
MATE: A Memory-Augmented Time-Expansion Approach for
Optimal Trip-Vehicle Matching and Routing in Ride-Sharing

Ye Tian

Dept. of Computer Science

Iowa State University

Ames, Iowa, USA

Jia Liu
∗

Dept. of Computer Science

Iowa State University

Ames, Iowa, USA

Cathy Xia
†

Dept. of Integrated Systems

Engineering

The Ohio State University

Columbus, Ohio, USA

ABSTRACT
Spurred by increasing fuel shortage and environmental concerns,

ride-sharing systems have attracted a great amount of attention

in recent years. Lying at the heart of most ride-sharing systems is

the problem of joint trip-vehicle matching and routing optimiza-

tion, which is highly challenging and results in this area remain

rather limited. This motivates us to fill this gap in this paper. Our

contributions in this work are three-fold: i) We propose a new

analytical framework that jointly considers trip-vehicle matching

and optimal routing; ii) We propose a linearization reformulation

that transforms the problem into a mixed-integer linear program,

for which moderate-sized instances can be solved by global op-

timization methods; and iii) We develop a memory-augmented

time-expansion (MATE) approach for solving large-sized problem

instances, which leverages the special problem structure to facil-

itate approximate (or even exact) algorithm designs. Collectively,

our results advance the state-of-the-art of intelligent ride-sharing

and contribute to the field of sharing economy.

CCS CONCEPTS
• Applied computing→ Transportation; • Theory of compu-
tation → Mathematical optimization; Approximation algo-
rithms analysis; • Hardware → Fuel-based energy.

KEYWORDS
Ride-Sharing, optimization, approximation algorithm

ACM Reference Format:
Ye Tian, Jia Liu, and Cathy Xia. 2020. MATE: A Memory-Augmented Time-

Expansion Approach for Optimal Trip-Vehicle Matching and Routing in

Ride-Sharing. In The Eleventh ACM International Conference on Future Energy
Systems (e-Energy’20), June 22–26, 2020, Virtual Event, Australia. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3396851.3397726

∗
J. Liu’s work is supported in part by NSF grants CAREER CNS-1943226, ECCS-1818791,

CCF-1758736, CNS-1758757, and a Google Faculty Research Award.

†
C. Xia’s work is supported in part by NSF grant SES-1409214 and a Ford OSU Alliance

Research Award.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

e-Energy’20, June 22–26, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8009-6/20/06. . . $15.00

https://doi.org/10.1145/3396851.3397726

1 INTRODUCTION
In recent years, spurred by increasing fuel shortage and environ-

mental concerns on heavy fossil fuels uses, ride-sharing systems

have attracted great attention [38]. Ride-sharing enables multiple

passengers with similar itineraries and time schedules to share a

vehicle to alleviate multiple societal problems, e.g., traffic conges-

tion, environmental pollution, etc.
1
For instance, studies in [2, 27]

show that, with ride-sharing, 3,000 vehicles of capacity four are

sufficient to serve 98% of the Manhattan ride requests (currently

served by over 13,000 taxis) with marginal increment in the trip

delay. The total trip distance (a surrogate metric for commute time

and gas consumption) could also be reduced by more than 30%.

This leads to a win-win solution between customers and service

providers: Passengers enjoy reduced payments at the expense of

tolerating extra delay, while drivers earn higher income by complet-

ing multiple transactions in a single outing. Moreover, ride-sharing

achieves benefits similar to public transportation, while offering

flexible routes and infinitesimal granularity in service coverage.

However, designing efficient ride-sharing system is non-trivial

because poor ride-sharing decisions could lead to either low vehicle

occupancy or excessive delays. To boost vehicle occupancy and

reduce delay in ride-sharing, two of the most fundamental design el-

ements are trip-vehicle matching and vehicle routing, i.e., (i) How to

appropriately group riders and assign them to vehicles; and (ii) Find-

ing a fuel-efficient path for the driver to deliver the assigned riders.

Unfortunately, as will be shown later, the joint trip-vehicle match-

ing and vehicle routing optimization is a mixed-integer nonlinear

program (MINLP), which is not only NP-Hard [39] but also not

amenable for existing approximation algorithm techniques. To date,

existing algorithmic results on optimal trip-vehicle matching and

vehicle routing with optimality guarantee remains rather limited

(see Section 2 for in-depth discussions). In light of the increasing

relevance of ride-sharing, there is a compelling need to fill this

gap and rigorously investigate the design of optimal trip-vehicle

matching and vehicle routing for ride-sharing systems.

In this paper, we address the above challenges by proposing a

series of new global and approximation optimizationmethodologies.

Our main contributions are summarized as follows:

• We propose a new analytical framework that captures the most

essential features of trip-vehicle matching and vehicle routing

to enable rigorous optimization algorithm for ride-sharing. Our

proposed analytical framework includes (i) a product-formmodel

1
For example, the annual congestion cost in Manhattan is over $20 billion [34] (includ-

ing 500 million gallons of fuel consumed by 24 million hours of traffic idling).

https://doi.org/10.1145/3396851.3397726
https://doi.org/10.1145/3396851.3397726

e-Energy’20, June 22–26, 2020, Virtual Event, Australia Ye Tian, Jia Liu, and Cathy Xia

that simultaneously characterizes riders’ time window feasibility

and trip-vehicle matching, (ii) a flow-balance model that allows

dynamic vehicle routing optimization, and (iii) versatile utility

model that incorporates both drivers’ earning and fuel consump-

tion. We then show that, under this analytical framework, trip-

vehicle matching and vehicle routing can be unified and jointly

formulated as an MINLP problem.

• To overcome the fundamental hardness in solving the formu-

lated MINLP problem, we take a two-pronged approach. First,

through a clever logically-equivalent reformulation, we trans-

form the original MINLP problem into a mixed-integer linear

program (MILP). Thanks to this reformulation, moderate-sized

ride-sharing problems become well solvable by existing opti-

mization solvers (e.g., Gurobi[13], CPLEX [1], Mosek [3] etc.).

This global optimization approach also serves as a baseline for

performance evaluation in our subsequent algorithmic design.

• Note, however, that the complexity of solving MILP remains NP-

Hard and does not scale well for large-sized problem instances.

To address this challenge, we propose a customized memory-
augmented time-expansion (MATE) approach, which exploits the

special graphical structure of the joint trip-vehicle matching and

vehicle routing problem in both space and time domains. Un-

der the proposed MATE approach, single-vehicle ride-sharing

problems can be solved exactly thanks to an inherent total uni-

modularity (TU) property [5]. For multi-vehicle ride-sharing

problems, our MATE approach enables the use of state-of-the-art

approximation techniques for multi-commodity network flows to

solve ride-sharing problems with strong performance guarantee.

Collectively, our results advance intelligent ride-sharing and con-

tribute to the future prospects of sharing economy. The rest of this

paper is organized as follows. In Sec. 2, we review related work and

put this paper into comparative perspectives. In Sec. 3, we present

the network model and the MINLP problem formulation. In Sec. 4,

we introduce our global optimization approach, the MILP reformu-

lation. Sec. 5 is focused on presenting the graphical construction

in our MATE approach, which is followed by algorithm designs

for single- and multi-vehicle settings in Sec. 6. Sec. 7 illustrates

numerical results and Sec. 8 concludes this paper.

2 RELATEDWORK
Historically, the idea of ride-sharing traces its root to the Oper-

ations Research (OR) literature dating back to 1940s during the

World War II, but rapidly takes off in recent years thanks to the

proliferation of smart mobile devices. In the Operations Research

(OR) literature, the canonical ride-sharing problem formulation is

referred to as the PDPTW problem (pickup and delivery problem

with time windows) [41], which considers time, routing and capac-

ity constraints [4, 7–9, 11, 14, 16–18, 22, 24–26, 32, 33, 35, 36, 41].

Broadly speaking, solution methods for PDPTW problems can be

categorized as heuristic [4, 7–9, 16–18, 24–26, 32, 33, 35, 36, 41] and

exact [8, 9, 11, 14, 22, 32, 33] approaches. Common methods in the

heuristic category include, e.g., genetic algorithms [15], adaptive

local neighborhood search [28], Lagrangian decomposition [28],

etc., which do not provide any optimality guarantee in general.

In comparison, the basic idea of exact approaches is to lever-

age global optimization techniques (e.g., branch-and-cut, column

generation, etc.), which guarantee solving PDPTW problems to

optimality. However, due to the NP-Hardness of PDPTW problems,

these exact approaches often do not scale well and can only handle

moderate-sized problems. In the exact approach category, the most

related work to ours is [37], where Ropke et al. proposed a similar

linearization techniques to transform the PDPTW problems into

an MILP formulation, which is then solved by the branch-and-cut

method. However, the model in [37] is only limited to the single-

vehicle setting, while our work also considers the multi-vehicle

setting. As a result, the problem dimensionality in our work is sig-

nificantly higher and necessitates efficient approximation solutions.

Surprisingly, for the single-vehicle setting, our MATE approach

even provides a polynomial-time exact solution by exploiting the

special structure of the capacity-constrained PDPTW problem.

By contrast, in the computing literature where computational

complexity and efficiency are of utmost concern, various efficient

approximation algorithms with performance guarantee have been

proposed for ride-sharing problems. However, most of these ex-

isting work considered alternative formulations that are quite dif-

ferent from PDPTW. For example, in [20], Lin et al. proposed a

pseudo-polynomial-time dynamic programming approach to solve

a two-stage route planning problem to maximize the expected total

revenue in a single-driver setting. In their follow-up work [21],

another route planning problem was formulated to maximize the

expected number of riders picked up by multiple vehicles, which

was solved by a (1 − 1/e) approximation algorithm based on dual

sub-gradient decent. The most related work to ours in the area of

approximation algorithm design is [6], where Bei and Zhang de-

veloped a 2.5-approximation algorithm based on minimum weight

matching to jointly determine ride matching and routing for dri-

vers’ cost minimization. However, riders’ time window feasibility, a

key feature in PDPTW, were not considered in [6]. In contrast, our

work directly tackles the canonical PDPTW model, where all three

key elements, i.e., time window, capacity and routing constraints

are jointly considered. To our knowledge, the proposed MATE ap-

proach is the first polynomial-time method that guarantees an exact
solution in the capacity-constrained single-vehicle setting and an

approximation ratio for the multi-vehicle setting.

3 NETWORK MODEL AND RIDE-SHARING
PROBLEM FORMULATION

In this section, we present the network model and the problem for-

mulation. Specifically, we first illustrate in Section 3.1 the process

of constructing a virtual graph for a given physical road network,

which simplifies the subsequent problem formulation. In Section 3.2,

we present each key component of our ride-sharing problem, in-

cluding time window feasibility, capacity and routing constraints.

3.1 A Virtual Graph Modeling Approach
In this paper, we introduce a virtual graph modeling approach

for physical networks to facilitate efficient ride-sharing problem

formulation. Consider a physical road network represented by an

undirected graph G0 ≜ (N0,L0), where N0 represents the sets

of geographic locations, L0 represents roads between nodes in

N0. We assume G0 is connected. Let R and V denote the sets of

all rider groups and drivers with size |R | and |V|, respectively.

MATE: A Memory-Augmented Time-Expansion Approach for Ride-Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

l5

d(r2)

s(r1)

d(r3)

d(k1)

s(r3)

s(r2)

d(r1)

s(k1)

l6

l2

n0

n2

n3

n8n4

n7

n5
l4

n1
6

n1
1 n2

1

n2
6

l6

l2

l5

n0

n2

d(r2)

n3

n4

n7

l3

l0

n6

n8

d(k1)

(b)(a)

n5

(c)

n1

l4

l1

s(r3)

s(k1)

d(r1), d(r3)

s(r1), s(r2)

l7
l6

s(k1)
l0

s(r1) s(r2)

s(r3)

l1

d(r2) d(r1)

d(r3)

d(k1)

Figure 1: (a) Original graph for the physical road network,
(b) Intermediate graph in Step 1, (c) Virtual graph in Step 2.

We assume that every rider group r ∈ R only has one pickup

location and one drop-off location. Let s(·) andd(·) be the source and
destination nodes of a rider group or a vehicle driver, respectively.

As an example, Fig. 1a shows a physical road network G0, where

the directed dashed line represent the route for rider groups r1. For
each edge li , j , i, j ∈ N0, we associate two parameters ti , j and δi , j
to represent the travel time and distance between nodes i and j,
respectively. For modeling convenience, ti , j includes service time

overhead (e.g., time for getting on/off a vehicle) when the vehicle

reaches node j . Our virtual graph construction is a two-step process

(which, to our knowledge, is new in the literature):

Step 1): Our first step is to resolve a modeling ambiguity over a

given physical graph G0. For example, as shown in Fig. 1a, if two

rider groups r1 and r2 all start from node n1 and two rider groups r1
and r3 share the same destination noden6, then it is unclear whether
a planning path starting from n1 corresponds to rider group r1 or
r2, and whether a planning path ending at node n6 corresponds to
rider group r1 or r3. This can be resolved as follows: If there are

h rider groups and vehicles sharing the same geographic location,

then we construct h virtual nodes with zero distance between each

pair of them. As an example, in Fig. 1b, we create two virtual nodes

n1
1
(s(r1)) and n2

1
(s(r2)) to replace the physical node n1, and two

virtual nodes n1
6
(d(r1)) and n

2

6
(d(r3)) to replace the physical node

n6. The distances between all co-located virtual nodes are zero.

Step 2): We use N to denote the set of all virtual nodes that

correspond to sources and destinations of all rider groups and all

vehicles. That is, intermediate physical nodes that are neither source

nor destination nodes of any rider group or vehicle are removed.

We then construct a set of directed edges L as follows: For any

rider group ri ∈ R, we add a directed edge from virtual node s(ri)
to virtual node d(ri). The directed edge s(ri) → d(ri) is associated
with parameters ts(ri),d (ri) and ds(ri),d (ri), which correspond to the

travel time and distance of a shortest path between s(ri) and d(ri)
in the physical network. The direction of this edge means that it

cannot travel from d(ri) to s(ri). Next, for all i, j ∈ R with i , j , we
add a pair of directed edges s(ri) → d(r j) and d(r j) → s(ri). Both
of these directed edges are associated with parameters ts(ri),d (r j)
and ds(ri),d (r j), which represent the travel time and distance of a

shortest path between s(ri) and d(r j) in the physical network
2
. For

each vehicle driver vk ∈ V , we add directed edges s(vk) → d(vk),
s(vk) → s(ri) and d(ri) → d(vk), ∀ri ∈ R. For the physical road

network in Fig. 1a, the final virtual graph is illustrated in Fig. 1c.

2
For simplicity, in this paper, we assume that the road networks are symmetric so

that ti , j = tj ,i , di , j = dj ,i . Our algorithms and results can also be straightforwardly

extended to asymmetric cases at the expense of slightly more complex notation.

3.2 Ride-sharing Problem Formulation
With the above virtual graph model, we are in a position to formally

define our ride-sharing problem.

1) Vehicle Routing Constraints: In this paper, a path taken

by a vehicle k consists of a sequence of edges in the virtual graph.

For example, the path of vehicle k passing through r1’s source and
destination and reaching its own destination can be represented as:

s(k)
link (s(k),s(r1))
−−−−−−−−−−−−−→s(r1)

link (s(r1),d (r1))
−−−−−−−−−−−−−→d(r1)

link (d (r1),d (k))
−−−−−−−−−−−−−→d(k).

To model the path selection, we let a binary variable xki , j = 1 if

vehicle k’s path contains edge li , j and x
k
i , j = 0 otherwise. To avoid

triviality, we let xki ,i ≡ 0,∀i ∈ N,∀k ∈ V . Since vehicle k can only

head for one node at its source and arrive from one node at its

destination, we have:∑
j ∈N\{s(k)}

xks(k), j = 1,
∑

i ∈N\{d (k)}

xki ,d (k) = 1,∀k ∈ V . (1)

In this paper, we consider Uber-like systems where riders do not

change vehicle and transfer. As a result, every rider group r can
only be matched to at most one vehicle if he/she is picked up. This

can be modeled as: ∑
j ∈N\{i }

xki , j ≤ 1,∀i ∈ N . (2)

Also, both the pickup and drop-off of a rider group r should be

performed by the same vehicle k , which can be modeled as:∑
j ∈N, j,s(r)

xks(r), j =
∑

j ∈N, j,d (r)

xkj ,d (r),∀r ∈ R,∀k ∈ V . (3)

We assume that once vehicle vk ∈ V departs from its source s(vk),
it will continue to provide service until arriving at its destination

d(vk). In other words, any vehicle arriving at an intermediate node

must also leave this node. Therefore, the following flow-balance-

type constraint holds for each vehicle:∑
i ∈N\{u }

xki ,u =
∑

j ∈N\{u }

xku , j ,∀u ∈ N \ {s(k),d(k)},∀k ∈ V . (4)

2) TimeWindow Feasibility Constraints:We use µn and λn ,
∀n ∈ N , to define the earliest arrival time and latest departure time

of a virtual node n. Then, we can compute a rider group ri ’s depar-
ture and arrival timewindows as:

[
µs(ri), λd (ri)−ts(ri),d (ri)

]
,
[
µs(ri)+

ts(ri),d (ri), λd (ri)
]
. By the same token, a vehicle vk ’s departure

and arrival time windows can be computed as

[
µs(vk), λd (vk) −

ts(vk),d (vk)
]
,
[
µs(vk) + ts(vk),d (vk), λd (vk)

]
. We let τki represent ve-

hicle k’s departure time at virtual node i . For any two consecutive

nodes i and j in the path taken by vehicle k , the departure time at

node j can be computed as τkj = τki + ti , j . We can further model

these two facts jointly as a single constraint:

xki , j

(
τki + ti , j − τkj

)
= 0,∀i, j ∈ N, i , j . (5)

If vehicle k picks up rider group r , then the following holds:

µs(r) ≤ τks(r) ≤ τkd (r) ≤ λd (r),∀r ∈ R, (6)

i.e., rider group r should arrive at s(r) [d(r)] earlier [later] than
vehicle k does. The same constraint is also true for every vehicle k :

µs(k) ≤ τks(k) ≤ τkd (k) ≤ λd (k),∀k ∈ V, (7)

e-Energy’20, June 22–26, 2020, Virtual Event, Australia Ye Tian, Jia Liu, and Cathy Xia

i.e., vehicle k should arrive at s(k) [d(k)] earlier [later] than its

departure [arrival] time.

3) Vehicle Capacity and Load Change Constraints: We let

yki denote the load of vehicle k , i.e, number of passengers on-board,

immediately after serving then leaving virtual node i . We let ρi
be the load change at node i , i.e., the number of riders that will

get on/off at this virtual node. Then, the coupling between routing

decisions and load change dynamics can be written as:

xki , j

(
yki + ρ j − ykj

)
= 0,∀i, j ∈ N, i , j, (8)

i.e., if a vehicle k travels from node i to node j, then the difference

between ykj and yki is exactly ρ j . Also, note that the number of

riders in a rider group r getting on a vehicle at node s(r) must all

get off at node d(r). This implies ρs(r) + ρd (r) = 0,∀r ∈ R. Since

the capacity of each vehicle cannot be exceeded, we have:

max {ρi , 0} ≤ yki ≤ Pk ,∀i ∈ Ra, (9)

where Pk is vehicle k’s capacity limit, Ra ≜ Rs ∪ Rd is the set of

all rider group sources and destinations. According to the way we

construct the virtual graph, no rider groups get on and get off at

vehicles’ source and destination nodes, which implies:

yks(k) = y
k
d (k) = 0,∀k ∈ V . (10)

4) Objective Function and Problem Formulation: In Uber-

like ride-sharing systems, maximizing the profits earned by vehicle

drivers is important because it attracts more vehicles to participate

in ride-sharing and ensures the sustainability of the ride-sharing

system. In this paper, we follow a price model adopted by most ride-

sharing systems in practice. We assume that the reward of accepting

the transaction of rider group r is proportional to the direct distance
between s(r) and d(r), regardless of how many detours the vehicle

takes to serve rider group r . This is reasonable because no rider

group is willing to pay extra cost for detours in ride-sharing. Thus,

the reward of serving rider group r can be computed as β ·ds(r),d (r)
where β is the unit reward rate of serving a rider group. Let α be

the vehicle cost rate per mile due to the combined effect of fuel

consumption, maintenance, toll fees, etc. Let ui , j denote the net
profit of a vehicle travelling from node i to node j. Based on the

above modeling, ui , j can be computed as:

ui , j =

{
−αdi , j + βds(r),d (r), j = s(r), for some r ∈ R,

−αdi , j , otherwise.

(11)

Intuitively, Eq. (11) means that a vehicle earns profit traveling from

node i to node j only if the driver picks up some rider group r
at node j; otherwise, traveling from i to j only incurs cost. Note

that ui , j can be pre-computed. With the above modeling, our profit

maximization ride-sharing problem (PMRS) can be formulated as:

PMRS:Maximize

x

∑
k ∈V

∑
i ∈N

∑
j ∈N

xki , jui , j

subject to Constraints (1)–(10).

We note that Problem PMRS is a mixed-integer nonlinear program-

ming (MINLP) problem due to the product terms in (5) and (8). As a

result, not only is Problem PMRS non-convex, it also has a complex

structure that cannot be directly handled by existing optimization

solvers. To address this challenge, we propose a two-pronged ap-

proach. In Sec. 4, we develop a global optimization approach based

Table 1: Notation.

Symbol Meaning

R The set of all rider groups

ri Rider group ri
V The set of all vehicles

vk Vehicle vk
Rs The set of rider groups’ pickup nodes

Rd The set of rider groups’ delivery nodes

Ra The set of all pick-up and drop-off nodes

N The set of all virtual nodes

ti , j / δi , j
The shortest(direct) travel time/distance

between nodes i and j, (i, j) ∈ L

ρi The load change at node i

yki The load after service node i by vehicle k

τki The departure time at node i by vehicle k

Pk The maximum capacity of a vehicle k

xki , j
Vehicle k’s routing decision variable. xki , j = 1

if vehicle k chooses edge (i, j), otherwise xki , j = 0

µn / λn
The earliest/latest departure time

(if n is s(·)) or arrival time(if n is d(·))

on a logically-equivalent linear reformulation. Then, for large-sized
problem instances, we develop an approximation solution based

on a customized memory-augmented time-expansion approach

(MATE) in Sec. 5. For convenience, we summarize the key notation

of this paper in Table 1.

4 A GLOBAL OPTIMIZATION APPROACH
As mentioned earlier, Problem PMRS is an MINLP and the main

difficulty in solving it stems from the mixed-integer product-form

constraints in (5) and (8). Our basic idea to address this challenge

is to reformulate and linearize (5) and (8). This transforms PMRS

into a mixed-integer linear programming (MILP) that is directly

solvable by existing optimization solvers (e.g., CPLEX, Gurobi, etc.).

Toward this end, we start with (5), which can be equivalently

rewritten as the following two inequalities:

xki , j

(
τki + ti , j − τkj

)
≤ 0, (12)

xki , j

(
τki + ti , j − τkj

)
≥ 0. (13)

Noting from constraint (6) that the values of τki -variables are finite,

we let LBk andUBk be the lower and upper bounds of (τki +ti , j−τ
k
j).

Then, Eqs. (12) and (13) are, respectively, logically equivalent to:(
τki + ti , j − τkj

)
− (1 − xki , j)UBk ≤ 0, (14)(

τki + ti , j − τkj

)
− (1 − xki , j)LBk ≥ 0. (15)

To see this equivalence, note that if xki , j = 1, Eqs. (14) and (15) are

identical to (12) and (13). Otherwise, if xki , j = 0, Eqs. (14) and (15)

imply LBk ≤ τki + ti , j − τkj ≤ UBk , which trivially holds following

from the definition of LBk and UBk . To obtain LBk and UBk , we

note that τki ∈ [µi , λi], τ
k
j ∈ [µ j , λj]. It then follows thatUBk and

LBk can be chosen asUBk = λi + ti , j − µ j and LBk = µi + ti , j − λj .

MATE: A Memory-Augmented Time-Expansion Approach for Ride-Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

As a result, Eq. (5) can be reformulated as the following two mixed-

integer linear constraints:(
τki + ti , j − τkj

)
−

(
1 − xki , j

) (
λi + ti , j − µ j

)
≤ 0, (16)(

τki + ti , j − τkj

)
−

(
1 − xki , j

) (
µ j + ti , j − λi

)
≥ 0, (17)

for all i, j ∈ N, i , j. We can apply the same reformulation and

linearization technique to Eq. (8) by first equivalently rewriting it

as the following two inequalities:

xki , j

(
yki + ρ j − ykj

)
≤ 0, (18)

xki , j

(
yki + ρ j − ykj

)
≥ 0. (19)

The vehicle capacity limit constraint in (9) naturally provides lower

and upper bounds for the term (yki + ρ j − ykj), which are Pk and

(ρ j − Pk), respectively. Then, following the same token, we can

reformulate (8) as the following two logically equivalent mixed-

integer linear constraints:(
yki + ρ j − ykj

)
− Pk (1 − xki , j) ≤ 0, (20)(

yki + ρ j − ykj

)
− (1 − xki , j)(ρ j − Pk) ≥ 0, (21)

for all i, j ∈ N, i , j. Finally, putting (16)–(17) and (20)–(21) to-

gether, we have the following logically-equivalent linear reformu-

lation for Problem PMRS:

R-PMRS:Maximize

x

∑
k ∈V

∑
i ∈N

∑
j ∈N

xki , jui , j

subject to Constraints (1)–(4), (16)–(17), (6)–(7),

(20)–(21), (9)–(10).

Clearly, Problem R-PMRS is in the form of MILP thanks to the lin-

earized constraints (16)–(17) and (20)–(21), so that it can be solved to

optimality by various global optimization techniques (e.g., branch-

and-cut, branch-and-bound, etc.)
3
when the problem size is moder-

ate. Moreover, the global optimization solutions obtained by solving

Problem R-PMRS provide a baseline for evaluating the exact and

approximation algorithms developed in Sec. 5.

5 AN APPROXIMATION APPROACHWITH
MEMORY-AUGMENTED TIME-EXPANSION

Although the MILP reformulation in Problem R-PMRS offers us

global optimality guarantee, solving an MILP problem remains NP-

Hard. Therefore, for large-sized problems, it remains necessary to

develop efficient approximation algorithms. Toward this end, in

this section, we introduce a memory-augmented time-expansion

(MATE) approach, which will enable efficient approximation (or

even exact) algorithm design. The rationale behind this approach is

to encode time window feasibility, capacity and routing constraints

into a MATE graph. By doing so, we transfer the structural complex-

ity of the original PMRS problem into the MATE graph construction

process, which turns out to be manageable in most ride-sharing

settings. Toward this end, in Sec. 5.1, we first present the main

idea and the overall algorithm of our MATE approach, which is fol-

lowed by step-by-step illustrations of the MATE graph construction

3
These global optimization techniques are readily available in many existing optimiza-

tion solvers, e.g., Gurobi, CPLEX, Mosek, etc.

with a small example in Sec. 5.2. In Sec. 5.3, we provide complexity

analysis for the MATE graph construction. Lastly, we state a new

MATE-based problem reformulation in Sec. 5.4.

5.1 The Main Idea and Overall Algorithm
The main idea of our MATE approach is to expand the original

virtual graph in time domain, which allows us to encode the time

window feasibility information into a new graph. Moreover, each

node in the MATE graph is further augmented by rider group state

information, which keeps track of the vehicle capacity constraints.

Based on the new MATE graph, the original PMRS problem can

be reformulated as a relatively well-structured multi-commodity

flow problem without the complex time window feasibility and

vehicle capacity constraints, which significantly simplifies the joint

trip-vehicle matching and routing optimization.

Specifically, given a virtual graph G ≜ (N,L) as described in

Sec. 3.1, we first expand G in time domain as G[τ] ≜ (N[τ],L[τ]).

Here, we let τ := λmax − µmin denote the maximum number of

time layers, where λmax = maxva ,ri {λd (va), λd (ri)} and µmin =

minvb ,r j {µs(vb), µs(r j)}. To simplify the notation in the new graph,

we change the vehicle IDs by renaming s(vk) and d(vk) as sk and

dk , respectively, k = 0, . . . , |V|−1. Also, we change the rider group

IDs by renaming s(ri) and d(ri) as s |V |+i and d |V |+i , respectively,

i = 0, . . . , |R | −1. That is, the first |V| labels correspond to vehicles

and remaining |R | labels correspond to rider groups.

time layer

rider group and vehicle id vehicle state upon arrival

s2(3, {r1, r3})

s: source, d: destination

Figure 2: An illustration of
rider group node labeling.

The next key step is to

augment each rider group

node in the new time-

expanded graph with mem-

ory to record a passing ve-

hicle state (if any) , which

further turns the time-

expanded graph into a state
transition graph under trip-vehicle matching and routing decisions.

Toward this end, we define a new notation: at each source and

destination node of a rider group i at time t , we let ωt represent a
passing vehicle state that records the set of rider groups on-board

upon reaching this node. With ωt , we label each rider group node

in the MATE graph using the following format: zi (t,ωt), where
zi ∈ {s,d} (i.e., zi stands for either a source or destination node

of rider group i) and t represents the time layer. As an example,

the node in Fig. 2 corresponds to the source node of rider group 2

at time 3 with passing vehicle state {r1, r3}, that is, upon reaching

this node, a passing vehicle has rider groups 1 and 3 on-board. We

use {·} to represent undetermined passing vehicle state of a rider

group source/destination. For the source/destination nodes of vehi-

cles, we use {∗} to represent that their states must be empty. The

construction of the MATE graph G[τ] is summarized as follow:

Algorithm 1: The MATE Graph Construction Algorithm.

Initialization:
1. Duplicate node set N into (1 + τ) layers, where each rider

group node in each layer is labeled as si (t, {·}) and di (t, {·}),
t = 0, . . . , τ , and each vehicle source/destination node in each

layer is labeled as si (t, {∗}) and di (t, {∗}), t = 0, . . . , τ .

e-Energy’20, June 22–26, 2020, Virtual Event, Australia Ye Tian, Jia Liu, and Cathy Xia

2. At each layer, remove nodes whose time indices are not within

their departure time windows if they are sources or arrival

windows if they are destinations. Let t = 0.

Main Loop:
3. In the t-th time layer. Replace all the unmodified rider group

nodes si (t, {·})with si (t, {∅}), and keep those rider group nodes
who have already been updated in previous iterations.

4. For each node n in the current time layer, let i denote its corre-
sponding rider group. Based on node n’s passing vehicle state
and routing constraints, look for all the next rider group hops

that can be connected with time-feasible links (to be defined in

Sec. 5.2).

5. For the next-hop node j, if it is a source node at time layer

t ′ and its passing vehicle state ωt ′ remains undetermined, we

modify it as sj (t
′, {∅}). Expand this node j with updated passing

vehicle state ωt ∪ {ri } if node n is a source node, or ωt \ {ri } if
node n is a destination node.

6. Create time-feasible links between each node n in time layer

t with its next-hop nodes. Let t = t + 1 and go to Step 3 until

t > τ .

Finalization:
7. For every time layer, connect all drivers’ source nodes with

rider groups’ source nodes that have empty vehicle states, i.e.,

ωt = {∅}, using time-feasible links.

8. For every time layer, connect rider groups’ destination nodes in

the form of di (t, {ri }) with all drivers’ destination nodes using

time-feasible links.

9. For every time layer, connect all drivers’ source nodes with

their corresponding destinations using time-feasible links.

10. For each vehicle i: for t = µsi , . . . , λsi − 1, connect si (t, {∗})
with si (t + 1, {∗}) using idle links (to be defined in Sec. 5.2); for

t = µdi , . . . , λdi − 1, connect di (t, {∗}) with di (t + 1, {∗}) using
idle links.

In the initialization stage of Algorithm 1, we expand the original

virtual graph in time domain and remove nodes whose time indices

clearly violate departure or arrival time windows of the correspond-

ing rider groups or vehicles. In the main loop, we augment each

node with memory to record all possible trip-vehicle matching and

routing state transitions. In the finalization stage, we connect all

vehicle nodes with expanded rider group nodes to represent all pos-

sible trip-vehicle matchings. To better illustrate the MATE graph

construction process, in Sec. 5.2 we provide step-by-step details

using a small illustrative example.

5.2 Step-by-step Illustration of the MATE
Graph Construction

Now we demonstrate the details of graph construction in three

stages as described in Algorithm-1. For illustration simplicity, we

let vehicle capacity be two and the number of passengers in all

the rider groups be one. We note, however, that the MATE graph

construction process is applicable for general vehicle capacity and

rider group size. Consider the virtual graph of a 3-rider-group and

1-vehicle example as shown in Fig. 3 and the corresponding vehicle

and rider information provided in Table 2. In Fig. 3, the location of

each node is defined by its coordinates. All distances in Table 2 is

measured by Manhattan distance. As an example, the second row in

x

y

d2

s2

s0

s1

d1

d0

s3

d3

0

1

2

0 1 2 3

Figure 3: Relabeled virtual graph of a 3-rider-group and 1-
vehicle example (ID 0: vehicle v0; IDs 1 to 3: rider r0 to r2).

ID si di tsi ,di µsi λsi µdi λdi
1(r1) (1,1) (2,2) 2 2 2 4 4

2(r2) (0,1) (0,2) 1 1 2 2 3

3(r3) (2,0) (3,1) 2 2 4 4 6

0(v0) (0,0) (2,1) 3 0 2 3 5

Table 2: Rider and vehicle information of the example in Fig. 3.

Table 2 means that rider group r2 is labeled as ID 2; its source and

destination are located at (0, 1) and (0, 2), respectively; the direct

travel time between them is 1 (assuming the travel speed is one

distance unit per time unit). Suppose µs2 and λd2 are given as in

Table 2, following the time window constraints in Sec. 3.2, we can

compute that λs2 = 3 − 1 = 2 and µd2 = 1 + 1 = 2.

Initialization (Steps 1-2): Given the data in Table 2, it follows

that τ = 6 − 0 = 6. Thus, we duplicate the node set into 6 + 1

time layers as shown in Fig. 4a (due to space limitation, we only

show three time layers with t = 0, 1, 2). Next, we remove nodes

whose time windows are violated, i.e., for a rider or vehicle ID i , the
source nodes whose time indices not in the departure time window

[µsi , λdi − tsi ,di] are removed, the destination nodes whose time

indices not in the arrival time window [µsi +tsi ,di , λdi] are removed

as well. For example, since the departure time window of s2 is [1, 2]
(see the computation above), node s2 at layer 0 is removed in Fig. 4a

(marked as a white box). For easier visualization of all time layers,

we map the 3-D graph in Fig. 4a into a 2-D graph with labels in

the format of zi (t, {·}) as shown in Fig. 4b. For example, nodes s0
and s2 in layer t = 1 are mapped to the two nodes s0(1, {∗}) and
s2(1, {·}), respectively.

Main Loop (Steps 3-6): Since there is no rider group node in

layer t = 0, we consider layer t = 1. Following Algorithm-1, we ini-

tialize unmodified rider nodes whose vehicle state ωt is {·}. Hence,
s2(1, {·}) is replaced with s2(1, {∅}), which is already done in Fig. 5a

(marked as bold). We now formally define the notion of time-feasible
link as mentioned in Step 4 of Algorithm-1:

Definition 5.1 (Time-feasible Link). Let zi (t,ωt) be a source or
destination node in N[τ]. Given another node zj (t

′,ωt ′) ∈ N[τ],

a directed link from zi (t,ωt) to zj (t
′,ωt ′) is called a time-feasible

link if the following conditions are satisfied:

• A directed edge (zi , zj) exists in the virtual graph G;

• Time t falls in the departure timewindow of node zi : t ∈ [µzi , λzi];

• Time t ′=t+ti , j is in the arrival time window at zj : t
′ ∈ [µzj , λzj].

MATE: A Memory-Augmented Time-Expansion Approach for Ride-Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

Time ..
.

(a) (b)

2

1

0

Time

3

4

5

6

See Figs.5,6,7 for further construction details

t = 2

t = 1

s0

s1s2

d2

s3

t = 0

s0

s2
s0 s0(2, {∗})

d0(3, {∗})

d0(5, {∗})

d3(6, {·})

d3(5, {·})

d3(4, {·})s3(4, {·})

s3(3, {·})

s3(2, {·})

d2(3, {·})

d2(2, {·})

s2(1, {·})

s2(2, {·})s1(2, {·})

d1(4, {·})

s0(1, {∗})

s0(0, {∗})

d0(4, {∗})

Figure 4: Time-expanded, remove nodes where time windows are not satisfied

(a)

: current processing node

: memory−augmented node

: updated vehicle stateBold

: newly added link

(b)

s2(1, {∅})

s1(2, {·}) d2(2, {·}) s1(2,{r2})
s1(2, {∅})

s2(1, {∅})

s3(4, {∅})
s3(4, {·}) s3(4,{r2})

d2(2,{r2})

{r2}

Figure 5: Processing nodes of time layer t = 1: s2(1, {∅}).

s2(2, {∅})s1(2, {r2})
s1(2, {∅})

d1(4, {·})

s2(1, {∅})

d2(2, {r2}) s3(2, {∅})

d2(3, {·})

s3(4, {r2})
s3(4, {∅})

d3(4, {·})

Figure 6: Processing nodes of time layer t = 2.

With the notion of time-feasible link, the construction of MATE

graph proceeds as follows: As mentioned in Step 4 in Algorithm 1,

we look for next time-feasible hops of s2(1, {∅}). The vehicle picks
up rider group r2 at this node, and based on its passing vehicle

state {∅} and routing constraints, it can go to any other new rider

group sources or destination node of r2, i.e., s1(2, {·}), s3(4, {·}) and
d2(2, {·}) as shown in Fig. 5a. Since s2(1, {∅}) has no rider group

s3(4, {r1})

s1(2, {∅})
s1(2, {r2}) s2(2, {∅}) d2(2, {r2}) s3(2, {∅})

s2(1, {∅})

d2(3, {r2})

d1(4, {r1, r2})
d1(4, {r1})

s3(4, {∅})

s3(4, {r2}) d3(4, {r3})

Figure 7: Expand next-hop nodes andmake them connected.

on-board, after leaving this node, the next-hop vehicle state is {r2}
(see shaded boxes in Fig. 5b). Following Step 5, we create s1(2, {∅})
and s3(4, {∅}) for s1(2, {·}) and s3(4, {·}), respectively, then expand

these three nodes with updated vehicle state {r2}. Then, following
Step 6, we create time-feasible links from s2(1, {∅}) to the expanded
nodes as shown in Fig. 5b (shaded boxes). The processing for the

time layer t = 1 is completed.
4

In the next iteration, i.e., time layer t = 2, following Step 3, among

all the rider nodes, we initialize unmodified rider nodes whose ve-

hicle state ω is {·}, others remain the same. Hence, s2(2, {·}) and
s3(2, {·}) are replaced with s2(2, {∅}) and s3(2, {∅}), respectively,
which is already done in Fig. 6. As mentioned in Steps 4–6 of Al-

gorithm 1, we look for the next time-feasible hops of s1(2, {∅}),
s1(2, {r2}), s2(2, {∅}), d2(2, {r2}) and s3(2, {∅}) (marked as bold in

Fig. 6. The following process is illustrated in Fig. 7:

• Next time-feasible hops of s1(2, {∅}) are d1(4, {·}) and s3(4, {∅}).
Next-hop vehicle state is {r1}. We modify d1(4, {·}) as d1(4, {r1}).
Since s3(4, ∅}) already exists, we expand it into s3(4, {r1}) and
s3(4, ∅}). Connect them with time-feasible links from s1(2, {∅});

4
Notice that s2(2, {∅}) and s2(2, {r2 }) have the same rider source s2 and the same

time layer t = 2, but different vehicle states. Thus, they are two different nodes

although being stacked together for space saving and clear illustration. Note that there

is no link between them.

e-Energy’20, June 22–26, 2020, Virtual Event, Australia Ye Tian, Jia Liu, and Cathy Xia

• Next time-feasible hops of s1(2, {r2}) is d1 only. Note that al-

though r2 is on-board, the vehicle cannot go to d2 at time layer

t = 2 since it takes two units of time from s2 to d2 (see Fig. 3)
but there is no d2-node at time layer t = 4 (see Fig. 4b). After

passing s1(2, {r2}), the vehicle state becomes {r1, r2}. Hence, we
can only expand d1(4, {r1}) into d1(4, {r1, r2}) and d1(4, {r1}).
Connect s1(2, {r2}) with d1(4, {r1, r2});

• Next time-feasible hop of s2(2, {∅}) is d2(3, {·}). We modify it as

d2(3, {r2}) and connect it with a time feasible link from s2(2, {∅});

• Next time-feasible hop of d2(2, {r2}) can be a new rider source,

since r2 is dropped off at this node, i.e., the next-hop vehicle state

is {∅}. If there is a source si at another time layer t ′ for which
t+td2,si =t

′
, a time-feasible link from d2(2, {r2}) to that si -node

can be added. In this example, however, no such nodes exist;

• Next time-feasible hop of s3(2, {∅}) is d3(4, {·}). We modify it as

d3(4, {r3}) and connect it with a time feasible link from s3(2, {∅}).

Similar process will be repeated at other time layers until t > τ . We

omit the details of the rest of the main loop for brevity.

Finalization (Steps 7-9): We connect rider nodes with vehicle

nodes (see Fig. 8). Toward this end, we need the following definition:

Definition 5.2 (Vehicle Idle Link). Let zi (t, {∗}) be a source or

destination node of vehicle i , the link connecting zi (t, {∗}) and
zi (t + 1, {∗}) is a vehicle idle link (with zero distance and profit).

With the notion of vehicle idle link, the finalization stage pro-

ceeds as follows (see bold links in Fig. 8):

• For time layer t = 0, 1, 2, connect s0(t, {∗}) with rider groups’

source nodes that have empty vehicle states (s1(2, {∅}), s2(1, {∅}),
s2(2, {∅}), s3(2, {∅}) and s3(4, {∅})) using time-feasible links.

• For time layer t = 3, 4, 5, connect rider groups’ destination nodes

in the form of di (t, {ri }) (d1(4, {r1}), d2(2, {r2}) and d3(4, {r3}))
with all drivers’ destination nodes using time-feasible links.

• For time layer t = 0, 1, 2, connect the vehicle’s source node with

its corresponding destination using a time-feasible link.

• For time layer t ∈ [0, 5], add vehicle idle links for vehicle’s source

nodes and destination nodes.

The completed MATE graph for this example is shown in Fig. 8.

: newly added link

: current processing node

: feasible trip ending node

: feasible trip starting node

s1(2, {∅})

s2(1, {∅})

d2(3, {r2})

s3(4, {∅})

s3(4, {r2})
s3(4, {r1})

s3(3, {∅})

s0(0, {∗})

s0(1, {∗})

d0(3, {∗})

d0(4, {∗})

d0(5, {∗})d3(5, {r3})

d3(6, {r2, r3})
d3(6, {r1, r3})
d3(6, {r3})

d1(4, {r1})
d3(4, {r3})

s0(2, {∗})s3(2, {∅})d2(2, {r2})

d1(4, {r1, r2})

s1(2, {r2})
s2(2, {∅})

Figure 8: Connect rider group nodes with vehicle nodes. A
completed MATE graph

5.3 Complexity of MATE Graph Construction
In this section, we analyze the complexity of the MATE graph

construction. Let Ω(i, t) be the set of expanded nodes that share

the same rider group node and time information but have different

vehicle states (see, e.g., s1(2, {∅}) and s1(2, {r2}) in Fig. 8). Let R be

the number of rider groups, V be vehicle number, and K be vehicle

capacity. We assume R ≥ K and R ≥ V to avoid triviality.

Lemma 5.3. Given R riders and vehicles capacity K in G[τ], the
total number of nodes is of order O(τR(

∑K−1
i=0

(R−1
i
)
)), and the total

number of links is of order O(τR(
∑K−1
i=0

(R−1
i
)
)(R − 1)).

Proof. Since there are at most 2τR such Ω(i, t) node sets and
2τV vehicle nodes, the total number of nodes can be computed as

2τR(
∑K−1
i=0

(R−1
i
)
) + 2τV = O(τR(

∑K−1
i=0

(R−1
i
)
)). Since there are at

most (R − 1) outgoing links for each rider node, the total number of

links among rider nodes is at most 2τR(
∑K−1
i=0

(R−1
i
)
)(R−1). The total

number of links connected with vehicle nodes is at most 2τRV +τV .

Therefore, the total number of links is 2τR(
∑K−1
i=0

(R−1
i
)
)(R − 1) +

(2R + 1)τV = O(τR(
∑K−1
i=0

(R−1
i
)
)(R − 1)). □

Based on Lemma 5.3, we can show the following result on the

time and memory complexity of the MATE graph construction.

Theorem 5.4 (Time andMemory Complexity of MATE Graph).

Given R rider groups and V vehicles of capacity K , the time and
memory complexities of Algorithm 1 are both O(τR2((R−1)K−1+1)).

Proof. Recall that maximum size of Ω(i, t) is
∑K−1
i=0

(R−1
i
)
and

K ≤ R. Now, we claim that

∑K−1
i=0

(R−1
i
)
≤ (R−1)K−1+1, which can

be proved by induction on the value of R. For the base case R = 2

(i.e., R − 1 = 1), it follows that K = 0, 1, 2. If K = 0,

∑K−1
i=0

(R−1
i
)
is

vacuous. If K = 1,

∑K−1
i=0

(R−1
i
)
= 0 ≤ 1 + 1. If K = 2,

∑K−1
i=0

(R−1
i
)
=

1 + R − 1 ≤ R − 1 + 1. Thus, the base case is proved.

Suppose that the hypothesis is true for R − 1. Next, we show

that the hypothesis continues to hold for R. If K − 1 = R, then it is

clear that

∑K−1
i=0

(R
i
)
=
∑R
i=0

(R
i
)
1
i
1
R−i = (1 + 1)R = 2

R ≤ RR + 1.

If K = 0, the hypothesis trivially holds:

(R
0

)
= 1 ≤ R0 + 1. For

1 ≤ K − 1 ≤ R − 1, we have the following derivation:

K−1∑
i=0

(
R

i

)
= 1 +

K−1∑
i=1

(
R

i

)
(a)
= 1 +

K−1∑
i=1

((
R − 1

i

)
+

(
R − 1

i − 1

))
=

K−1∑
i=0

(
R − 1

i

)
+

K−1∑
i=1

(
R − 1

i − 1

)
=

K−1∑
i=0

(
R − 1

i

)
+

K−2∑
j=0

(
R − 1

j

)
(b)
≤ (R − 1)K−1 + 1 + (R − 1)K−2 + 1

≤ (R − 1)K−1 + (K − 1)(R − 1)K−2 + 1 + 1
(c)
≤ RK−1 + 1, (22)

where (a) follows from the Pascal’s formula

(R
i
)
=

(R−1
i
)
+
(R−1
i−1

)
;

(b) follows from the induction hypothesis; and (c) follows from the

binomial expansion RK−1 = (1 + R − 1)K−1 = (R − 1)K−1 + (K −

1)(R − 1)K−2 + · · ·+ 1 ≥ (R − 1)K−1 + (K − 1)(R − 1)K−2 + 1. Hence,

the claim is proved. Note that each node and link operation needs

the same amount of time and memory. Then, the stated complexity

result O(τR2((R− 1)K−1 + 1)) follows from Lemma 5.3 and (22). □

MATE: A Memory-Augmented Time-Expansion Approach for Ride-Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

Theorem 5.4 suggests that the complexity of MATE graph con-

struction is polynomial in K . Note that vehicle capacity K is usually

small in ride-sharing (e.g., 4 seats). Thus, the complexity of MATE

approach is manageable in most ride-sharing settings.

5.4 The MATE-based Problem Reformulation
Now that we have MATE graph G[τ] constructed, we will develop

a reformulated problem based on the MATE graph. First, we note

that since time window feasibility, capacity and routing constraints

are already encoded in the MATE graph, the MATE-based reformu-

lation no longer contains constraints (5) – (10). As a result, the only

surviving constraints are vehicle routing constraints (1) – (4), which

are in the multi-commodity flow-balance form and relatively easy

to handle. Next, we will translate these vehicle routing constraints

into a set of new multi-commodity flow balance constraints in the

MATE graph. Note that the source of a commodity corresponding

to a vehicle is the vehicle’s source node at its earliest departure

time layer. Likewise, the sink of a commodity corresponding to a

vehicle is the vehicle’s destination node at its latest arrival time

layer. For example, in Fig. 8, the source and sink nodes of the vehicle

are s0(0, {∗}) and d0(5, {∗}), respectively. For notation simplicity,

we denote the source and destination nodes of the i-th commodity

(i.e., vehicle) in the MATE graph as Si and Di , respectively. Next, to
model the fact that a rider group cannot be picked up by more than

one vehicle in all time layers in the MATE graph, we transform the

constraint in (2) as follows:

∑
k ∈V

τ∑
t=0

∑
i ∈Ω(sr ,t)

∑
j ,li , j ∈L[τ]

xki , j ≤ 1,∀r ∈ R. (23)

Note that the indices i and j in the binary variable xki , j now corre-

spond to nodes in the MATE graph rather than the original virtual

graph. With this distinction, flow-balance constraints (1), (2) and (4)

based on the original virtual graph should also be changed based

on the MATE graph as shown in the following reformulation:

MATE-PMRS:

Maximize

x

∑
k ∈V

∑
(i , j)∈L[τ]

xki , jui , j (24)

subject to

∑
i ,(Sk ,i)∈L[τ]

xkSk ,i
= 1,

∑
j ,(j ,Dk)∈L[τ]

xkj ,Dk = 1,∀k ∈ V, (25)∑
i ,(i ,l)∈L[τ]

xki ,l =
∑

j ,(l , j)∈L[τ]

xkl , j ,∀l ∈N[τ]\{Sk ,Dk},∀k ∈V, (26)

xki , j ∈ {0, 1};xki , j = 0, if no such link is in G[τ], (27)

and Constraint (23).

In Problem MATE-PMRS, the first three sets of constraints are

the new multi-commodity flow-balance constraints and the fourth

constraint is exactly (23). Although Problem MATE-PMRS remains

an MILP, it has well-structured flow-balance-like constraints that

are close to a multi-commodity flow problem over the MATE graph.

This enables us to develop efficient approximation (or even exact)

algorithms to solve the problem in the next section.

6 SOLVING THE MATE-BASED PROBLEM
In this section, we will develop efficient algorithms for solving

Problem MATE-PMRS. In Sec. 6.1, we first consider the single-

vehicle setting, where the MATE approach entails optimal solutions

due to the underlying total unimodularity (TU) in this setting. We

then consider the multi-vehicle setting in Sec. 6.2, where the MATE

approach enables the design of approximation algorithms.

6.1 Single-vehicle Setting
We first consider the single-vehicle setting, which is also interesting

in its own right. This is because when the time unit is sufficiently

small, the probability of having more than one vehicle to match

requesting rider groups is small. Moreover, the single-vehicle set-

ting naturally fits into an online setting, where a stream of vehicles

arrive one by one sequentially. However, the ride-sharing service

provider does not have future arrival information. Thus, trip-vehicle

matching and routing decisions have to be made one at a time. In

the single-vehicle setting, Problem MATE-PMRS reduces to:

MATE-PMRS-SINGLE:

Maximize

x

∑
(i , j)∈L[τ]

xi , jui , j (28)

subject to

∑
i ,(S,i)∈L[τ]

xS,i = 1,
∑

j ,(j ,D)∈L[τ]

x j ,D = 1, (29)∑
i ,(i ,u)∈L[τ]

xi ,u =
∑

j ,(u , j)∈L[τ]

xu , j ,∀u ∈ N[τ]\{S,D}, (30)

τ∑
t=0

∑
i ∈Ω(sr ,t)

∑
j ,li , j ∈L[τ]

xi , j ≤ 1,∀r ∈ R, (31)

xi , j ∈ {0, 1};xi , j = 0, if no such link in G[τ]. (32)

Note that if Constraint (31) is removed, Problem MATE-PMRS-

SINGLE can be further reduced to a nice single-commodity network
flow problem, which is well-known to be polynomially solvable

thanks to its TU property. Interestingly, Constraint (31) can indeed

be removed in practical cases where the assumption below holds:

Assumption 1. Time horizon τ does not exceed twice of the direct
travel time of any rider group, i.e., τ < 2tsi ,di ,∀i ∈ R.

We note that Assumption 1 holds in practice because, according

to the survey [23], riders are highly unlikely to opt in UberPool

when the potential trip duration of ride-sharing is more than 1.4

times of the direct travel time. Then, we have the following result:

Proposition 6.1. Under Assumption 1, any rider group can be
served no more than once in the single-vehicle setting. Therefore,
Constraint (31) is satisfied automatically and can be removed.

Now we can safely remove Constraint (31) of Problem MATE-

PMRS-SIN and obtain a new formulation as follows:

MATE-PMRS-SINGLE-R:
Maximize

x
(28), subject to Constraints (29), (30) and (32).

Note that Problem MATE-PMRS-SIN-R is a single-commodity net-

work flow problem. Although this problem is still an integer pro-

gram (IP), it can be readily verified that the constraints in (29), (30)

and (32) satisfy the TU property defined as follows:

e-Energy’20, June 22–26, 2020, Virtual Event, Australia Ye Tian, Jia Liu, and Cathy Xia

(a) (b) (c) (d)

Figure 9: (a)–(b): Profit and running time in single-vehicle setting; (c)–(d): profit and running time in multi-vehicle setting.

Definition 6.2 (Total Unimodularity). A matrix A is totally uni-

modular if each square submatrix of A has determinant ±1 or 0.

Furthermore, the TU property implies the following result:

Proposition 6.3 (Integral Optimality of TU [29]). Consider
the integer programming problem (IP): max u⊤x, s.t. Ax = b, x ∈ Zn ,
where A ∈ Zm×n and b ∈ Zm have integer coefficients, and A is TU,
then (IP) can be relaxed as a linear program (LP). (LP) solves (IP) for
all b ∈ Zm for which an optimal solution exists.

Based on Proposition 6.3, we can solve MATE-PMRS-SINGLE-R

as an LP in polynomial time, and the optimal solution is integral.

6.2 Multiple-vehicle Setting
In the multi-vehicle setting, even with Assumption 1, Constraint

(23) in Problem MATE-PMRS still cannot be removed because As-

sumption 1 does not imply that a rider group can be served by

only one vehicle (it only implies a rider group can be served by the

same vehicle only once). Therefore, Problem MATE-PMRS cannot

be further reduced to a multi-commodity network flow problem. To

address this challenge, we consider a penalized version of Problem

MATE-PMRS as follows:

MATE-PMRS-P:

Maximize

x
(24) −

∑
r ∈R

wr

[∑
k ∈V

τ∑
t=0

∑
i ∈Ω(sr ,t)

∑
j ,li , j ∈L[τ]

xki , j − 1

]
subject to Constraints (25), (26) and (27),

where parameterswr > 0,∀r ∈ R are large to heavily penalize the

violation of Constraint (23). As wr → ∞, Problem MATE-PMRS-

P closely approximates Problem MATE-PMRS. Note that Problem

MATE-PMRS-P is a multi-commodity network flow problem. Hence,

any state-of-the-art approximation algorithm for solving multi-

commodity flow problem [10, 12, 19, 40] can be readily applied.

7 NUMERICAL RESULTS
In this section, we conduct numerical experiments to verify the

efficacy of our MATE approach. We randomly sample 25,000 taxi

trip records of Jan 1st 2016 from the New York City Taxi dataset [31],

which contains pick-up and drop-off locations and departure/arrival

time information. Average speed is chosen as 15Mph according to

a mobility report from NYC Department of Transportation [30].

Drivers’ cost coefficients are all chosen as α = 1 per mile. Riders’

payment coefficients are all set to β = 4 per mile.

Single-Vehicle Setting: We let each rider group have one pas-

senger and vary the number of rider groups from 2 to 29. We then

randomly select one more trip to play the role of the vehicle dri-

ver. We run both MILP and MATE approaches. The net profit and

running time comparisons are illustrated in Fig. 9a and Fig. 9b,

respectively. We can see from Fig. 9a that the net profits obtained

by MILP and MATE are exactly equal, which confirms that the TU

property implied by the MATE approach under the single-vehicle

setting leads to global optimal solution (always achievable by MILP).

However, as the number of rider groups increases, the running time

of the MILP approach increases roughly exponentially, while the

running time of MATE is insensitive to the rider group numbers.

Multi-Vehicle Setting: We adopt the classic FPTAS (fully poly-

nomial time approximation scheme) algorithm formulti-commodity

network flow [10] to solve Problem MATE-PMRS-P with two ve-

hicles (approximation tolerance ϵ = 0.15) and compare the results

to those obtained by solving Problem R-PMRS with the MILP ap-

proach, and the results are illustrated in Fig. 9c and Fig. 9d. We can

see the MATE approach closely approximates the global optimal so-

lutions obtained by the MILP approach (the results nearly coincide

in some cases in Fig. 9c). We again observe similar trends of running

time in Fig. 9d, where the MILP approach slows down significantly

as the number of rider group increases, while the running time of

the MATE approach increases slowly.

8 CONCLUSION
In this paper, we studied the problem of joint vehicle-trip matching

and routing optimization in ride-sharing systems. We first proposed

a new analytical framework and showed that the problem can be

formulated as an NP-Hard mixed-integer nonlinear programming

problem. To overcome this challenge, we proposed two approaches:

i) reformulating the problem as a mixed-integer linear program,

for which moderate-sized instances can be solved by global opti-

mization methods much more easily; and ii) a memory-augmented

time-expansion (MATE) approach, which exploits the special graph-

ical structure of the problem to enable approximate (or even exact)

algorithm designs. Extensive numerical experiments are conducted

to verify the proposed approaches. We note that joint trip-vehicle

matching and routing optimization is an under-explored problem

lying at the heart of ride-sharing systems. Future directions may

include more sophisticated models that incorporate uncertainties

in riders’ arrivals and vehicles’ speeds, heterogeneous commute

patterns, and their associated algorithm designs.

MATE: A Memory-Augmented Time-Expansion Approach for Ride-Sharing e-Energy’20, June 22–26, 2020, Virtual Event, Australia

REFERENCES
[1] 2020. IBM ILOG CPLEX optimizer. http://www.cplex.com

[2] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus. 2017. On-

demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Pro-
ceedings of the National Academy of Sciences 114, 3 (2017), 462–467. https:

//doi.org/10.1073/pnas.1611675114

[3] MOSEK ApS. 2019. The MOSEK optimization toolbox for MATLAB manual. Version
9.0. http://docs.mosek.com/9.0/toolbox/index.html

[4] A. Atahran, C. Lenté, and V. T’kindt. 2014. A Multicriteria Dial-a-Ride Problem

with an Ecological Measure and Heterogeneous Vehicles. Journal of Multi-Criteria
Decision Analysis 21 (2014). https://doi.org/10.1002/mcda.1518

[5] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. 2010. Linear Programming and Network
Flows (4th ed.). John Wiley and Sons, New York.

[6] X. Bei and S. Zhang. 2017. Algorithms for Trip-Vehicle Assignment in Ride-

Sharing. (2017), 3–9. http://www.ntu.edu.sg/home/xhbei/papers/ridesharing.pdf

[7] G. Berbeglia, J. Cordeau, and G. Laporte. 2011. A Hybrid Tabu Search and Con-

straint Programming Algorithm for the Dynamic Dial-a-Ride Problem. INFORMS
Journal on Computing 24, 3 (May 2011). https://doi.org/10.1287/ijoc.1110.0454

[8] K. Braekers and A. A. Kovacs. 2016. A multi-period dial-a-ride problem with

driver consistency. Transportation Research Part B: Methodological 94 (2016),

355–377. https://doi.org/10.1016/j.trb.2016.09.010

[9] J. Cordeau and G. Laporte. 2007. The dial-a-ride problem: models and algorithms.

Annals of Operations Research 153 (May 2007), 29–46. https://doi.org/10.1007/

s10479-007-0170-8

[10] L. K. Fleischer. 1999. Approximating fractional multicommodity flow independent

of the number of commodities. Annual Symposium on Foundations of Computer
Science - Proceedings 13, 4 (1999), 24–31.

[11] T. Garaix, C. Artigues, D. Feillet, and D. Josselin. 2011. Optimization of occupancy

rate in dial-a-ride problems via linear fractional column generation. Computers
& Operations Research 38 (2011), 1435–1442. https://doi.org/10.1016/j.cor.2010.12.

014

[12] N. Garg and J. K. Onemann. 2007. Faster and Simpler Algorithms for Multicom-

modity Flow and Other Fractional Packing Problems. 37, 2 (2007), 630–652.

[13] LLC Gurobi Optimization. 2019. Gurobi Optimizer Reference Manual. http:

//www.gurobi.com

[14] G. Heilporn, J. Cordeau, and G. Laporte. 2011. An integer L-shaped algorithm

for the Dial-a-Ride Problem with stochastic customer delays. Discrete Applied
Mathematics 159 (Jun. 2011), 883–895. https://doi.org/10.1016/j.dam.2011.01.021

[15] W. Herbawi and M. Weber. 2012. A genetic and insertion heuristic algorithm for

solving the dynamic ridematching problem with time windows. Ieee Wcci (2012),
385–392. https://doi.org/10.1109/CEC.2012.6253001

[16] S. Jain and P. Van Hentenryck. 2011. Large Neighborhood Search for Dial-a-Ride

Problems Large Neighborhood Search for Dial-a-Ride Problems. International
Conference on Principles and Practice of Constraint Programming (2011), 400–413.

https://doi.org/10.1007/978-3-642-23786-7_31

[17] D. Kirchler and R. Calvob. 2013. A Granular Tabu Search algorithm for the Dial-

a-Ride Problem. Transportation Research Part B: Methodological 56 (Oct. 2013),
120–135. https://doi.org/10.1016/j.trb.2013.07.014

[18] F. Lehuédé, R. Masson, S. N. Parragh, O. Péton, and F. Tricoire. 2014. A multi-

criteria large neighbourhood search for the transportation of disabled people.

Journal of the Operational Research Society 65, 7 (2014), 983–1000. https://doi.

org/10.1057/jors.2013.17

[19] T. Leighton, F. Makedont, S. Plotkin, C. Steins, E. Tardos, and S. Tragoudas. 1991.

Fast approximation algorithms for multicommodity flow problems. Proceedings
of the Annual ACM Symposium on Theory of Computing Part F130073 (1991),

101–111. https://doi.org/10.1145/103418.103425

[20] Q. Lin, L. Deng, J. Sun, and M. Chen. 2018. Optimal Demand-Aware Ride-Sharing

Routing. International Conference on Computer Communications (INFOCOM) ii
(2018), 1–13.

[21] Q. Lin, W. Xu, M. Chen, and X. Lin. 2019. A Probabilistic Approach for Demand-

Aware Ride-Sharing Optimization. July (2019).

[22] M. Liu, Z. Luo, and A .Lim. 2015. A branch-and-cut algorithm for a realistic

dial-a-ride problem. Transportation Research Part B: Methodological 81 (2015),
267–288. https://doi.org/10.1016/j.trb.2015.05.009

[23] J. Lo and S. Morseman. 2018. The Perfect uberPOOL: A Case Study on Trade-Offs.

Ethnographic Praxis in Industry Conference Proceedings 2018, 1 (2018), 195–223.
https://doi.org/10.1111/1559-8918.2018.01204

[24] M. A. Masmoudi, M. Hosny amd K. Braekers, and A. Dammak. 2016. Three

effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-

ride problem. Transportation Research Part E: Logistics and Transportation Review
96 (2016), 60–80. https://doi.org/10.1016/j.tre.2016.10.002

[25] M. A. Masmoudi, K. Braekers, M. Masmoudi, and A. Dammak. 2017. A hybrid

Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem. Computers &
Operations Research 81 (2017), 1–13. https://doi.org/10.1016/j.cor.2016.12.008

[26] R. Masson, F. Lehuede, and O. Peton. 2014. The Dial-A-Ride Problem with

Transfers. Computers & Operations Research 41 (2014), 12–23. https://doi.org/10.

1016/j.cor.2013.07.020

[27] J. Miller and J. P. How. 2017. Predictive positioning and quality of service

ridesharing for campus mobility on demand systems. In 2017 IEEE International
Conference on Robotics and Automation (ICRA). 1402–1408. https://doi.org/10.

1109/ICRA.2017.7989167

[28] A. Mourad, J. Puchinger, and C. Chu. 2019. A survey of models and algorithms

for optimizing shared mobility. Transportation Research Part B: Methodological
123 (2019), 323–346. https://doi.org/10.1016/j.trb.2019.02.003

[29] G. Nemhauser and L. Wolsey. 1988. Integer and Combinatorial Optimization. John
Wiley and Sons.

[30] NYCDOT. 2019. Mobility report from NYC Department of Transportation. https:

//www1.nyc.gov/html/dot/downloads/pdf/mobility-report-2019-print.pdf

[31] NYCTLC. 2019. NYC Taxi TLC Trip Record Data. https://www1.nyc.gov/site/

tlc/about/tlc-trip-record-data.page

[32] S. Parragh and V. Schmid. 2013. Hybrid column generation and large neighbor-

hood search for the dial-a-ride problem. Computers & Operations Research 40

(Jan. 2013), 490–497.

[33] S. N. Parragh, J. P. Sousa, and B. Almada-Lobo. 2015. The Dial-a-Ride Problem

with Split Requests and Profits. Transportation Science 49, 2 (2015). https:

//doi.org/10.1287/trsc.2014.0520

[34] Partnership for New York City 2018. $100 Billion Cost of Traffic Congestion in
Metro New York. Internet:. Partnership for New York City. http://pfnyc.org/

wp-content/uploads/2018/01/2018-01-Congestion-Pricing.pdf

[35] V. Pimenta, A. Quilliot, H. Toussaint, and D. Vigo. 2017. Models and algorithms

for reliability-oriented Dial-a-Ride with autonomous electric vehicles. European
Journal of Operational Research 257 (2017), 601–613. https://doi.org/10.1016/j.

ejor.2016.07.037

[36] U. Ritzinger, J. Puchinger, and R. F. Hartl. 2016. A survey on dynamic and

stochastic vehicle routing problems. International Journal of Production Research
54 (2016), 215–231. https://doi.org/10.1080/00207543.2015.1043403

[37] S. Røpke, J. Cordeau, and G. Laporte. 2007. Models and a Branch-and-Cut Algo-

rithm for Pickup and Delivery Problems with Time Windows. Networks 49, 43
(2007), 258–272. https://doi.org/10.1002/net.20177

[38] J. Saranow. 2006. Carpooling for grown-ups high gas prices, new services give

ride-sharing a boost, rating your fellow rider. https://www.wsj.com/articles/

SB113884611734062840

[39] H. D. Sherali and W. P. Adams. 1999. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic

Publishing, Boston, MA.

[40] I. Wang. 2018. Multicommodity Network Flows : A Survey , Part I : Applications

and Formulations. International Journal of Operations Research 15, 4 (2018),

145–153. https://doi.org/10.6886/IJOR.201812

[41] Z. Xiang, C. Chu, andH. Chen. 2006. A fast heuristic for solving a large-scale static

dial-a-ride problem under complex constraints. European Journal of Operational
Research 174, 2 (2006), 1117–1139. https://doi.org/10.1016/j.ejor.2004.09.060

http://www.cplex.com
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
http://docs.mosek.com/9.0/toolbox/index.html
https://doi.org/10.1002/mcda.1518
http://www.ntu.edu.sg/home/xhbei/papers/ridesharing.pdf
https://doi.org/10.1287/ijoc.1110.0454
https://doi.org/10.1016/j.trb.2016.09.010
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1016/j.cor.2010.12.014
https://doi.org/10.1016/j.cor.2010.12.014
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1016/j.dam.2011.01.021
https://doi.org/10.1109/CEC.2012.6253001
https://doi.org/10.1007/978-3-642-23786-7_31
https://doi.org/10.1016/j.trb.2013.07.014
https://doi.org/10.1057/jors.2013.17
https://doi.org/10.1057/jors.2013.17
https://doi.org/10.1145/103418.103425
https://doi.org/10.1016/j.trb.2015.05.009
https://doi.org/10.1111/1559-8918.2018.01204
https://doi.org/10.1016/j.tre.2016.10.002
https://doi.org/10.1016/j.cor.2016.12.008
https://doi.org/10.1016/j.cor.2013.07.020
https://doi.org/10.1016/j.cor.2013.07.020
https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.1109/ICRA.2017.7989167
https://doi.org/10.1016/j.trb.2019.02.003
https://www1.nyc.gov/html/dot/downloads/pdf/mobility-report-2019-print.pdf
https://www1.nyc.gov/html/dot/downloads/pdf/mobility-report-2019-print.pdf
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.1287/trsc.2014.0520
https://doi.org/10.1287/trsc.2014.0520
http://pfnyc.org/wp-content/uploads/2018/01/2018-01-Congestion-Pricing.pdf
http://pfnyc.org/wp-content/uploads/2018/01/2018-01-Congestion-Pricing.pdf
https://doi.org/10.1016/j.ejor.2016.07.037
https://doi.org/10.1016/j.ejor.2016.07.037
https://doi.org/10.1080/00207543.2015.1043403
https://doi.org/10.1002/net.20177
https://www.wsj.com/articles/SB113884611734062840
https://www.wsj.com/articles/SB113884611734062840
https://doi.org/10.6886/IJOR.201812
https://doi.org/10.1016/j.ejor.2004.09.060

	Abstract
	1 Introduction
	2 Related work
	3 Network Model and Ride-Sharing Problem Formulation
	3.1 A Virtual Graph Modeling Approach
	3.2 Ride-sharing Problem Formulation

	4 A Global Optimization Approach
	5 An Approximation Approach with Memory-Augmented Time-Expansion
	5.1 The Main Idea and Overall Algorithm
	5.2 Step-by-step Illustration of the MATE Graph Construction
	5.3 Complexity of MATE Graph Construction
	5.4 The MATE-based Problem Reformulation

	6 Solving the MATE-based Problem
	6.1 Single-vehicle Setting
	6.2 Multiple-vehicle Setting

	7 Numerical Results
	8 Conclusion
	References

