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Abstract— Maximizing the total mutual information of a mul-
tiuser multiple-input multiple-output (MIMO) system with inter-
ference is a well-known and challenging problem. In this paper,
we consider the power control problem of finding the maximum
sum of mutual information for multiuser MIMO systems with
equal power allocation at each link. A new and powerful global
optimization method using a branch-and-bound framework cou-
pled with the reformulation-linearization technique (BB/RLT)
is introduced. The proposed BB/RLT is the first such method
that guarantees finding a global optimum for multiuser MIMO
systems with interference. In addition, we propose a modified
branch-and-bound (BB) variable selection strategy to accelerate
the convergence process, and apply the proposed technique to
several MIMO systems in order to demonstrate its efficacy.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) system has re-
ceived extensive attention since Telatar’s [1] and Foschini’s
[2] pioneering works predicting the potential of high capac-
ity provided by multiple antenna systems. Compared to the
research on the capacity of single-user MIMO, for which the
famous “water-filling” solution has been known for years, the
capacity limit of multiuser MIMO system is much less studied
and many problems are still unsolved [3]. It has been shown
in [4], [5] that the total capacity of a multiuser MIMO system
can be degraded significantly if cochannel interference is not
managed carefully.

In recent years, several interesting algorithms and results on
multiuser MIMO system with mutual interference have been
reported in the literature. It is shown in [4] that the sum of
mutual information of a multiuser MIMO system is neither
convex nor concave function. Thus, it is generally very difficult
to solve the problem numerically, let alone analytically. Most
current research resort to iterative local optimization methods
in solving this problem. In [6], the authors proposed an
“iterative water-filling” technique (IWF) for MIMO multi-
ple access channel (MIMO-MAC) problems because of its
simplicity, and its provable convergence to global optimality
due to the convexity of MIMO-MAC channels. However,
IWF may experience convergence difficulties in MIMO ad
hoc network due to the absence of the convexity propoerty.
Several variants of IWF found in [7] were proposed for
MIMO broadcast (MIMO-BC) channels, but they too cannot
be directly extended to MIMO ad hoc networks. The authors of
[8] introduced a “global gradient projection” (GGP) method,
which is an extension of steepest descent method coupled
with gradient projection. GGP and IWF can be classified as
local optimization techniques, which can quickly find a local

optimal solution, but cannot guarantee the global optimality
for nonconvex optimization problems.

Our paper aims to address this challenging optimization
problem from a global optimization perspective. In particular,
this paper proposes a new and powerful global optimization
method using a Branch-and-Bound framework coupled with
the Reformulation Linearization Technique (BB/RLT). It has
been mathematically shown in [9] that BB/RLT always con-
verges to a global optimal point under very mild assumptions.
The main contributions of this paper include the mathematical
developments of the solution procedure to solve the problem
of finding the maximal sum of mutual information (MSMI)
for multiuser MIMO systems based on BB/RLT technique,
and related convergence speedup techniques. Specifically, we
derive tight upper and lower bounds for each potential parti-
tioning variable used for the problem. Each nonlinear term is
relaxed with a set of linear constraints based on the bounds
we develop to generate a higher dimensional upper-bounding
problem. We also utilize a polyhedral outer approximation
method to accurately approximate the logarithmic function.
During each iteration of the branch-and-bound procedure, we
propose a variable selection policy based not only on the
relaxation error, but also on the relative significance of the
variables in our problem. To the best of our knowledge, the
proposed method is the first such method that guarantees the
finding of a global optimal solution to the MSMI of multiuser
MIMO systems.

The remainder of this paper is organized as follows. Sec-
tion II discusses the network model and problem formu-
lation. Section III introduces the BB/RLT framework and
its key problem-specific components, including factorization,
linearization, and the derivation of upper and lower bounds for
the partitioning variables. Simulation results are presented in
Section IV. A convergence speedup technique for the proposed
BB/RLT algorithm is presented in Section V. Section VI
concludes this paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

We begin by introducing the mathematical notation for
matrices, vectors, and complex scalars in this paper. We use
boldface to denote matrices and vectors. For a matrix A, A†

denotes the conjugate transpose. Tr{A} denotes the trace of
A. We let I denote the identity matrix, whose dimension can
be determined from the context. A º 0 represents that A is
Hermitian and positive semidefinite (PSD). 1 and 0 denote
vectors whose elements are all ones and zeros, respectively.



The dimensions of 1 and 0 can be determined from context
and thus omitted for brevity. The scalar a(m,n) represents the
entry in the mth-row and nth-column of A. For a complex
scalar a, Re (a) and Im (a) represent the real and imaginary
parts of a, respectively, ‖a‖ represents the modulus of a, and
a represents the conjugate of a.

We consider a network consisting of L interfering con-
current MIMO transmission pairs (links), whose indices are
denoted by 1, 2, . . . , L. In this paper, it is assumed that the
transmitters have perfect channel state information (CSI). Let
the matrix Hjl ∈ Cnr×nt represent the wireless channel gain
matrix from the transmitting node of link j to the receiving
node of link l, where nt and nr are the numbers of transmitting
and receiving antenna elements of each node, respectively.
Particularly, Hll represents the channel gain matrix from link
l’s transmitter to its receiver. We consider a constant channel
model in this paper, even though wireless channels in reality
are time-varying. This simplification is yet of much interest
for the insight it provides and its application in finding the
ergodic capacity for block-wise fading channels [3].

Let matrix Ql represents the covariance matrix of a zero-
mean Gaussian input symbol vector xl at link l, i.e., Ql =
E

{
xl · x†l

}
. It is evident that Ql º 0. Assume, also, that

all nodes in the network are subject to the same maximum
transmitting power constraint, i.e., Tr {Ql} ≤ Pmax, where
Pmax is the maximum transmission power. Let Rl represent
the covariance matrix of interference plus noise. Define Il

as the set of links that can cause interference to link l.
The interference-plus-noise is Gaussian distributed and its
covariance matrix can be computed as [8]

Rl =
∑

j∈Il

ρjlHjlQjH
†
jl + I. (1)

Hence, the mutual information of a MIMO link l with co-
channel interference can be computed as [8]

Il = log2 det
(
ρllHllQlH

†
ll + Rl

)
− log2 detRl. (2)

Our goal is to maximize the sum of mutual information
(MSMI) of this L-link MIMO interference system. Summa-
rizing the previous discussion, this optimization problem can
be mathematically formulated as follows:

max
∑L

l=1 Il

s.t. Il = log2 det
(
ρllHllQlH

†
ll + Rl

)
− log2 detRl

Rl =
∑

j∈Il
ρjlHjlQjH

†
jl + I

Tr{Ql} ≤ Pmax,Ql º 0, 1 ≤ l ≤ L.

In this paper, we consider a network where each antenna
element in a transmitting node employs equal power allo-
cation. It is necessary to point out that, by saying “equal
power allocation”, we mean the total power at the same
source node is equally allocated to its antenna elements, while
different source nodes have different total transmitting power.
The reason behind this approach is that an optimal power
allocation, wherein different antenna elements at the same
source node have different transmitting power level, puts a

high demand of linearity in transmit power amplifiers, which
is extremely costly from a practical standpoint [10]. Thus, due
to the considerations of hardware and realistic implementation,
an equal power allocation scheme is more attractive. Under
the equal power allocation approach, the MSMI problem is
translated into an optimal power control problem. That is,
we are interested in finding an L-dimension power vector
p = (p1, p2, . . . , pL)t, where 0 < pl ≤ Pmax, l = 1, 2, . . . , L,
such that this power vector p maximizes the sum of mutual
information of the links in the network.

Mathematically, with equal power allocation to each trans-
mitter at the same node, the input covariance matrix Ql

becomes an nt-dimension scaled identity matrix, i.e., Ql =
pl

nt
I. Hence, the MSMI problem formulation can be further

re-written as follows:

max
∑L

l=1 Il

s.t. Il = log2 det
(

ρllpl

nr

(
HllH

†
ll

)
+ Rl

)
− log2 detRl

Rl = I +
∑

j∈Il

ρjlpj

nr

(
HjlH

†
jl

)

(3)
where 0 < pl ≤ Pmax, 1 ≤ l ≤ L.

III. SOLUTION PROCEDURE

A. Overview of BB/RLT Method

It has been shown in [8] that the objective function of
MSMI is neither convex nor concave. For such a non-
convex optimization problem, conventional nonlinear pro-
gramming methods can at best yield local optimal so-
lutions. In this paper, we develop a solution procedure
based on the branch-and-bound framework coupled with the
Reformulation-Linearization Technique (BB/RLT) [9], [11],
[12]. The basic idea of BB/RLT is that, by using the RLT
technique, we can construct a linear programming (LP) relax-
ation for the original nonlinear programming (NLP) problem,
which can be used to efficiently compute a global upper bound,
UB, for the original NLP problem. This relaxation solution
is either a feasible solution to the original NLP problem or, if
not feasible, can be used as a starting point for a local search
algorithm to find a feasible solution to the original NLP prob-
lem. This feasible solution will then serve to provide a global
lower bound, LB, and an incumbent solution to the original
NLP problem. The branch-and-bound process will proceed by
tightening UB and LB, and terminates when LB ≥ (1−ε)UB
is satisfied, where ε is the desired approximation error. It
has been mathematically proven that BB/RLT converges to
a global optimal solution under very mild assumptions [9],
[11], [12]. The general framework of BB/RLT is shown in
Algorithm 1.

Next, we will develop some important problem-specific
components in the general RLT-BB framework to make it work
for MSMI.

B. Factorization and Linearization

Observe that in the MSMI problem formulation, the link
mutual information expressions in (3) are nonlinear. To lin-
earize these nonlinear constraints, we can introduce four new



Algorithm 1 BB/RLT Solution Procedure
Initialization:

1. Let optimal solution ψ∗ = ∅. The initial lower bound LB = −∞.
2. Determine partitioning variables (variables associated with nonlinear

terms) and derive their initial bounding intervals
3. Let the initial problem list contain only the original problem, denoted

by P1.
4. Introduce one new variable for each nonlinear term. Add linear

constraints for these variables to build a linear relaxation. Denote the
solution to linear relaxation as ψ̂1 and its objective value as the upper
bound UB1.

Main Loop:
1. Select problem Pz that has the largest upper bound among all

problems in the problem list.
2. Find, if necessary, a feasible solution ψz via a local search algorithm

applied to Problem Pz . Denote the objective value of ψz by LBz .
3. If LBz > LB then let ψ∗ = ψz and LB = LBz . If LB ≥

(1− ε)UB then stop with the ε-optimal solution ψ∗; else, remove all
problems P

z
′ having (1− ε)UB

z
′ ≤ LB from the list of problems.

4. Compute relaxation error for each nonlinear term.
5. Select a partitioning variable having the maximum relaxation error

and divide its bounding interval into two new intervals by partitioning
at its value in ψ̂z .

6. Remove the selected problem Pz from the problem list, construct two
new problems Pz1 and Pz2 based on the two partitioned intervals.

7. Compute two new upper bounds UBz1 and UBz2 by solving the
linear relaxations of Pz1 and Pz2, respectively.

8. If LB < (1− ε)UBz1 then add problem Pz1 to the problem list.
If LB < (1− ε)UBz2 then add problem Pz2 to the problem list.

9. If the problem list is empty, stop with the ε-optimal solution ψ∗.
Otherwise, repeat the Main Loop.

variables Xl, Yl, Vl, and Wl as follows.
{

Xl = det
(

ρllpl

nr

(
HllH

†
ll

)
+ Rl

)
, detDl,

Vl = detRl, Yl = ln Xl, Wl = ln Vl.
(4)

The link mutual information constraint in (3) can then be trans-
lated into Il = 1

ln 2 (Yl −Wl) , which is a linear constraint.
Also, four groups of new constraints in (4) are added to the
problem formulation.

C. Linear Relaxation to Nonlinear Logarithmic Functions
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Fig. 1. Polyhedral outer approximation y = ln x.

Next, we propose using a polyhedral outer approximation
for the curve of logarithmic function. As shown in Fig. 1,
the function y = ln x, over an interval defined by suitable

upper and lower bounds on x, can be upper-bounded by
three tangential segments I, II, and III, which are constructed
at (xL, ln xL), (xβ , ln xβ), and (xU , ln xU ), where xβ is
computed as follows:

xβ =
xLxU (lnxU − ln xL)

xU − xL
. (5)

Here xβ is the x-value for the point at the intersection of the
extended tangent segments I and III. Segment IV is the chord
which joins (xL, ln xL) and (xU , ln xU ). The convex region
defined by the four segments can be described by the following
four linear constraints:

xL · y − x ≤ xL(lnxL − 1),
xβ · y − x ≤ xβ(lnxβ − 1),
xU · y − x ≤ xU (lnxU − 1),

(xU − xL)y + (lnxL − ln xU )x ≥ xU · ln xL − xL · ln xU .

We point out that this polyhedral approximation is a very
accurate approximation of ln x. For illustrative purpose, the
xL-value in Fig. 1 is chosen deliberately to be very close to
zero to create a significant nonlinearity. Otherwise, segments
I, II, III, and IV almost superimpose one another, making the
figure hard to discern.

D. Linearizing the Determinants

Substituting the expression for Rl into that for Dl, and
observing the similarity between the expressions for Dl and
Rl, we can write Dl and Rl in a more consistent form by
introducing a notion called the “super interference set” of link
l, denoted by Îl, where Îl = Il ∪ {l}, as follows:

Dl =
∑

j∈Îl

ρjl

nr

(
HjlH

†
jl

)
pj + I, (6)

Rl =
∑

j∈Il

ρjl

nr

(
HjlH

†
jl

)
pj + I. (7)

It is evident from (6) and (7) that the determinants of Dl

and Rl are in essence nr-order polynomials of the variables
p1, p2, . . . , pL. To illustrate how to linearize determinants, let
us consider a multiuser MIMO system where every link has
two receiving antennas. This means that Dl and Rl are 2× 2
square matrices, and their determinants can be computed as
in (8) and (9). In (8) and (9), it can be seen that the product
terms pjpk are the only nonlinear terms, which need to be
linearized. To show how the process of linearization works,
let us consider a general second-order polynomial term pjpk,
for which we have the following bounding constraints:

pj − (pj)L ≥ 0, (pj)U − pj ≥ 0,
pk − (pk)L ≥ 0, (pk)U − pk ≥ 0,

(10)

where (pj)L and (pk)L denote the lower bounds of pj and pk,
respectively, and (pj)U and (pk)U denote the upper bounds
of pj and pk, respectively. From (10), adopting RLT [9],
we can derive the following four so-called bounding-factor



Xl = 1 +
∑

j∈Îl

ρjl

nr

[(
HjlH

†
jl

)
(1,1)

+
(
HjlH

†
jl

)
(2,2)

]
pj +

∑

j∈Îl

∑

k∈Îl

ρjlρkl

n2
r

[(
HjlH

†
jl

)
(1,1)

(
HjlH

†
jl

)
(2,2)

−Re

((
HjlH

†
jl

)
(2,1)

)
Re

((
HklH

†
kl

)
(2,1)

)
− Im

((
HjlH

†
jl

)
(2,1)

)
Im

((
HklH

†
kl

)
(2,1)

)]
pjpk. (8)

Vl = 1 +
∑

j∈Il

ρjl

nr

[(
HjlH

†
jl

)
(1,1)

+
(
HjlH

†
jl

)
(2,2)

]
pj +

∑

j∈Il

∑

k∈Il

ρjlρkl

n2
r

[(
HjlH

†
jl

)
(1,1)

(
HjlH

†
jl

)
(2,2)

−Re

((
HjlH

†
jl

)
(2,1)

)
Re

((
HklH

†
kl

)
(2,1)

)
− Im

((
HjlH

†
jl

)
(2,1)

)
Im

((
HklH

†
kl

)
(2,1)

)]
pjpk. (9)

constraints:

pjpk − (pk)Lpj − (pj)Lpk ≥ −(pj)L(pk)L,

pjpk − (pk)Upj − (pj)Lpk ≤ −(pj)L(pk)U ,

pjpk − (pk)Lpj − (pj)Upk ≤ −(pj)U (pk)L,

pjpk − (pk)Upj − (pj)Upk ≥ −(pj)U (pk)U .

In particular, if j = k, pjpk is given by a general square term
p2

j . Using the following bounding constraints:

pj − (pj)L ≥ 0 and (pj)U − pj ≥ 0, (11)

we can derive the following three bounding-factor constraints:

p2
j − 2(pj)Lpj ≥ −(pj)2L, p2

j − 2(pj)Upj ≥ −(pj)2U ,

p2
j − ((pj)L + (pj)U )pj ≤ −(pj)U (pj)L.

We now introduce new variables Pjk to replace the product
terms pjpk, and Pjj to replace the square term p2

j , respectively.
By doing so, (8) and (9) become linear constraints. The
equality relation between pjpk, pj and pk will be replaced
by the above bounding-factor constraint relaxations. All these
newly introduced bounding-factor constraints will be appended
to the original problem, thus achieving a linear programming
relaxation for the constraints in the original nonlinear problem.

E. RLT-Based Relaxation for MSMI (R-MSMI)

For convenience, we define the right hand sides of (8) and
(9) as ΦXl

(p) and ΦVl
(p), respectively. From the discussions

in the previous sections, we have the final R-MSMI formula-
tion for a multiuser MIMO system with two transmitting and
two receiving antennas (2× 2) at each link as follows:
R-MSMI

max
∑L

l=1 Il

s.t. Il − 1
ln 2 (Yl −Wl) = 0, ∀l. (1)

Three tangential supports for (Yl, Xl), ∀l. (2)
Three tangential supports for (Wl, Vl), ∀l. (3)
Xl − ΦXl

(p) = 1, ∀l. (4)
Vl − ΦVl

(p) = 1, ∀l. (5)
Bounding constraints for Pjk and Pjj . (6)

F. Partitioning Variables and Their Upper and Lower Bounds

The partitioning variables in the branch-and-bound (BB)
process are those that are involved in nonlinear terms, for
which we have therefore defined new variables, and whose
bounding intervals will need to be partitioned during the RLT-
based branch-and-bound algorithm [9], [11], [12] . In R-
MSMI, these partitioning variables include Xl, Vl, and pl,
l = 1, 2, . . . , L. For these partitioning variables, we need to
derive tight upper and lower bounds. From the definition of
MSMI, the upper and lower bounds for pl are (pl)L = 0,
(pl)U = Pmax, for l = 1, . . . , L. It is evident from these
expressions that the upper bounds for Xl and Vl can, respec-
tively, be computed as ΦXl

(Pmax × 1) and ΦVl
(Pmax × 1),

where 1,0 ∈ RL. It means that all power variables in (8)
and (9) take the value Pmax. On the other hand, noting that
the matrix HjlH

†
jl is PSD and Hermitian, its determinant is

greater than or equal to zero. Hence, from (8) and (9), we
have lower bounds for Xl and Vl as follows: (Xl)L = 1, and
(Vl)L = 1.

IV. NUMERICAL RESULTS

We first describe our simulation settings. A MIMO ad hoc
network with L links (transmission pairs) is generated within a
square region, whose edge-lengths can be varied. The smaller
the area, the more severe interference these links would cause
to each other. The L links are uniformly distributed within
the square region. Each node in the network is equipped with
two transmitting antennas and two receiving antennas. The
maximum transmit power for each node is set to Pmax =
10dBm. The network operates in 2.4G ISM band. The channel
bandwidth is W = 30MHz. The path-loss index is chosen to
be α = 2.

A. Convergence Properties

We use a 5-link network example to demonstrate the
convergence properties of BB/RLT. The desired error bound
is chosen to be ε = 0.01. The network’s SNR- and INR-
values are shown in Table I. The convergence process is
depicted in Fig. 2, where the UB and LB in terms of the
sum of mutual information (b/s/Hz) are illustrated at each
iteration. It can be seen that, after 17500 iterations, the
UB and LB values are both driven to 26.51 b/s/Hz, which
means that BB/RLT found a global optimum for the sum of



mutual information to be 26.51 b/s/Hz. In this example, the
optimal power vector is p =

[
p0 p1 p2 p3 p4

]t =[
8.904 0.071 2.83 1.096 2.83

]t (in mW). It can also
be seen from Fig. 2 that the rate of decrease in UB plays the
major role in determining how fast the overall BB/RLT process
converges. Moreover, the rate of decline of UB becomes
slower as it approaches the global optimal solution value. We
will specifically address this convergence speed issue in the
next section.
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Fig. 2. A 5-link network example.

TABLE I
SNR- AND INR-VALUES FOR A 5-LINK NETWORK

SNR INR (in dB)
(in dB) L0 Rx L1 Rx L2 Rx L3 Rx L4 Rx

L0 20.98 L0 Tx – 13.57 3.79 9.13 2.23
L1 27.04 L1 Tx 18.90 – 6.33 12.38 4.35
L2 20.67 L2 Tx 4.31 6.61 – 7.53 13.39
L3 21.03 L3 Tx 7.39 9.48 9.29 – 4.26
L4 22.57 L4 Tx 4.10 6.19 11.61 5.58 –

V. CONVERGENCE SPEEDUP TECHNIQUES

From the previous section, we can see from Fig. 2 that,
although BB/RLT converges quite fast for small-size networks,
the decreasing of UB, which plays the major role in affecting
the overall convergence speed, exhibits a gradual asymptotic
decay as it approaches the global optimal solution. This is
because BB is a global optimization technique that is of
exponential complexity in general. The performance and con-
vergence speed is always a tradeoff when it comes to choosing
global or local optimization techniques [13]. Nonetheless, we
can adopt some problem specific strategies that dramatically
improve the convergence speed of BB/RLT. Recall that in
MSMI, there are three groups of BB variables: Xl, Vl, and
pl. In the original BB/RLT proposed in [9], [11], [12], certain
generic discrepancy-based rules are prescribed for selecting
the partitioning variables for branching at each stage, which
can significantly affect computational time. Upon carefully
analyzing Xl, Vl, and pl for our specific problem, we find

that they play very different roles. The relationships among
these variables can be visualized in Fig. 3, where the numbers
on the link correspond to the constraint number in R-MSMI.
For example, an arrow with “(1), (2)” from Xl to Il means
that variables Xl have a direct impact on Il through constraint
(1) and (2) in R-MSMI. From our discussions in the previous
section, we know that fast decline of UB plays a major role
in accelerating the whole convergence process. Based on this,
we conclude that, in order to have a faster convergence speed,
Xl and Vl should be of higher priority in partitioning because
changing Xl and Vl have a more direct impact on UB. Hence,
we adopt the partitioning variable selection strategy described
in Algorithm 2.

lX

lI

lV

lp

(4)

(5)

(1),(2)

(1),(3)

UB LB

Fig. 3. Relationships among branch-and-bound variables in MSMI

Algorithm 2 Modified BB Variable Selection Strategy
1. Among all Xl and Vl, choose the one, say Z∗l , having the largest

relaxation error.
2. If (ln(Z∗l )U − ln(Z∗l )L is small enough) then

a) Among all pl, choose one, say p∗l , with the largest relaxation error,
denoted as Ep

b) If Ep is small enough, then skip this subproblem; else return p∗l ;
else return Z∗l .

We always select a partitioning variable among the Xl-
and Vl-variables first, choosing one that has the largest re-
laxation error and denoting this variable as Z∗l . If we find
that ln(Z∗l )U − ln(Z∗l )L is already small enough, we must
have that the change in ln Z∗l by partitioning on Z∗l would
be even smaller than ln(Z∗l )U − ln(Z∗l )L because ln{·} is
a monotone function. In addition, since we know that UB is
only dependent on the summation of the logarithms of the Xl-
and Yl-variables, we must have that further partitioning on Z∗l
will no longer have much reduction on UB. Therefore, even
though the bounding interval of Z∗l in this subproblem may
still be large, we can stop partitioning on Z∗l . This saves us a
huge amount of computation. Next, we can instead switch to
partitioning on pl for this particular subproblem. Partitioning
on pl only indirectly affects UB by tightening the resulting
relaxation, but it can help increase LB, which is also beneficial
to the convergence process. If, at certain point of the branch-
and-bound process, we find that the relaxation error for pl is
small enough, this subproblem needs no further partitioning.

To shed light on the huge effect of using the modified par-
titioning variable selection strategy, we consider the following
10-link network example, whose SNR- and INR-values are
shown in Table II. The convergence process is depicted in
Fig. 4. The global optimal value for this 10-link network is



TABLE II
SNR- AND INR-VALUES FOR A 10-LINK NETWORK

SNR INR (in dB)
(in dB) L0 Rx L1 Rx L2 Rx L3 Rx L4 Rx L5 Rx L6 Rx L7 Rx L8 Rx L9 Rx

L0 23.19 L0 Tx – -0.12 2.29 -2.34 8.01 -1.47 4.73 2.59 -0.28 -3.37
L1 23.99 L1 Tx 0.43 – 8.67 7.54 2.12 0.79 7.98 4.76 -1.53 1.85
L2 20.44 L2 Tx 2.75 8.69 – 2.79 3.58 -0.52 12.74 4.19 -1.77 -0.62
L3 22.41 L3 Tx -2.20 7.61 1.44 – -0.22 2.86 2.09 3.32 -1.21 8.34
L4 21.63 L4 Tx 9.11 1.21 1.76 -0.63 – 2.15 5.74 7.88 4.04 -1.08
L5 23.82 L5 Tx -0.90 1.83 -0.89 3.00 2.18 – 1.31 6.76 5.46 6.86
L6 26.59 L6 Tx 4.99 7.51 9.15 2.81 7.64 1.39 – 8.47 0.27 0.28
L7 23.58 L7 Tx 3.35 4.02 2.27 2.60 9.00 6.76 6.47 – 5.08 2.43
L8 25.23 L8 Tx 0.79 -1.25 -2.18 -1.51 3.90 5.88 0.22 4.44 – -0.07
L9 25.56 L9 Tx -3.33 1.97 -1.64 6.03 -1.24 5.56 -0.53 2.09 -0.09 –

77.11 b/s/Hz. It takes approximately 1.5 × 106 iterations to
converge to the global optimal point after using the modified
partitioning variable selection strategy. Although the number
of iterations for this 10-link example is seemingly quite large,
the BB/RLT procedure manages to take reasonable amount
of time to converge, thanks to the availability of fast and
robust LP solvers. On the other hand, if we solve the same
10-link example using BB/RLT without using Algorithm 2,
the computation time takes so long that the problem basically
becomes unsolvable. We roughly estimated that our proposed
speedup technique can accelerate the convergence by over
1000 times for this particular example.
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Fig. 4. A 10-link network example.

VI. CONCLUSIONS

In this paper, we considered the power control problem of
finding the maximum sum of mutual information for multiuser
MIMO systems with equal power allocation for each link.
A new and powerful global optimization method using a
branch-and-bound framework coupled with the reformulation-
linearization technique (BB/RLT) was introduced. Numerical
results and detailed discussions on convergence properties
using several MIMO systems were provided. This BB/RLT

guarantees finding a global optimal solution for multiuser
MIMO ad hoc networks. We also proposed a modified branch-
and-bound variable selection strategy to accelerate the conver-
gence process, an demonstrated its efficacy.
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