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ABSTRACT
Due to the rapid growth of mobile data demands, there
have been significant interests in stochastic resource control
and optimization for wireless networks. Although signifi-
cant advances have been made in stochastic network opti-
mization theory, to date, most of the existing approaches are
plagued by either slow convergence or unsatisfactory delay
performances. To address these challenges, in this paper,
we develop a new stochastic network optimization frame-
work inspired by the Nesterov accelerated gradient method.
We show that our proposed Nesterovian approach offers
utility-optimality, fast-convergence, and significant delay re-
duction in stochastic network optimization. Our contribu-
tions in this paper are three-fold: i) we propose a Nestero-
vian joint congestion control and routing/scheduling frame-
work for both single-hop and multi-hop wireless networks;
ii) we establish the utility optimality and queueing stabil-
ity of the proposed Nesterovian method, and analytically
characterize its delay reduction and convergence speed; and
iii) we show that the proposed Nesterovian approach offers
a three-way performance control between utility-optimality,
delay, and convergence.

CCS Concepts
•Networks→Network resources allocation; Network
control algorithms; Network performance modeling;

1. INTRODUCTION
Fueled by the massive amounts of mobile data and the

rapid integration of new devices, recent years have witnessed
an active research on stochastic resource control and op-
timization for wireless networks (see, e.g., [1–5], and [6]
for a survey). The large body of work in this area has
given rise to a beautiful queue-length-based control algorith-
mic framework (QCA), based on which congestion control,

∗The work of Jia Liu has been supported in part by NSF
grants CNS-1527078 and CNS-1446582.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS ’16, June 14-18, 2016, Antibes Juan-Les-Pins, France.
c© 2016 ACM. ISBN 978-1-4503-4266-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2896377.2901474

scheduling, and routing algorithms are naturally coupled by
queueing states. Such algorithms do not need statistical
knowledge of either the arrivals or the channel fading dis-
tributions. Rather, they only require instantaneous queue-
lengths and channel state information (CSI) to make control
decisions. Further, these algorithms can be interpreted by
the Lagrangian dual decomposition framework plus the sub-
gradient method in convex optimization [1,2], where queue-
lengths can be viewed as Lagrangian dual variables and the
queue-length evolutions play the role of subgradient updates.

However, the QCA approaches suffer from several no-
table limitations. First, for the existing QCA approaches,
it is well-known that an O(1/K) utility-optimality gap is
achieved at the expense of an O(K) penalty in steady-state
queue-length, where K > 0 is a system parameter. Hence, a
small utility-optimality gap implies a large K and results in
large queueing delay. To alleviate this queueing delay prob-
lem, there have been significant recent efforts (e.g., [4, 7–9],
etc.) on improving the utility-optimality and delay trade-
off scaling law (see Section 2 for more in-depth discussions).
Second, due to the subgradient nature of the queue-length-
based weight adjustment, the QCA framework is oblivious
to the curvature of the objective function [1–4]. The re-
sultant “zigzagging” phenomenon [10] entails unsatisfactory
convergence speed. To overcome this limitation, several
second-order congestion control and routing/scheduling al-
gorithms have recently been proposed to enhance the con-
vergence speed (see, e.g., [11,12]). However, due to the high
complexity in Hessian inverse computation, these second-
order designs require large information exchange overhead
and may not work well for large-scale networks. The limi-
tations of these existing works motivate us to pursue a new
Nesterovian approach in this paper.

More specifically, in this work, our goal is to develop a low-
complexity weight adjustment scheme based on the much
simpler first-order Nesterov’s accelerated gradient descent
(AGD) method [13,14] to reduce the queueing delay and in-
crease the convergence speed of the QCA approaches, while
without affecting their utility-optimality performance and
without increasing their algorithmic complexity. Our fun-
damental rationale behind this approach is that the AGD
method, first appeared in Nesterov’s seminal work [13], is
known for being an order-optimal first-order optimization
method in terms of convergence rate [14]. Our key idea
is to separate the weights and queue-lengths in the QCA
framework, which then allows us to develop a weight updat-
ing scheme based on a Nesterovian scheme to accelerate the
algorithm’s convergence speed in the dual domain. Surpris-



ingly, it turns out that the theoretical findings of adopting a
Nesterovian approach in network optimization are far richer
than just convergence acceleration.

However, due to a number of technical challenges, develop-
ing a Nesterovian solution for stochastic network optimiza-
tion is highly non-trivial. First, since the original Nesterov’s
AGD method was developed for unconstrained deterministic
convex optimization, it is unclear how to modify the algo-
rithm for wireless network utility maximization, which is not
only constrained but also a stochastic optimization problem
with a far more complex structure. Second, unlike the clear
relationship between Lagrangian dual variables and queue-
lengths in the QCA approaches, the relationship between
the Nesterov’s AGD method and the network states (e.g.,
queue-lengths, channel states, etc.) is unknown, which will
cause difficulty in the trade-off analysis between delay and
network utility. Third, due to the memory of past iterations’
values, the structure of a Nesterovian approach is quite dif-
ferent from that of the QCA approaches. Hence, many exist-
ing analytical techniques used in QCA for utility optimality
and delay tradeoff are not applicable.

The main contribution of this paper is that we develop a
Nesterovian wireless network utility optimization framework
that addresses the aforementioned technical challenges. This
framework entails a series of new theoretical results on delay
reduction and convergence speed, while maintaining utility-
optimality. The main results and technical contributions of
this paper are as follows:

• Motivated by the Nesterov’s AGD idea, we propose a new
weight adjustment scheme for joint congestion control and
routing/scheduling in wireless networks. Our work not
only establishes a connection between Nesterov’s AGD
method and the queue-length and channel state informa-
tion to allow simple implementation in practice, it also
extends the classical Nesterov’s AGD method from uncon-
strained determinstic optimization to constrained stochas-
tic network optimization.

• We establish the utility optimality and the queuing stabil-
ity of the proposed Nesterovian approach. More precisely,
under our Nesterovian congestion control and scheduling
scheme with a β-parameterized memory term (β ∈ [0, 1)
is a system parameter), we show that a utility-optimality
gap O(1/K) can be achieved with an O((1−β)K)+O((1+

β)
√
K) cost in queueing-delay, where K is the same pa-

rameter as used in the traditional QCA framework. More-
over, in the asymptotic regime ofK with β being chosen as
β = 1−O(1/

√
K), our Nesterovian approach achieves an

[O(1/K), O(
√
K)] utility-delay trade-off, which is a much

stronger result compared to the [O(1/K), O(K)] trade-off
scaling obtained by the QCA approaches.

• We investigate the choices of system parameters β and K,
and their impacts on convergence. More specifically, we
characterize the linear convergence rate factor of our Nes-
terovian approach and further show that it achieves supe-
rior convergence performance even compared with some
state-of-the-art momentum-based schemes (e.g., [15]) in
certain cases. Further, integrating with the results in the
previous bullet, our Nesterovian approach offers a three-
way performance control between utility, delay, and con-
vergence speed. We offer insights on how to implement the
proposed Nesterovian approach in a distributed fashion for
multi-hop networks. We show that the distributed Nes-

terovian method only requires one-hop local message ex-
change, which is identical to the QCA schemes and hence
does not incur any additional information exchange over-
head in practical implementations.

The remainder of this paper is organized as follows. In
Section 2, we review related works. Section 3 introduces the
network model and problem formulation. Section 4 presents
our Nesterovian approach and the performance analysis of
the proposed algorithm. In Section 5, we extend the pro-
posed algorithm to multi-hop networks. Section 6 presents
numerical results and Section 7 concludes this paper.

Notation: In this paper, we use boldface to denote ma-
trices/vectors. We let A> be the transpose of A. We let IN
and ON denote the N × N identity and all-zero matrices,
respectively. We let 1N and 0N denote the N -dimensional
all-one and all-zero vectors, respectively. We will often omit
“N” for brevity if the dimension is clear from the context.
We use ‖ · ‖ and ‖ · ‖1 to denote L2- and L1-norms, respec-
tively. A � 0 (or A � 0) means that A is positive (resp.,
negative) semidefinite. A � B means A−B � 0.

2. RELATED WORK
In this section, we first provide a synopsis of the state-

of-the-art on delay reduction in the QCA literature that is
most related to our work. Then, we provide a brief overview
of the Nesterov’s AGD method and its applications.

Delay Reduction for QCA: As mentioned in Section 1,
there have been significant efforts on reducing the delay of
the QCA approaches. For example, in [4, 16–19], virtual
queues are used to reduce delay, where the virtual queue-
lengths evolve based on service rates that are a fraction of
the actual service rates. The key finding in these earlier
efforts is that a slight sacrifice of throughput can lead to
notable improvements in delay. More recent research on
delay-reduction can be found in [7–9]. In [8], a virtual
backlog mechanism with place-holder bits instead of real
data was proposed. It was shown that, by accepting some
non-zero packet dropping probability, this approach achieves
an [O(1/K), O(log2(K))] utility-delay trade-off. An expo-
nential Lyapunov virtual backlog method combined with
a threshold-based packeting-dropping scheme was proposed
in [7] to achieve an even stronger O(log(K)) delay. Al-
though enjoying a log-type delay scaling, a common limi-
tation of [7, 8] is that choosing the size of place-holder bits
in [8] and the threshold value in [7] require non-causal global
arrival and channel statistics (cf. [7, Eq. (17)], [8, Eq. (45)]),
which is usually hard to obtain. If the parameters are not
set appropriately, these schemes may result in non-negligible
packet dropping probability. To address this problem, a per-
iteration learning step was proposed in [9] to learn the op-
timal size of place-holder bits. However, the per-iteration
learning component significantly increases the complexity.
We note that, in some sense, all these delay reduction schemes
can be viewed as sacrificing throughput-optimality (reflected
in reduced service rates or packet dropping) for delay reduc-
tion, which is undesirable in practice. In contrast, without
sacrificing any throughput-optimality and without requiring
any non-causal statistical knowledge, our Nesterovian ap-
proach achieves an O(

√
K) delay scaling. We also note that

although attempts to get rid of the back-pressure nature of
the QCA framework have also been proposed in the liter-



ature (see, e.g., [20, 21]), convergence performance was not
addressed in these works.

The Nesterov’s AGD Method: A Primer: For this
paper to be self-contained, here we provide an overview of
the Nesterov’s AGD method. Historically, the AGD method
was proposed by Nesterov in 1983 for unconstrained convex
optimization [13]. Specifically, consider a general uncon-
strained optimization problem minx∈Rn f(x), where f(·) is
twice continuously differentiable and convex. Let H(x) de-
note the Hessian matrix evaluated at x. We assume that
there exist two constants 0 ≤ φ ≤ Φ such that φI � H(x) �
ΦI, ∀x (thus Φ is a Lipschitz constant of the gradient of
f(·)). Then, the Nesterov’s AGD method operates as fol-
lows [14, Chap. 2.2]:

• Choose an initial point x[0]. Define an auxiliary variable
y and let y[0] = x[0]. Choose α0 ∈ (0, 1). Let κ = Φ/φ
be the condition number of f(·).

• In iteration t ≥ 0: a) Compute f ′(x[k]) and let:

y[t+ 1] = x[t]− (1/Φ)f ′(x[t]). (1)

b) Compute α[t + 1] ∈ (0, 1) by solving the quadratic
equation α2[t+1]+[α2[t]− (1/κ)]α[t+1]−α2[t] = 0. Let:

β[t] =
α[t](1− α[t+ 1])

(α2[t] + α[t+ 1])
, and (2)

x[t+ 1] = y[t+ 1] + β[t](y[t+ 1]− y[t]). (3)

It can be shown that the Nesterov’s AGD method achieves:
i) order-optimal O(1/t2) convergence rate for weakly con-
vex problems (φ = 0); and ii) an O(1/

√
κ) linear conver-

gence factor for strongly convex problems (see [14] for de-
tails). In each iteration, the Nesterov’s AGD method first
performs a basic gradient descent step to move from x[t] to
y[t + 1] (cf. (1)), and then “slides” a little bit further (con-
trolled by α[t] and β[t]) from y[t + 1] in the direction with
respect to y[t] (cf. (3)). Unfortunately, the intuition behind
the Nesterov updates in (1) and (3) is difficult to grasp.
Over the years, researchers have made numerous attempts
to explain why the acceleration works, rather than settling
on the mysterious (yet beautiful) algebraic manipulations in
the original proof. Recent efforts in this area include, e.g.,
viewing AGD as a linear coupling of gradient descent and
mirror descent [22], interpretation through discretization of
certain second-order ordinary differential equation (ODE)
in physics [23], and a geometric explanation inspired by the
ellipsoid method [24]. Although interpreting the Nesterov’s
AGD method is beyond the scope of this paper, we hope
that our Nesterovian network optimization approach could
also provide some insights from a networking angle.

We note that the Nesterov’s AGD method exploits past
memory (cf. (3)), which is similar to another family of first-
order methods termed“multi-step methods”(or called“heavy
ball”) that also leverage memory for convergence accelera-
tion [25–28]. However, the key difference is that the Nes-
terov’s method exploits both past iterates and gradients,
while the multi-step methods only use past iterates. Also,
the Nesterov’s method is convergence-rate order-optimal for
general convex problems, while multi-step methods only work
for strongly convex problems (φ > 0). We also note that,
since its inception, the Nesterov’s method has found applica-
tions in signal processing (e.g., [29] and references therein).
However, to our knowledge, the Nesterov’s AGD idea re-
mains unexplored in network system optimization.
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Figure 1: An illustration of the single-hop cellular
downlink.

3. NETWORK MODEL AND PROBLEM
FORMULATION

From this section to Section 4, we focus on a single-hop
model with N links, which could model a cellular down-
link/uplink channel with N users, or a set of communicating
pairs in an ad hoc network. We will discuss in Section 5 how
to extend the results to multi-hop networks.

Network model: In the single-hop case, we use a cel-
lular downlink system as shown in Figure 1 to facilitate dis-
cussions. We assume a time-slotted system with time being
indexed by t = 0, 1, 2, . . .. Suppose that the channel fad-
ing is characterized by a total of M states and denoted by
vectors π1, . . . ,πM , where each πm ∈ RN , m = 1, . . . ,M ,
corresponds to the N links’ channel states under state m.
Let Cπm denote the achievable rate region for πm, which

is defined as Cπm , Conv{x(m)
1 , . . . , x

(m)
N }, where Conv{·}

represents convex hull and x
(m)
n denotes a feasible rate of link

n that can be scheduled under channel state m. We assume
that, for each link n and channel state m, x

(m)
n ≤ smax <∞.

We use a vector x(m) = [x
(m)
1 , . . . , x

(m)
N ]> ∈ RN to denote

the feasible rates of all receivers under channel state m. We
assume that the channel states are independent and iden-
tically distributed across time-slots1. Let π[t] denote the

channel state vector in time-slot t and let pm , Pr{π[t] =
πm} be the stationary distribution of the channel state be-
ing in state m. We let C̄ denote the mean achievable rate
region, which can be computed as:

C̄ ,

{
x

∣∣∣∣∣x =

M∑
m=1

pmx(m), ∀x(m) ∈ Cπm

}
. (4)

We note that, in this paper, neither the channel state statis-
tics nor C̄ is assumed to be known at the base station.

Queue-stability: As shown in Figure 1, each link n is as-
sociated with a queue. We denote the queue-length in time-
slot t as qn[t]. In every time-slot t, the controller observes
the current channel state π[t] and then chooses a service

rate vector s[t] , [s1[t], . . . , sN [t]]> ∈ Cπ[t] and a congestion

control rate vector a[t] , [a1[t], . . . , aN [t]]> ∈ RN+ . Clearly,
the queue-length process {qn[t]} evolves as:

qn[t+ 1] = {qn[t]− sn[t] + an[t]}+, ∀n, (5)

where {·}+ , max{0, ·}. We let q[t] , [q1[t], . . . , qN [t]]>

denote the queue-length vector in time-slot t. Same as in
[2, 3], in this paper, we say that a network is stable if the

1Following the same arguments as in [8,30], our results can
be generalized to Markovian channel state processes.



steady-state total queue-length is finite, i.e.,

lim sup
t→∞

E {‖q[t]‖1} <∞. (6)

Problem formulation: Let ān , limT→∞
1
T

∑T−1
t=0 an[t]

denote the average arrival rate of link n under congestion
control. Each receiver n is associated with a utility function
Un(ān), which represents the utility gained by receiver n
when its data is injected at rate ān. We assume that Un(·),
∀n, is concave, monotonically increasing, and twice contin-
uously differentiable, and strongly concave, i.e., there exist
constants 0 < φ ≤ Φ <∞ such that

φ ≤ −U ′′n (an) ≤ Φ, ∀an ∈ [0, amax], (7)

where amax is an arrival rate upper bound for burst control.
As an example, the function log(ε+ an) with some constant

ε > 0 satisfies (7). Our goal is to maximize
∑N
n=1 Un(ān),

subject to achievable rate region Cπ[t] in each time-slot and
the queue-stability constraint. Putting together the mod-
els presented above, we have the following joint congestion
control and scheduling (CCS) optimization problem:

CCS: Maximize

N∑
n=1

Un(ān)

subject to Queue-length stability constraint in (6),

sn[t] ∈ Cπ[t], an[t] ∈ [0, amax] ∀n, t.

4. A NESTEROVIAN APPROACH FOR STO-
CHASTIC NETWORK OPTIMIZATION

In this section, we first introduce the Nesterovian algo-
rithm in Section 4.1. In Section 4.2, we will present the
main theoretical results. Then, in Section 4.3, we will dis-
cuss the key insights and intuition of the theoretical results.
Section 4.4 provides the proofs for the main theorems.

4.1 The Nesterovian Algorithm
Our proposed Nesterovian joint congestion control and

scheduling algorithm is described in Algorithm 1:

Algorithm 1: A Nesterovian Approach for Joint Conges-
tion Control and Scheduling.

Initialization:

1. Choose parameters K > 0 and β ∈ [0, 1). Set t = 0.
2. Let queue-states qn[0] = 0 and ∆qn[−1] = 0, ∀n.
3. Associate each link n with a non-negative weight wn and

set the initial weights wn[0] = wn[−1] = 0, ∀n.

Main Loop:

4. MaxWeight Scheduler: In time-slot t ≥ 0, observe the
current weight vector w[t] , [w1[t], . . . , wN [t]]> and the
current channel state π[t]. Then, the scheduler chooses
a service rate vector s[t] as follows:

s[t] = arg max
x∈Cπ[t]

(w[t])>x. (8)

5. Congestion Controller: For each link n, given its current
weight wn[t], the data injection rate an[t] is an integer-
valued random variable that satisfies:

E{an[t]|wn[t]}=min

{
U
′−1
n

(
wn[t]

K

)
, amax

}
, (9)

E{a2
n[t]|wn[t]} ≤ A <∞, ∀wn[t], (10)

where U
′−1
n (·) represents the inverse function of the first-

order derivative of Un(·). In (9), amax is a positive con-
stant satisfying amax > 2smax. In (10), the second mo-
ment bound A will be used in establishing subsequent
theoretical results.

6. Queue-Length and Nesterovian Weight Updates: Update
the queue-lengths following (5). Let ∆qn[t] , qn[t +
1] − qn[t], ∀n, be the resultant queue-length changes.
Next, for all links, update the weights in the following
(projected) Nesterovian manner:

wn[t+ 1] = {wn[t] + ∆qn[t] + β[(wn[t] + ∆qn[t])−
(wn[t− 1] + ∆qn[t− 1])]}+, ∀n. (11)

Let t = t + 1. Go to Step 4 and repeat the scheduling
and congestion control processes.

Some important remarks on Algorithm 1 are in order:
1) Relation to QCA: We can see that the congestion con-

trol and scheduling components in Algorithm 1 are similar
to those in the QCA schemes (see, e.g., [2, 3, 30]). However,
in both scheduling and congestion control components, the
weights in (8) and (9) are not based on current queue-lengths
(or a direct function of current queue-lengths). We will see
later that this separation of weights and queue-lengths leads
to significant delay reductions. Note also that when β = 0,
our Nesterovian algorithm reduces to the traditional QCA
approach. Hence, the QCA approach can be viewed as a
special case of our Nesterovian algorithm.

2) Nesterovian weight update: The weight update idea in
(11) is motivated by the Nesterov updates in (1) and (3). To
see this, one only needs to do the following: i) Let β[t] ≡ β,
∀t; ii) Let x[t] = w[t] and f ′(x[t]) = ∆q[t] in (1) (ignoring
the scaling factor 1/Φ); and lastly iii) Substitute (1) into
(3) and apply the non-negative projection. We note that
changing β[t] to a constant step-size β not only simplifies
the computation to allow easy implementations in practice,
it also leads to an elegant three-way performance control re-
lationship between utility-optimality, delay, and convergence
speed, which will be presented later.

3) First-order memory: One can see that the weight up-
date in (11) integrates a β-parameterized first-order memory
of the weights wn[t−1] and queue-length changes ∆qn[t−1]
from the previous time-slot. By contrast, the weight updates
in traditional QCA approaches are of zero-order memory in
the sense that queue-lengths only inherit the absolute weight
values from the current time-slot. As will be seen shortly,
this algorithmic structural difference necessitates new proof
techniques in establishing our theoretical results.

4) Zero-valued initial states: We note that, in Algorithm 1,
the zero-valued initial states of the wn- and qn-variables are
necessary for the delay reduction and queue-length scaling
results to be established in Theorem 1. If the initial queue-
ing buffers are non-empty, these zero-valued initial states can
still be met by turning off the injection rates an[t] and let
the scheduler drain all the existing packets. As long as the
number of existing packets is finite, this evacuation period
must also be finite. Hence, this finite period of injection rate
shutdown will not affect the utility-optimality of the average
injection rates over an infinite time horizon.

4.2 Main Theoretical Results
Our first main result is on the queue-length reduction per-

formance of the proposed Nesterovian algorithm:



Theorem 1 (Queue-length reduction). Given β ∈
[0, 1), the scaling of the steady-state total queue-length:

lim sup
t→∞

E{‖q[t]‖1} = O
(
(1− β)K

)
+O

(
(1 + β)

√
K
)
. (12)

Further, if β ↑ 1 at a speed faster than β = 1 − O(1/
√
K),

then Eq. (12) implies that lim supt→∞ E{‖q[t]‖1} = O(
√
K).

Several important remarks on Theorem 1 are in order: i)
If β is fixed and K → ∞, the second term on the right-
hand-side of (12) is dominated by the first term. Hence,
lim supt→∞ E{‖q[t]‖1}≈ O

(
(1− β)K

)
. Note that in the tra-

ditional K-parameterized QCA algorithm (see, e.g., [3, 4]),
the total queue-length grows as O(K). Hence, Theorem 1
shows that the steady-state total queue-length under a β-
parameterized Nesterovian scheme is approximately (1−β)–
fraction of that of the traditional QCA approaches.

ii) Rather than fixing β, if we allow β to vary in relation
to K, then Theorem 1 implies that if β approaches 1 fast
enough as K→∞, the total queue-length scales as O(

√
K).

This significantly outperforms the O(K) delay of the QCA
algorithms, yet without sacrificing any throughput and with-
out requiring non-causal global statistics as in [7, 8].

iii) Incorporating the weight and queue-length changes
from the previous time-slot in (11) can be loosely viewed
as a way to memorize the queue states’ and weights’ evolu-
tion in history. Remarkably, Theorem 1 shows that simply
learning from “immediate past” makes a big difference in
steady-state queue-length reduction.

Next, we let U(a) =
∑N
n=1 Un(an) denote the utility sum

of Problem CCS and let a∗ be the optimal solution. Also,

we let a∞n,E{min{U
′−1
n (w∞n /K), amax}}, ∀n, be the mean

steady-state congestion control rates achieved by our algo-
rithm (the existence of steady-state will be proved later in

Section 4.4). Further, we let a∞ , [a∞1 , . . . , a
∞
N ]>. Then,

the second key result in this paper can be stated as follows:

Theorem 2 (Utility-optimality). The mean of the
stationary rate vector a∞ under Algorithm 1 tsatisfies ‖a∞−
a∗‖ = O(1/

√
K). Meanwhile, the acheived utility objective

value can be bounded as U(a∗)− U
(
a∞
)

= O(1/K). These
imply that a∞ → a∗ asymptotically as K increases.

Theorem 2 says that our Nesterovian approach is utility-
optimal and the optimality is independent of β. In other
words, the new addition of the β-parameterized memory
term in (11) does not affect the utility-optimality of the tra-
ditional QCA methods, which exactly achieves our goal.

The third main result in this work is on the convergence
speed performance. In this paper, the convergence speed
metric is defined in terms of the number of time-slots re-
quired by the sequence {E{a[t]|w[t]}} to reach theO(1/

√
K)-

neighborhood of a∗ as stated in Theorem 2.

Theorem 3 (Convergence rate). Let K ∈ (Φ,∞)
and β ∈

[
0, 1
)
. Let H∗ ∈ RN×N denote the Hessian ma-

trix of the objective function of Problem CCS evaluated at
a∗. Then, {E{a[t]|w[t]}} converges linearly2 with a factor

2We say that {xk}∞k=1 converges linearly to x∗ if there exists
a factor R ∈ (0, 1) such that ‖xk+1−x∗‖ ≤ R‖xk−x∗‖, ∀k.

R(K,β) satisfying:

R(K,β) ≤
1

2
max
λ∗i ,∀i

{∣∣∣∣(1 + β)
(

1− λ∗i
K

)
±√

(1 + β)2
(

1− λ∗i
K

)2

− 4β
(

1− λ∗i
K

)∣∣∣∣
}
< 1, (13)

where λ∗i , i = 1, . . . , N , denote the eigenvalues of H∗. Fur-
ther, minimizing R(K,β) over K and β yields the smallest

convergence factor bound: R∗ = (
√

Φ −
√
φ)/
√

Φ, which is

achieved by letting K → Φ and β∗ = (
√

Φ−
√
φ)/(
√

Φ+
√
φ).

Theorem 3 implies that K and β can be optimized to achieve
R∗ = (

√
κ−1)/

√
κ, where κ , Φ/φ is the condition number

of the Hessian H. Note that R∗ is always smaller than that
of the QCA approaches, where RQCA = (κ − 1)/(κ + 1)
(cf. e.g., [2]). This implies that our Nesterovian approach
converges faster than QCA, particularly when κ is large (i.e.,
when the problem is ill-conditioned).

Further, based on Theorem 3 and by comparing the con-
vergence factor bounds, it can be shown that when β >√

1− φ/K, the Nesterovian approach converges faster than
our previous heavy-ball approach in [15]. This shows that
the proposed Nesterovian approach further improves the
convergence speed of the heavy-ball approach in cases where
β is chosen close to 1 (implying low-delay).

The proofs of Theorems 1–3 can be found in Section 4.4.
In what follows, we will further discuss some insights of the
theoretical results.

4.3 Discussions
1) Intuition behind delay reduction: From the con-

nection between the QCA approaches and the Lagrangian
dual decomposition (see, e.g., [2–4,31]), the QCA algorithms
can be interpreted as using queue-lengths as the dual vari-
ables to solve Problem CCS. One drawback of this approach
is that a large amount of packets need to be kept in each
queue only to maintain the“right amount of pressure,”which
we denote as w∗n(K), ∀n here. As will be seen in Section 4.4,
w∗n(K) scales as O(K) as K increases to approach optimal
network utility. However, this “queue-lengths as dual” ap-
proach is not necessary since the w∗n(K) is merely a mathe-
matical construct and needs not be associated with queue-
lengths. In theory, one has the freedom to choose any quan-
tity to play the role of the dual variables.

Indeed, there are several existing works based on the above
intuition to reduce delay. To our knowledge, the idea that
is most related to ours is [8], where the authors proposed to
use Wn ∈

[
0, w∗n(K)

)
amount of “place-holder bits” in each

queueing buffer n and use the weight wn[t] = qn[t] +Wn to
conduct scheduling, and the weights evolve as:

wn[t+1]=[wn[t]+∆qn[t]]+ =[qn[t]+∆qn[t]+Wn]+, ∀n. (14)

However, as mentioned in Section 2, determining an appro-
priate value for each Wn is a non-trivial task since doing so
requires non-causal global knowledge w∗n(K), ∀n, which is
unavailable at the initial state. Now, consider the Nestero-
vian weight update in (11), which is re-stated below:

wn[t+ 1] = {wn[t] + ∆qn[t] + β[(wn[t] + ∆qn[t])−
(wn[t− 1] + ∆qn[t− 1])]}+, ∀n. (15)



Table 1: Three-way performance control.

Type I Type II Type III

Utility Opti-
Small Small Large

mality Gap
Queueing

Low High Low
Delay

Convergence
Slow Fast Fast

Speed

K Large Large
Optimized for
convergence

β Close to 1
Optimized for

Close to 1
convergence

Comparing (14) and (15), we can see that the memory term
β[(wn[t] + ∆qn[t])− (wn[t− 1] + ∆qn[t− 1])] plays a similar
role as the place-holder bits Wn in the sense that it effec-
tively reduces the size of required ∆qn[t] to maintain the
pressure level. Moreover, the use of memory term has the
following advantages: i) Unlike the artificial notion of place-
holder bits whose initial value is difficult to set, the memory
term only requires two time-slots of weight and queue-length
update history, which not only have a real physical meaning
but also render easy implementations; ii) The memory term
can also be viewed as a simple way to implicitly learn and
adapt to the unknown w∗n(K), thus eliminating the need for
an explicit per-iteration learning step as in [9]; and (iii) Un-
like the possibility of using an overly aggressive Wn-value
that results in packet dropping, our Nesterovian weight up-
date scheme evolves gracefully and does not incur packet
dropping and thus retaining full throughput-optimality.

2) Thee-way performance trade-offs: Collectively,
Theorems 1–3 imply a three-way control between utility-
optimality, delay, and convergence. By appropriately choos-
ing K and β, one can simultaneously improve two out of
the three performance metrics by trading-off the third. We
summarize the three-way performance control in Table 1.

As shown in Table 1, Control Type I corresponds to achiev-
ing utility-optimality and low-delay at the cost of slower
convergence, by setting K large and β close to 1. To see
this, we note from Theorem 2 that a large K implies small
utility-optimality gap O(1/K). Also, by setting β close to
1, Theorem 1 indicates that a big (1 − β)–fraction delay
reduction. However, as K → ∞ and β → 1, it can be ver-
ified from Theorem 3 that limβ→1,K→∞R(K,β) → 1, which
implies an increasingly slower convergence. Likewise, Con-
trol Type II corresponds to achieving utility-optimality and
fast-convergence at the cost of less delay reduction, by set-
ting K large and optimizing β for convergence. To see this,
from Theorem 2, we have that a large K implies a small
O(1/K) utility-optimality gap. Also, by Theorem 3, β can
be optimized under a given K to minimize R(K,β) to increase
the convergence. However, the obtained β may or may not
be close to 1. Thus, the delay performance gain may not
be dramatic. Control Type III can be verified similarly as
Trade-off Type II, so we omit the details for brevity.

4.4 Proofs of the Main Theorems
In this subsection, we provide the proofs for the main

theorems stated in Section 4.2.

Proof of Theorem 1. Since the proof of Theorem 1 is
lengthy, we structure the proof of into several key steps.

Step 1): A K-Parameterized Deterministic Problem: Con-
sider a deterministic problem where the channel state pro-

cess is not random but fixed at its mean level, i.e., Cπ[t] = C̄,
∀t. The congestion control and scheduling variables are
not time-varying and denoted as an and sn, ∀n. The K-
parameterized deterministic problem can be written as:

K-DCCS: Maximize K
∑N

n=1
Un(an)

subject to an − sn ≤ 0, ∀n, sn ∈ C̄, an ∈ [0, amax], ∀n.

We associate dual variables wn ≥ 0, ∀n with the constraints
an − sn ≤ 0, ∀n to obtain the Lagrangian as follows:

ΘK(w) , max
a,s

{
K

N∑
n=1

Un(an) +

N∑
n=1

wn(sn − an)

}
, (16)

where the vector w , [w1, . . . , wN ]> ∈ RN+ contains all dual
variables. Then, the Lagrangian dual problem of Problem
K-DCCS can be written as:

D-K-DCCS: Minimize ΘK(w)

subject to w ∈ RN+ .

It can be verified that Problem K-DCCS is convex and sat-
isfies the Slater condition [10]. Hence, the optimal objective
value of Problem K-LD-CCS is the same as that of Problem
D-K-DCCS, i.e., strong duality holds. Let w∗(K) be the
optimal dual solution to Problem D-K-DCCS. Due to the
strict convexity of Problem K-LD-CCS, w∗(K) is unique.
Further, we have the following result of w∗(K):

Lemma 1 (Linear scaling of w∗(K)). For a given K,
w∗(K) = Kw∗(1), or equivalently, w∗(K) = O(K).

Proof. Dividing K on both sides of (16), we have

1

K
ΘK(w) = max

a,s

{
N∑
n=1

Un(an) +

N∑
n=1

ŵn(sn − an)

}
, (17)

where ŵn = ww/K. Note that the right hand side (RHS)
of (17) is precisely Θ1(w), for which the maximizer is ŵ =
w∗(1). Hence, we have ΘK(w) is maximized at Kw∗(1).

Step 2): A Special-Structured Block Matrix: Now, we de-
fine a β-parameterized block matrix Γ(β) as follows:

Γ(β) ,

[
(1 + β)IN −βIN

IN 0N

]
∈ R2N×2N , (18)

where 0 < β < 1. Next, we prove a lemma about the eigen-
values of Γ(β) that will be useful in proving Theorem 1.

Lemma 2 (Eigen-spectrum of Γ(β)). Γ(β) only has
two distinct eigenvalues β and 1, and both eigenvalues are
of algebraic multiplicity N . Hence, Γ(β) is a non-expansive
linear transformation in R2N .

Proof. Let λ denote an eigenvalue of Γ(β) and consider
the characteristic equation det(Γ(β)−λI2N ) = 0, which can
be written in block-wise fashion as:

det

[
(1 + β − λ)IN −βIN

IN −λIN

]
= 0. (19)

We claim that λ 6= 1 + β and thus the block (1 + β − λ)IN
in (19) is invertible. To verify this, suppose on the contrary
that λ = 1 + β and (19) holds. In this case, we have:

det

[
0N −βIN
IN −(1 + β)IN

]
= det(βIN ) = −βN 6= 0,



contradicting to the assumption that (19) holds. Given that
the block (1+β−λ)IN is invertible, it follows from the Schur
complements determinantal formulae [32] that

(19) = det
[
(1 + β − λ)IN

]
×

det
[
(−λIN )− IN ((1 + β − λ)IN )−1(−βIN )

]
=(1 + β − λ)N det

[(
− λ +

β

1 + β − λ

)
IN
]

=[λ2 − (1 + β)λ+ β]N = (λ− 1)N (λ− β)N = 0. (20)

Hence, the result stated in the lemma follows.

The spectral result in Lemma 2 implies that Γ(β) is a non-
expansive linear operator. This result will play a key role in
our subsequent analysis of the proposed Nesterov’s method.

Step 3): Mean Weight Deviation: Our next key step to-
ward proving Theorem 1 is to establish the following mean
deviation result of the weights:

Theorem 4 (Mean weight deviation bound). For
a given K, there exists a constant C that depends on Φ, smax,
and amax, such that E{‖w∞−w∗(K)‖} ≤ C

√
K, where w∞

denotes the weights w[t] in steady-state.

Proof. We start by rewriting the Nesterovian weight up-
date in (11) in the following equivalent vector form:

w[t+ 1] =w[t] + ∆q[t] + β[(w[t] + ∆q[t])

− (w[t− 1] + ∆q[t− 1])] + u[t], (21)

where u[t] is the projection term representing unused ser-

vices: u[t] ,
{
β(w[t−1]+∆q[t−1])−(1+β)(w[t]+∆q[t])

}+
.

Note that the memory term in (21) depends on two consec-
utive time-slots of memory (i.e., w[t], w[t − 1], ∆q[t], and
∆q[t − 1]), which is challenging in subsequent analysis. To
overcome this challenge, we define a 2N -dimensional vector
z[t] as follows (we simplify the notation of w∗(K) to w∗):

z[t] ,

[
w[t]−w∗

w[t− 1]−w∗

]
. (22)

Then, it can be readily verified that (21) can be rewritten
in terms of z[t] as follows:

z[t+1] = Γ(β)z[t]+Γ′(β)

[
∆q[t]

∆q[t− 1]

]
+

[
u[t]
0N

]
, (23)

where Γ′(β) ,

[
(1 + β)I −βI

0 0

]
. We define a quadratic

Lyapunov function V (z[t]) , 1
2
‖z[t]‖2 and consider its con-

ditional expectation of one-slot drift:

E
{

∆V (z[t])
∣∣z[t]

}
,

1

2
E
{
‖z[t+ 1]‖2 − ‖z[t]‖2

∣∣z[t]
}
. (24)

Let 1A(x) be the indicator function that takes value 1 if
x ∈ A and 0 otherwise. After some algebraic derivations
and upper-bounding (see Appendix A for details), we have:

Proposition 1. Let B , N [A + (smax)2]. There exist
constants δ, η > 0 such that

E{∆V (z[t])|z[t] = z} ≤ − δ√
K

(∥∥w[t]−w∗
∥∥1Bc(w[t])+∥∥w[t−1]−w∗

∥∥1Bc(w[t−1])
)
+η
(
1B(w[t])+1B(w[t−1])

)
,

where B , {w :
∥∥w−w∗

∥∥ ≤√(1/2)BΦK}, and Bc denotes
the complement of B.

Note that {z[t]} is a continuous Markov chain in R2N and
Proposition 1 ensures the Foster-Lyapunov criterion for pos-
itive Harris-recurrence. Thus, a steady-state exists [33].
Now, we consider the T -step conditional mean Lyapunov
drift. For notational simplicity, we define the following sets:

Ω1,
{
z ∈ R2N :‖w[t]−w∗‖∈B, ‖w[t− 1]−w∗‖∈B

}
,

Ω2,
{
z ∈ R2N :‖w[t]−w∗‖∈B, ‖w[t− 1]−w∗‖ /∈B

}
,

Ω3,
{
z ∈ R2N :‖w[t]−w∗‖ /∈B, ‖w[t− 1]−w∗‖∈B

}
,

Ω4,
{
z ∈ R2N :‖w[t]−w∗‖ /∈B, ‖w[t− 1]−w∗‖ /∈B

}
.

By telescoping (24) from t = 0 to T − 1, we have that

E{V (z[T ])|z[0]} − V (z[0])
(a)
=

T−1∑
t=0

E{∆V (z[t])|z[0]}

=

T−1∑
t=0

∫
R2N

pz[t]|z[0](z)E{∆V (z[t])|z[t] = z}dz

=

4∑
i=1

T−1∑
t=0

∫
Ωi

pz[t]|z[0](z)E{∆V (z[t])|z[t] = z}dz, (25)

where (a) follows from the fact that z[t] is a continuous state
Markov chain in R2N . It then follows from Proposition 1 and
the definitions of Ωi, i = 1, . . . , 4, that each term in (25) can
be respectively upper-bounded as:

T−1∑
t=0

∫
Ω1

E{∆V (z[t])|z[t]=z}dz≤2η

∫
Ω1

T−1∑
t=0

pz[t]|z[0](z)dz. (26)

T−1∑
t=0

∫
Ω2

E{∆V (z[t])|z[t] = z}dz ≤ η
∫

Ω2

T−1∑
t=0

pz[t]|z[0](z)dz

− δ√
K

∫
Ω2

∑T−1

t=0
pz[t]|z[0](z)‖w[t− 1]−w∗‖dz. (27)

T−1∑
t=0

∫
Ω3

E{∆V (z[t])|z[t] = z}dz ≤ η
∫

Ω3

T−1∑
t=0

pz[t]|z[0](z)dz

− δ√
K

∫
Ω3

∑T−1

t=0
pz[t]|z[0](z)‖w[t]−w∗‖dz. (28)

T−1∑
t=0

∫
Ω4

E{∆V (z[t])|z[t] = z}dz ≤ − δ√
K

∫
Ω4

T−1∑
t=0

(
‖w[t]−w∗‖+ ‖w[t− 1]−w∗‖

)
pz[t]|z[0](z)dz. (29)

Adding (26) to (29), we have that

E{V (z[T ])|z[0]} − V (z[0]) ≤ η
∫
∪3

i=1Ωi

T−1∑
t=0

pz[t]|z[0](z)dz

− δ√
K

[ ∫
Ω2

T−1∑
t=0

‖w[t− 1]−w∗‖pz[t]|z[0](z)dz+



∫
Ω3

T−1∑
t=0

‖w[t]−w∗‖pz[t]|z[0](z)dz +

∫
Ω4

T−1∑
t=0

(
‖w[t]

−w∗‖+‖w[t− 1]−w∗‖
)
pz[t]|z[0](z)dz

]
. (30)

Note that for any z ∈ R2N , limT→∞
1
T

∑T−1
t=0 pz[t]|z[0] = p∞z

for all z[0], where p∞z denotes the stationary distribution of
the continuous state Markov chain z[t]. Moving V (z[0]) to
the right hand side (RHS) of (30), dividing both sides of
(30) by T , and letting T →∞ yields:

0 ≤ − δ√
K

[ ∫
Ω2∪Ω3

‖w∞ −w∗‖p∞z dz+∫
Ω4

2‖w∞ −w∗‖p∞z dz
]

+ η

∫
∪3

i=1Ωi

p∞z dz. (31)

Rearranging terms and adding δ√
K

∫
Ω2∪Ω3

‖w∞−w∗‖p∞z dz+
δ√
K

∫
Ω1

2‖w∞ −w∗‖p∞z dz to both sides of (31) yields:

δ√
K

∫
R2N

2‖w∞ −w∗‖p∞z dz ≤ η
∫
∪3

i=1Ωi

p∞z dz+

δ√
K

[ ∫
Ω2∪Ω3

‖w∞−w∗‖p∞z dz+

∫
Ω1

2‖w∞−w∗‖p∞z dz
]

(a)

≤ η

∫
∪3

i=1Ωi

p∞z dz + 4δ
√

(1/2)BΦ ≤ η + δ
√

8BΦ, (32)

where (a) follows from the definitions of Ω and B. Note that
the left-hand-side (LHS) of (32) is exactly 2δ√

K
E
{
‖w∞ −

w∗‖
}

. Multiplying both sides of (32) by
√
K

2δ
yields:

E
{
‖w∞ −w∗‖

}
≤
( η

2δ
+
√

2BΦ
)√

K = O(
√
K). (33)

This completes the proof of Theorem 4.

Step 4): Final Step to Prove Theorem 1: Recall that the
Nesterovian update can be written as:

w[t+ 1] = w[t] + ∆q[t] + β[(w[t] + ∆q[t])

− (w[t− 1] + ∆q[t− 1])] + u[t],

Rearranging terms and noting that u[t] ≥ 0, we have

∆q[t] ≤
(
w[t+ 1]−w[t]

)
− β

(
w[t]−w[t− 1]

)
− β(∆q[t]−∆q[t− 1]). (34)

Telescoping the inequality in (34) from t = 0 to T −1 yields:

T−1∑
t=0

∆q[t] ≤
(
w[T ]−w[0]

)
− β

(
w[T − 1]−w[−1]

)
= −β(∆q[T−1]−∆q[−1]) = w[T ]−βw[T−1]−β∆q[T−1],

where the last equality holds because, by assumption, w[0] =
w[−1] = q[−1] = 0. Also, since q[0] = 0, we have

‖q[T ]‖1 = ‖q[0] +

T−1∑
t=0

∆q[t]‖1

≤ ‖w[T ]− βw[T − 1]− β∆q[T − 1]‖1.

Taking expectation on both sides, letting T →∞, and not-
ing that in steady-state E{∆q[∞]} = 0, we have:

lim sup
T→∞

E
{
‖q[T ]‖1

}
≤ E

{
w∞ − βw∞

} (a)

≤ w∗ +O(
√
K)−

β
(
w∗ −O(

√
K)
)

= (1− β)w∗ + (1 + β)O(
√
K), (35)

where (a) follows from Theorem 4 and ‖ · ‖1 ≤
√
N‖ · ‖

(simplifying w∗(K) to w∗). This proves the first part of
Theorem 1. Moreover, in the asymptotic regime where 1 −
β = O( 1√

K
), it follows from (35) that

lim sup
T→∞

E
{
‖q[t]‖1

}
= O(

√
K). (36)

This completes the proof of Theorem 1.

Proof of Theorem 2. We first prove the optimality gap

for the stationary rates a∞n , E{min{U
′−1
n (w∞n /K), amax}}.

Note that E{an[t]|wn[t]} = min{ U
′−1
n (wn[t]/K), amax} and

a∗n = U
′−1
n (w∗n/K), ∀n. Thus, we have

∥∥a∞−a∗
∥∥2

=

N∑
n=1

[
E
{

min

{
U
′−1
n

(
w∞n
K

)
,M

}}
−U

′−1
n

(
w∗n
K

)]2

(a)

≤
N∑
n=1

E

{[
min

{
U
′−1
n

(
w∞n
K

)
,M

}
− U

′−1
n

(
w∗n
K

)]2
}

(b)

≤
N∑
n=1

E

{[
U
′−1
n

(
w∞n
K

)
− U

′−1
n

(
w∗n
K

)]2
}

(c)
=

N∑
n=1

E

{[[
U
′−1
n

(
w̃n
K

)]′(
w∞n
K
− w∗n

K

)]2
}

(d)
=

N∑
n=1

E

{[[
1

U ′′n
(
w̃n
K

)]2(
w∞n
K
− w∗n

K

)]2}
(e)

≤
N∑
n=1

E
{

1

φ2

(
w∞n −w∗n

)2 1

K2

}
(f)
=

1

φ2K2
E

{
N∑
n=1

(
w∞n −w∗n

)2}

=
1

φ2K2
E
{
‖w∞ −w∗‖2

}
, (37)

where (a) follows from the convexity of quadratic function
and Jensen’s inequality; (b) follows from the non-expansion
property of the min{·} function; (c) follows by using mean
value theorem for some w̃n ∈

[
min{w∞n , w∗n},max{w∞n , w∗n}

]
;

(d) follows from inverse function lemma; (e) follows from the
strong convexity assumption in (7); and (f) follows from ex-
changing the order or summation and expectation.

Consider the term E
{
‖w∞ −w∗‖2

}
in (37). From the

proof of Proposition 1, we have (cf. Eq. (62) in Appendix A)
the following one-slot mean Lyapunov drift bound:

E{∆V (z[t])|z[t]} ≤ − 1

ΦK
(‖w[t]−w∗‖2 +

‖w[t− 1]−w∗‖2) +B. (38)

Following the same argument in the proof of Theorem 4, we
telescope the inequality in (38) from t = 0 to T−1 to obtain:

E{V (z[T ])|z[0]}−V (z[0])=

T−1∑
t=0

E{V (z[t+ 1])−V (z[t])|z[0]}

=

T−1∑
t=0

∫
R2N

pz[t]|z[0](z)E{V (z[t+ 1])− V (z[t])|z[t] = z}dz



=

T−1∑
t=0

∫
R2N

pz[t]|z[0](z)E{∆V (z[t])|z[t]}dz ≤ − 1

ΦK

T−1∑
t=0∫

R2N

pz[t]|z[0](z)(‖w[t]−w∗‖2+‖w[t−1]−w∗‖2)dz+TB.(39)

Dividing both sides by 2T
ΦK

, rearranging terms, and letting
T →∞, we have

lim sup
T→∞

1

T

T−1∑
t=0

∫
R2N

pz[t]|z[0](z) ‖w −w∗‖2 dz ≤ 1

2
BΦK. (40)

Note that the LHS of (40) is precisely E
{
‖w∞ −w∗‖2

}
.

Hence, it follows that

‖a∞ − a∗‖2 ≤ 1

φ2K2
E
{
‖w∞ −w∗‖2

}
≤ BΦ

2φ2

1

K
. (41)

Taking square root on both sides of (41) yields:

‖a∞ − a∗‖ ≤
√
BΦ

φ

1√
K

= O
( 1√

K

)
,

i.e., the result in the first half of Theorem 2.
Next, we prove the optimality gap result for the objective

value, i.e., U
(
a∞(K)

)
≥ U(a∗)−O(1/K). To this end, similar

to the proof of Theorem 4, we define an augmented vector
and its quadratic Lyapunov function as follows:

y[t] ,

[
w[t]

w[t− 1]

]
and Ṽ (y[t]) =

1

2
‖y[t]‖2 .

Following the same steps in the proof of Theorem 4, one can
verify that

y[t+ 1] = Γ(β)y[t] + Γ′(β)

[
∆q[t]

∆q[t− 1]

]
+

[
u[t]
0N

]
.

where Γ(β) and Γ′(β) are the same as defined earlier. Then,
following the same steps as in the proof of Proposition 1, we
can show that the conditional expectation of the one-slot
Lyapunov drift can be bounded as follows:

E
{

∆Ṽ (y[t])
∣∣y[t]

}
≤ −

(
y[t]
)>E{ã[t]− s̃[t]

∣∣y[t]}+B. (42)

Note that (42) is in the same form as in [3, Eq. (24)]. Then,
following the same arguments in [3], we have that U

(
a∞(K)

)
≥

U(a∗)−O(1/K). This completes the proof.

Proof of Theorem 3. We first show the ranges of K
and β that suffice for convergence. Due to the one-to-one
mapping between E{a[t]|w[t]} and w[t], the convergence of
E{a[t]|w[t]} can be equivalently analyzed by examining the
convergence of w[t]. Using the fact that ∆q[t] = 1

K
H∗(w[t]−

w∗)+o(‖w[t]−w∗‖), where H∗ denotes the Hessian matrix
of ΘK(w) evaluated at w∗, we can rewrite (11) in a local
neighborhood of w∗ as:

z[t+ 1] ≤
[

(1 + β)(IN− 1
K

H∗) −β(IN− 1
K

H∗)
IN ON

]
z[t].

where z[t] is defined the same as in the proof of Theorem 1.

For convenience, we let Γ̂ denote the coefficient matrix and
consider the eigenvalue equation:[

(1 + β)(IN− 1
K

H∗) −β(IN− 1
K

H∗)
IN ON

][
v1

v2

]
=λΓ̂

[
v1

v2

]
.

Noting from the second row that v1 = λΓ̂v2, we have that[
λ2

Γ̂
I− λΓ̂(1 + β)

(
I− 1

K
H∗
)

+ β
(
I− 1

K
H∗
)]

v2 = 0.

Let λ∗i , i = 1, . . . , N , denote the eigenvalues of H∗. Through
eigenvalue decomposition, it can be verified that λΓ̂ satisfies
the following quadratic equations:

λ2
Γ̂,i
− (1 + β)

(
1− λ∗i

K

)
λΓ̂,i + β

(
1− λ∗i

K

)
= 0, ∀i. (43)

It then follows from (43) that

R(K,β)≤max
i
λΓ̂,i=

1

2
max
λ∗i ,∀i

{∣∣∣∣(1+β)
(

1− λ
∗
i

K

)
±
√

∆i

∣∣∣∣} ,(44)

where ∆i , (1+β)2(1− λ∗i
K

)2−4β(1− λ∗i
K

). Next, we consider

(44) for the following two cases, where we let αi,1−λ∗i /K
for notational convenience:

• ∆i ≥ 0: Then, |λΓ̂,i| < 1 is equivalent to (1 + β)2α2
i −

4βαi ≥ 0 and −2 < (1 + β)αi ±
√

∆i < 2, which, after
simplifications, yields K ≥ [(1 + β)/(1− β)]2λ∗i , ∀i

• ∆i < 0: Then, |λΓ̂,i| < 1 is equivalent to (1 + β)2α2
i −

4βαi < 0 and 0 ≤ 1
4
[(1 + β)2α2

i − ∆i] < 1, which, after

simplifications, yields: λ∗i < K < [(1 +β)/(1−β)]2λ∗i , ∀i.

Combining both cases and noting that they should hold for
all λ∗i , we can conclude that K > Φ. This completes the
proof of the first half of the theorem.

To prove the second half of the theorem, we minimize the
upper bound in (44), i.e.,

Minimize
K∈(Φ,∞),β∈[0,1)

{
1

2
max
λ∗i ,∀i

{∣∣∣∣(1+β)
(

1− λ
∗
i

K

)
±
√

∆i

∣∣∣∣}} . (45)

First, we claim that the upper bound in (44) is monoton-
ically decreasing with respect to the λ∗i -variables. To see
this, we again consider two cases.

• ∆i ≥ 0: In this case, α ∈ [4β/(1+β)2, 1). In this interval,
∆i monotonically increases as λi decreases. Hence, the
upper bound in (44) is monotonically decreasing.

• ∆i < 0: From (44), we have λΓ̂,i = 2
√
β(1− λ∗i /K),

which is monotonically increasing as λ∗i decreases.

Combining both cases, we have that (45) can be written as:

min
β∈[0,1)

{
min

K∈(Φ,∞)

{∣∣∣(1 + β)
(

1− φ/K
)
±√

(1 + β)2(1− φ/K)2 − 4β(1− φ/K)
∣∣∣}} . (46)

For notational simplicity, we let ψ(K,β) , |(1 + β)(1 −
φ/K)±

√
(1 + β)2(1− φ/K)2 − 4β(1− φ/K)|. Then, based

on the positivity of the discriminant in (46), the search do-
main in the optimization problem in (46) can be divided into
three subdomains:

• β ∈ [0, (
√
κ− 1)/(

√
κ+ 1)), K ∈ (Φ,∞),

• β ∈ [(
√
κ− 1)/(

√
κ+ 1), 1), K ∈ (Φ, ((1 + β)/(1− β))2 φ),

• β ∈ [(
√
κ− 1)/(

√
κ+ 1), 1), K ∈ [((1 + β)/(1− β))2 φ,∞),

where κ , Φ/φ is the condition number. It can be readily
verified that (46) is minimized to (

√
κ− 1)/

√
κ by K∗ = Φ

and β∗ = (
√
κ − 1)/(

√
κ + 1). This completes the proof of

the second half of the theorem.



5. EXTENSION TO MULTI-HOP
NETWORKS

In this section, we will generalize our Nesterovian algo-
rithmic framework to multi-hop networks. In the multi-hop
setting, the utility optimization problem becomes the joint
congestion control and routing optimization as in [1–3]. We
first state the network model and problem formulation.

Network Model and Problem Formulation: 1) Net-
work model: Consider a time-slotted communication net-
work system as in the single-hop case. We represent the
communication network by a directed graph G = {N ,L},
whereN and L are the sets of nodes and links, with |N | = N
and |L| = L, respectively. We assume that G is connected.
There are F end-to-end flows in the network, indexed by
f = 1, . . . , F . Each flow f has a source node and a destina-
tion node, represented by Src(f),Dst(f) ∈ N , respectively.
To avoid triviality, we assume that Src(f) 6= Dst(f) for all
f . The data of flow f travel from Src(f) to Dst(f) through
the network, possibly via multi-hop and multi-path routing.

2) Congestion control: As in [2, 3], we assume that
the source node Src(f) has a continuously-backlogged trans-
port layer reservoir that contains session f ’s data. In each
time-slot t, a transport layer congestion controller deter-
mines the amount of data af [t] to be released from this
reservoir into a network layer source queue, where the data
awaits to be routed to node Dst(f) through the network.
In other words, {af [t]} acts as the arrival process to the
source queue. For burst control, we let af [t] ≤ amax

f , ∀t. We
let āf ≥ 0 denote the time-average rate at which data of
session f is injected at Src(f) under congestion control, i.e.,

āf = limT→∞
1
T

∑T−1
t=0 af [t]. Each session is associated with

a utility function Uf (āf ), which represents the utility gained
by session f when data is injected at rate āf . We assume
that Uf (·) is strictly concave, monotonically increasing, and
twice continuously differentiable.

3) Routing: We let x
(f)
l [t] ≥ 0 denote the rate offered

to route session f ’s data in time-slot t at link l. We let

x̄
(f)
l , limT→∞

1
T

∑T−1
t=0 x

(f)
l [t] represent the time-average

routing rate of session f at link l. The time-varying model
of the channel states at each link remains the same as in
the single-hop case. As in [2, 31, 34], we define the network
capacity region as the largest set of congestion control rates
such that there exists a routing policy for which the time-
average routing rates satisfy the following constraints:∑
l∈O(n)

x̄
(f)
l ≥

∑
l∈I(n)

x̄
(f)
l + āf1f (n), ∀f,∀n 6= Dst(f), (47)

where O (n) and I (n) represent the sets of outgoing and
incoming links at node n, respectively; 1f (n) is an indicator
function that takes the value 1 if n = Src(f) and 0 otherwise.

4) Queue-stability: We assume that each node has a sep-

arate queue for each flow f . Let q
(f)
n [t] ≥ 0 represent the

queue-length of flow f at node n at time t. Since data leave

the network upon reaching destinations, we have q
(f)

Dst(f)[t] =

0, ∀t. Then, q
(f)
n [t], n 6= Dst(f) evolves as:

q(f)
n [t+1]=

(
q(f)
n [t]−

∑
l∈O(n)

x
(f)
l [t]

)+
+
∑
l∈I(n)̂

x
(f)
l [t]+ af [t]1f (n), (48)

where (·)+ , max{0, ·} and x̂
(f)
l [t] is the actual routing rate.

Note that x̂
(f)
l [t] ≤ x

(f)
l [t] since Tx(l) may have less than

x
(f)

l,[t] amount of data to transmit. Let q[t] , [q
(f)
n [t], ∀f,∀n 6=

Dst(f)]T group all queue lengths at time t. Similar to the
single-hop case, under a congestion control and routing scheme,
we say that the network is stable if the norm of steady-state
queue-lengths is finite, i.e., lim supt→∞ E{‖q[t]‖1} <∞.

5) Problem formulation: In the multi-hop case, our goal
is again to develop an optimal joint congestion control and
routing scheme to maximize the total utility

∑F
f=1 Uf (āf ),

subject to the network capacity region and stability con-
straints. Putting together the models presented above yields
the following joint congestion control and routing (CCR) op-
timization problem:

CCR: Max
∑F

f=1
Uf (āf )

s.t. Routing constr. in (47); Stability of all queues,

x
(f)
l [t] ∈ Cπ[t], ∀l, t, f, af [t] ≥ 0, ∀f, t.

5.1 A Nesterovian Joint Congestion and Rout-
ing Optimization Algorithm

Similar to the the QCA schemes in the multi-hop case,
in our multi-hop Nesterovian algorithm, the weights are re-
placed by weight differentials for dynamic routing. Let E(l)
denote the two end nodes of link l. The Nesterovian conges-
tion control and routing algorithm is stated as follows:

Algorithm 2: A Nesterovian Approach for Joint Conges-
tion Control and Routing.

Initialization:

1. Choose parameters K > 0 and β ∈ [0, 1). Set t = 0.

2. Let queue-states: q
(f)
n [0],∆q

(f)
n [−1]=0, ∀n, f .

3. Associate each link l with a weight w
(f)
n ≥ 0 and set the

initial weights w
(f)
n [0] = w

(f)
n [−1] = 0,∀n, f .

Main Loop:

4. Weight Differentials: In time-slot t ≥ 1, we let ∆w
(f)
l [t]=

max
{
w

(f)
n [t]−w(f)

E(l)\n[t], 0
}

denote the weight differential

of each flow f , ∀n, l∈O (n). Let ∆w∗l [t]=maxf ∆w
(f)
l [t]

and let f∗l [t] =arg maxf ∆w
(f)
l [t] (breaking ties arbitrar-

ily). Let ∆w∗[t] , [w∗1 [t], . . . , w∗L[t]]> be the maximum
weight differentials vector over all links.

5. Routing and MaxWeight Scheduling: Given ∆w∗[t] and
channel state π[t], the scheduler chooses a service rate
vector x[t]∈RL to transmit flow f∗l [t] at each link l:

x[t] = arg max
x∈Cπ[t]

(∆w∗[t])>x. (49)

6. Congestion Controller: For each flow f and in each time-
slot t, let w be the value of wSrc(f)[t] that the source node
Src(f) observes. Then, Src(f) sets af [t] to be an integer-
valued random variable that satisfies:

E{af [t]|w} = min
{
U
′−1
f

( w
K

)
, amax

}
, (50)

E{a2
n[t]|w} ≤ A <∞, (51)

where U
′−1
f (·) represents the inverse function of first-

order derivative of Uf (·). In (50) and (51), amax and A
are positive constants with amax > 2smax.

7. Queue-Length and Nesterovian Weight Updates: Update

queue-lengths following (48). Let ∆q
(f)
n [t] , q

(f)
n [t+ 1]−

q
(f)
n [t], ∀n, be the queue-length change of flow f at node



n following the update in (48). Next, update the weights
in the following (projected) Nesterovian manner:

w(f)
n [t+ 1] = {w(f)

n [t] + ∆qn[t] + β[(w(f)
n [t] + ∆q(f)

n [t])−

(w(f)
n [t− 1] + ∆q(f)

n [t− 1])]}+, ∀n, f. (52)

Let t = t+1. Go to Step 4 and repeat the whole dynamic
routing, scheduling and congestion control processes.

Distributed Implementation: We note that, as in the
QCA algorithms, the congestion control and dynamic rout-
ing components in the multi-hop version of the Nesterovian
algorithm only require weight information either locally or
from one-hop neighbors. Also, the Nesterovian weight up-
dates in (52) only require two time-slots of local history.
Thus, the congestion control and dynamic routing naturally
lend themselves to distributed implementation in exactly the
same fashion as that in the QCA algorithms. In other words,
compared to QCA algorithms, our multi-hop Nesterovian al-
gorithm does not incur any additional complexity in terms
of messaging passing between nodes.

On the other hand, also same as in the QCA algorithms,
we can see that the scheduling problem in (49) require global
weight information from all links and could be challenging
for developing distributed solutions (depending on the struc-
ture of Cπ[t]). In many cases, it can be shown that the
scheduling problem in (49) is NP-hard and even develop-
ing centralized solutions is difficult. Fortunately, due to the
same messaging passing requirement, many distributed al-
gorithms (e.g., [35, 36]) developed for the QCA framework
can be applied in the scheduling component in our Nestero-
vian algorithm. One example is to adopt our weight adjust-
ment scheme to Q-CSMA [36] by setting the attempt prob-

ability of each link in the form of ew[t]/(ew[t] + 1) (cf. [36,
Eq. (10)]). Then, under the time-scale separation assump-
tion, one can follow the same line of arguments in [36] to
establish the throughput optimality with fewer iterations to
update weights in the outer time-scale.

Performance Analysis: The delay reduction at source
nodes, convergence rates, and utility-optimality results in
Theorems 1–3 in the single-hop case can be generalized to
the multi-hop cases. Also, their proofs follow the same steps
and arguments but with more complicated notation. Due to
space limitation, we omit these results and their proofs in
this paper for brevity.

6. NUMERICAL RESULTS
In this section, we conduct some numerical studies to ver-

ify the theoretical results presented in Section 4. To bet-
ter visualize the insights of our theoretical results and not
being blurred by random noises, we first use a 4-link non-
fading cellular network as an example. We assume that each
link has unit capacity and only one link can be activated in
each time-slot. We use log(0.001 + a) as the utility func-
tion for each link, i.e., the well-known proportional fairness
metric [6]. Due to the symmetry of the setting, the optimal
congestion control rates are ā∗1 = ā∗2 = ā∗3 = ā∗4 = 1

4
. To see

the impact of β on delay and convergence, we let K = 25
and increase β from 0 to 0.99 (β = 0 corresponds to QCA).
Due to the symmetry of the setting, we only plot the re-
sults of link 1. As shown in Figure 2, as β increases, the

average queue-lengths are 100.1, 50.1, 20.2, and 1.1, respec-
tively, which confirm the (1−β)–fraction reduction result in
Theorem 1. We see from Figure 3 that, for all choices of β,
the congestion control rates with different β’s all converge
to the same optimal solution, confirming Theorem 2 that
utility-optimality is not affected byβ. However, varying β
significantly affects the convergence speed: As β increases
from 0 to 0.99, the convergence speed initially increases and
then decreases. Particularly, we see from Figure 2 and Fig. 3
that, by letting β = 0.99, we achieve both utility-optimality
and low-delay at the expense of slower convergence, hence
confirming the three-way performance trade-off. Next, we
increase K from 25 to 100 and conduct another set of ex-
periments on the same network. The results are shown in
Figure 4 and Figure 5, respectively. With a larger K, the
congestion control rates again converge to the same optimal
solution with a smaller variance, but at the cost of larger de-
lay and slower convergence, again confirming Theorems 1–3.

Now, we test our Nesterovian algorithm in a larger 15-
user cellular downlink system with quasi-static block fading
(channel states vary from one slot to the next but remain
constant in each slot). Again, we assume that only one user
can be activated in each time-slot. First, we let K = 100
and set beta to 0 (i.e., QCA), 0.35, 0.65, 0.95, respectively.
For fewer random noise, we only plot the congestion control
rate and queue-length of user 1 in Figure 6 and Figure 7, re-
spectively. In Figure 6, as β grows, the queue-length again
decreases monotonically and follows the (1− β)-fraction re-
duction in Theorem 1. In Figure 7, the congestion control
rates under different β’s all converge to the same optimal so-
lution, which is approximately 5

15
= 1

3
. Next, we increases

K to 300 and conduct another set of experiments. The re-
sults are illustrated in Figure 8 and Figure 9, respectively.
We can see that, with a larger K, the congestion control
rates again converge to the same optimal solution with a
smaller variance, but at the cost of larger delay and longer
convergence time, again confirming Theorems 1 and 2.

Finally, we compare the steady-state queue-length scal-
ings with respect to K under QCA and our Nesterovian
algorithm, respectively. We let β ↑ 1 as β = 1 − 1√

K
as K

increases. In Figure 10, we can see that the total queue-
length of QCA exhibits the expected O(K) linear scaling
and is much larger than that of our Nesterovian approach.
Figure 11 plots the zoom-in view of the Nesterovian curve in
Figure 11. We can see that the total queue-length scales as
8
√
K, perfectly matching the O(

√
K) result in Theorem 1.

7. CONCLUSION
In this paper, we have developed a Nesterovian algorith-

mic framework for stochastic network optimization. Com-
pared to the traditional queue-length-based approaches, our
Nesterovian algorithmic framework offers not only utility-
optimality and queue-stability, but also dramatic delay re-
duction and fast convergence. Further, our proposed Nes-
terovian algorithmic framework that is well-suited for im-
plementation in practice. We rigorously proved the utility-
optimality of the proposed Nesterovian algorithmic frame-
work and characterized the delay reduction and convergence
speed performances; Also, we offered design rules for opti-
mal selection of systems parameters, as well as insights on
a three-way trade-off between utility-optimality, delay, and
convergence. Collectively, these results shed lights on a new
cross-layer network optimization theory that based on the
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Nesterov’s AGD method. Nesterovian cross-layer network
optimization is an exciting and yet under-explored area. In
our future research, we will further explore how to incor-
porate other Nesterovian variants into stochastic network
control and optimization and investigate tight queue-length
upper bounds rather than Big-O characterizations.
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APPENDIX
A. PROOF OF PROPOSITION 1

As stated in Section 4.4, in R2N , the Nesterovian update
in (11) can be rewritten as:

z[t+1] = Γ(β)z[t]+Γ′(β)

[
∆q[t]

∆q[t− 1]

]
+

[
u[t]
0N

]
. (53)

For convenience, we define ∆q̃[t] ,
[
∆q>[t]+u[t], ∆q>[t−

1]
]>

. Then, the right-hand-side of (53) can be written as:

z[t+ 1] = Γ(β)z[t] + Γ′(β)∆q̃[t]. (54)

Also, based on the queueing evolution in (5), we can further
explicitly express ∆q̃[t] as follows:

∆q̃[t] =

[
a[t]− s[t] + u′[t] + u[t]

a[t− 1]− s[t− 1] + u′[t− 1]

]
, (55)

where a[t] , [a1[t], . . . , aN [t]]>, s[t] , [s1[t], . . . , sN [t]]>, ∀t,
and u′[t] , [u′1[t], . . . , u′N [t]]>, ∀t, represents the projection
term in (5), meaning the unused services in each time-slot.

Also, it can be readily verified that Γ′(β) has only two
distinct eigenvalues 0 and (1 + β). Hence, the largest eigen-
values of Γ′(β) is bounded by 2 since β ∈ [0, 1). Due to the
non-expansive properties of the projection terms u′[t] and
u[t], we further have that

‖∆q̃[t]‖ ≤ ‖ã[t]− s̃[t]‖, (56)



where ã[t] ,
[
a>[t], a>[t−1]

]>
and s̃[t],

[
s>[t], s>[t−1]

]>
.

Now, consider the conditional expectation of the one-slot
Lyapunov drift in (24), for which we have:

E{∆V (z[t])|z[t]} =
1

2
E
{
‖z[t+ 1]‖2 − ‖z[t]‖2|z[t]

}
=

1

2
E
{

(z[t+ 1]− z[t])>(z[t+ 1] + z[t])|z[t]
}

(a)
=

1

2
E
{

[(Γ(β)− I)z[t] + Γ′(β)∆q̃[t]]>{
[(Γ(β) + I)z[t] + Γ′(β)∆q̃[t]]|z[t]

}
=

1

2
E
{
z>[t](‖Γ(β)‖2 − I)z[t] + z>[t](2Γ(β)Γ′(β))∆q̃[t]

+ ‖Γ′(β)∆q̃[t]‖2|z[t]
}

(b)

≤ 1

2
E
{

4z>[t]∆q̃[t] + 4‖∆q̃[t]‖2|z[t]
}

(c)

≤ E
{

2‖ã[t]− s̃[t]‖2 + 2
〈
(ã[t]− s̃)[t], z[t]

〉∣∣∣z[t]
}

= 2z>[t]E{ã[t]−s̃[t]
∣∣z[t]}+2E

{
‖ã[t]‖2+‖s̃[t]‖2

∣∣z[t]
}
, (57)

where (a) follows from (54), (b) follows the spectral prop-
erty of Γ(β) in Lemma 2 (i.e., the eigenvalues of Γ(β) are
less or equal to 1), and and (c) from the non-expansive
property of the projection terms. Further, from the sec-
ond moment constraint of congestion control in (10) in our
Nesterovian algorithm, we have E{‖ã[t]‖2| z[t]} ≤ 2AN .
From the assumption that sn[t] ≤ smax, we can conclude

that E{‖s̃[t]‖2|z[t]} ≤ 2N(smax)2. Hence, by defining B ,
2N [A+ (smax)2] (Notice here that B is independent of K),
we have:

E{∆V (z[t])|z[t]} ≤ 2z>[t]E{ã[t]− s̃[t]
∣∣z[t]}+B

(a)
= 2z>[t]

×
(
E{ã[t]|z[t]}−s̃∗

)
+E{2z>[t]

(
s̃∗−s̃[t]

)∣∣z[t]
}
+B, (58)

where s̃∗ , [(s∗)>, (s∗)>]> and (s∗,w∗) is a pair of optimal
primal and dual solutions to Problem D-CCS. In (58), (a)
follows from adding and subtracting s̃∗ as well as the fact
that ã[t] is independent of the channel state and determined
solely by w[t]. Consider the term z>[t]

(
s̃∗ − s̃[t]

)
in (58).

From the design of the scheduler in (8), we have the pair of
relationships holding true:(

w∗
)>

s∗ ≥
(
w∗
)>

s[t],
(
w[t]

)>
s[t] ≥

(
w[t]

)>
s∗.

Adding these two inequalities and rearranging terms yields:(
w[t]−w∗

)>(
s∗ − s[t]

)
≤ 0. It then follows that

z>[t]
(
s̃∗ − s̃[t]

)
= [(w[t]−w∗)>, (w[t− 1]−w∗)>]×{[

s∗

s∗

]
−
[

s[t]
s[t− 1]

]}
=

t∑
τ=t−1

(
w[τ ]−w∗

)>(
s∗−s[τ ]

)
≤ 0

Hence, we can further rewrite (58) as:

E{∆V (z[t])|z[t]} ≤ 2z>[t]
(
E{ã[t]|z[t]} − s̃∗

)
+B =

t∑
τ=t−1

N∑
n=1

2
(
wn[τ ]− w∗n

) [
U
′−1
n

(
wn[τ ]

K

)
− U

′−1
n

(
w∗n
K

)]
+B.(59)

Since Un(·) is concave and increasing, ∀n, we have(
wn[τ ]− w∗n

)> [
U
′−1
n

(
wn[τ ]

K

)
− U

′−1
n

(
w∗n
K

)]
≤ 0.

Thus, by using Cauchy-Schwatz inequality, we can equiva-
lently rewrite (59) as:

E{∆V (z[t])|z[t]} ≤ −
t∑

τ=t−1

N∑
n=1

2 |wn[τ ]− w∗n| ×∣∣∣∣U ′−1
n

(
wn[τ ]

K

)
− U

′−1
n

(
w∗n
K

)∣∣∣∣+B. (60)

By the strong convexity of −Un(·) (cf. Eq. (7)) and the
Lipschitz continuity of U ′n(·), we have

φ |an,1 − an,2| ≤
∣∣U ′n (an,1)− U ′n (an,2)

∣∣ ≤ Φ |an,1 − an,2| .

Therefore, by the inverse function lemma, we have

1

Φ

∣∣∣∣wn[t]

K
− w∗n

K

∣∣∣∣ ≤ ∣∣∣∣U ′−1
n

(
wn[t]

K

)
− U

′−1
n

(
w∗n
K

)∣∣∣∣
≤ 1

φ

∣∣∣∣wn[t]

K
− w∗n

K

∣∣∣∣ . (61)

Hence, we can further upper-bound (60) as:

E{∆V (z[t])|z[t]} ≤ − 2

ΦK

t∑
τ=t−1

N∑
n=1

(wn[τ ]− w∗n)
2

+B

=− 2

ΦK

t∑
τ=t−1

‖w[τ ]−w∗‖2 +B. (62)

Now, suppose that
∥∥w[τ ]−w∗

∥∥ ≥ c√K, τ = t− 1, t, where
c will be specified shortly. Then, we have

1∥∥w[τ ]−w∗
∥∥ ≤ 1

c
√
K
, τ = t− 1, t.

From (62), we that

E{∆V (z[t])|z[t]}≤− 2

Φ
√
K

t∑
τ=t−1

[∥∥w[τ ]−w∗
∥∥∥∥w[τ ]−w∗

∥∥
√
K

+
B

2

]

= − 2

Φ
√
K

t∑
τ=t−1

∥∥w[τ ]−w∗
∥∥[∥∥w[τ ]−w∗

∥∥
√
K

+
BΦ
√
K

2
∥∥w[τ ]−w∗

∥∥
]

≤ − 2

Φ
√
K

t∑
τ=t−1

∥∥w[τ ]−w∗
∥∥(c− BΦ

2c

)
. (63)

Therefore, by choosing c >
√

(1/2)BL, we have

E{∆V (z[t])|z[t]} ≤ − 2δ̂

Φ
√
K

t∑
τ=t−1

∥∥w[τ ]−w∗
∥∥ (64)

for some δ̂ = c − BL
2c

> 0. Plugging in c >
√

(1/2)BΦ to

define a ball B , {w :
∥∥w −w∗

∥∥ ≤√(1/2)BΦK}, we have

E{∆V (z[t])|z[t]} ≤ − δ√
K

[∥∥w[t]−w∗
∥∥+

‖w[t− 1]−w∗‖
]
, if w[t] ∈ Bc. (65)

where δ , 2δ̂
Φ

. On the other hand, when
∥∥w[τ ] − w∗

∥∥ ≤√
(1/2)BΦK, τ = t− 1, t, it trivially holds that

− δ√
K

∥∥w[t]−w∗
∥∥ ≤ η, τ = t− 1, t, (66)

for some η > 0. Combining (65) and (66) yields the result
stated in Proposition 1. This completes the proof.


