+

2π(1− η)(θB [t] + θM[t])

θ̃[t]
+ η2

)
,

Here, we define θ̃[t] , θB [t]θM [t]. Now, we claim that

4π2(1− η)2

θ̃[t]
� 2π(1− η)(θB [t] + θM [t])

θ̃[t]
(15)

is true if η� 1
3 . To see this, we first note that η� 1

3 implies
4π � 2π(1−η)

η . Also, since θB [t], θM [t] ∈ (0, 2π], we have
θB [t] + θM [t] ≤ 4π � 2π(1−η)

η , which implies (15). Hence, it
follows that (∆) ≈ ( 4π2

θ̃[t]
+ η2), which further implies:

rn[t] = (14) ≈
(
b0 −

b1

θ̃[t]

) K∑
k=1

log2

(
1 +

4π2c
(k)
n

θ̃[t]

)
,

i.e., the objective function in (10). This completes the proof.
Next, we prove pseudoconvexity of Problem (10). We let

f(θ̃[t]) denote the negative objective function and our goal is
to show that f(θ̃[t]) is pseudoconvex, i.e., for any θ̃1[t] and
θ̃2[t] in the feasible interval, iff ′(θ̃1[t])(θ̃2[t]− θ̃1[t]) ≥ 0, we
must also have f ′(θ̃2[t])(θ̃2[t]− θ̃1[t]) ≥ 0.

First, let us consider the case where θ̃2[t] ≥ θ̃1[t]. Then,
showing f ′(θ̃2[t])(θ̃2[t] − θ̃1[t]) ≥ 0 is equivalent to show-
ing f ′(θ̃2[t]) ≥ 0. Note that, in this case, the condition
f ′(θ̃1[t])(θ̃2[t]− θ̃1[t]) ≥ 0 simply means f ′(θ̃1[t]) ≥ 0, i.e.,

f ′(θ̃1[t]) =

K∑
k=1

1

θ̃2
1

[
4π2c

(k)
n

ln(2)
· b0θ̃1[t]− b1
θ̃1[t] + 4π2c

(k)
n︸ ︷︷ ︸

(P1)

−b1 log2

(
1 +

4π2c
(k)
n

θ̃1[t]

)
︸ ︷︷ ︸

(P2)

]
≥ 0. (16)

It is obvious that the term (P2) is an increasing function of
θ̃[t]. Now, consider the fractional term b0θ̃1[t]−b1

θ̃1[t]+4π2c
(k)
n

in (P1),
which is negative-valued according to the definitions of b0, b1,
and the feasible interval. Also, from the definition of b0, we
have b0 < 1, implying that the absolute value of the nominator
is increasing at a slower rate than that of the denominator. This
means that (P1) is also an increasing function of θ̃[t]. Hence,
f ′(θ̃[t]) is increasing since both (P1) and (P2) are increasing.
As a result, f ′(θ̃1[t]) ≥ 0 and θ̃2[t] ≥ θ̃1[t] imply f ′(θ̃2[t]) ≥ 0
and thus the case of θ̃2[t] ≥ θ̃1[t] is proved. The other case
where θ̃2[t] ≤ θ̃1[t] can also be proved similarly and we omit
the details in here for brevity. This completes the proof.

2) Proofs Sketch of Theorems 2 and 3: Due to space
limitation, we provide a proof sketch in this paper and refer
readers to [23] for further details. To prove Theorem 2, we use
an α-parameterized quadratic Lyapunov function: Vα(q[t]) =
εα

2 ‖q[t] − q∗Q,(K)‖
2, where the parameter α ∈ {0, 1} and its

value will be specified later. We first bound the conditional
mean Lyapunov drift as follows:

E{Vα(q[t+1])−Vα(q[t])|q[t]}
(c)

≤ εα
[
− ε

Φ

∥∥q[t]−q∗Q,(ε)
∥∥2

+D0

]
+ εαE

{
(q[t])>(s∗ − sQ[t])

∣∣q[t]
}
, (17)
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where D0 , N
2 (Amax

2 + (smax)2) and s∗ , limQ→∞ s∗Q.
Then, calculating the T -step Lyapunov drive, arranging terms,
dividing both sides by T , and letting T →∞ yields:
0≤J+

∑
q∈ZN+

π∞q (q)>(s∗−s∞Q )=J+E
{

(q∞)>(s∗−s∞Q
}
, (18)

where J , limT→∞
1
T

∑T−1
t=0

∑
q∈ZN+

Pr(q[t] = q|q[0]){εα

[−εΦ ‖q[t] − q∗(ε)‖
2 + D0]}; s∞Q , arg maxx∈C

H[∞]|Ĥ[∞]
(q∞)>x

represents the steady-state service rates with Q-bit CSI.
Next, we consider two cases based on the positivity of
E
{

(q∞)>(s∗ − s∞Q )
}

as follows:

Case I): Q ≥ Q] such that E
{

(q∞)>(s∗ − s∞Q )
}
≤ 0: In

this case, it follows from (18) that

0 ≤ lim
T→∞

1

T

∑T−1

t=0

∑
q∈ZN+

Pr(q[t] = q|q[0])×{
εα
[
− ε

Φ

∥∥q[t]− q∗Q,(ε)
∥∥2

+D0

]}
. (19)

We now consider the term in the second line in (19) by setting
α = 0. Then, by using similar techniques to prove the Pake’s
lemma [24], we can show that

E{‖q∞ − q∗Q,(ε)‖} ≤
(
β +

η

δ

) 1√
ε

= O(1/
√
ε). (20)

Case II): Q ≤ Q] such that E
{

(q∞)>(s∗ − s∞Q )
}
> 0: In

this case, we set α = 1. It thus follows from (17) that:

E
{

∆V1(q[t])|q[t]
}
≤ −ε

2

Φ

∥∥∥q[t]−q∗Q,(ε)
∥∥∥2

+

ε‖q[t]− q∗Q,(ε))
>‖C(Q) + εD0, (21)

where C(Q) , maxq:‖q‖=1 E{‖s∗Q − sQ‖q}. Again, by using
the techniques to prove the Pake’s lemma, we can show that

E{‖q∞ − q∗Q,(ε)‖} ≤
([

(C(Q)Φ)+√
(C(Q)Φ)2 + 4D0Φ

]
+
η

δ

)1

ε
= O(C(Q)

1

ε
). (22)

This completes the proof of Theorem 2.
3) Proof Sketch of Theorem 3: To show the results

in Theorem 3, we first note that E{an[t]|qn[t]} =
min{U ′−1

n (εqn[t], Amax)} and a∗n = U
′−1
n (εq∗n), ∀n. After

some algebraic derivations and upper bounding, we have

‖a∞Q −a∗Q‖≤‖a∞Q −a∗Q‖1≤
ε
√
N

φ
E
{∥∥q∞−q∗Q,(ε)∥∥}. (23)

Note that, in the proof of Theorem 2, we have shown the phase
transition of E

{∥∥q∞−q∗Q,(ε)∥∥ in (20) and (22), respectively.
Thus, multiplying (20) and (22) by ε arrives at the result stated
in Theorem 3. This completes the proof.
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