
Exploring Best Arm with Top Reward-Cost Ratio in
Stochastic Bandits

Zhida Qin†, Xiaoying Gan†, Jia Liu‡, Hongqiu Wu†, Haiming Jin†, Luoyi Fu†
†Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China

‡Department of Computer Science, Iowa State University, Ames, IA, USA
Email: †{zanderqin, ganxiaoying, Wu.Liverpool, jinhaiming, yiluofu}@sjtu.edu.cn, ‡jialiu@iastate.edu

Abstract—The best arm identification problem in multi-armed
bandit model has been widely applied into many practical
applications, such as spectrum sensing, online advertising, and
cloud computing. Although lots of works have been devoted into
this area, most of them do not consider the cost of pulling
actions, i.e., a player has to pay some cost when she pulls
an arm. Motivated by this, we study a ratio-based best arm
identification problem, where each arm is associated with a
random reward as well as a random cost. For any δ ∈ (0, 1),
with probability at least 1−δ, the player aims to find the optimal
arm with the largest ratio of expected reward to expected cost
using as few samplings as possible. To solve this problem, we
propose three algorithms: 1) a genie-aided algorithm GA; 2)
the successive elimination algorithm with unknown gaps SEUG;
3) the successive elimination algorithm with unknown gaps and
variance information SEUG-V, where gaps denote the differences
between the optimal arm and the suboptimal arms. We show that
for all three algorithms, the sample complexities, i.e., the pulling
times for all arms, grow logarithmically as 1

δ
increases. Moreover,

compared to existing works, the running of our elimination-type
algorithms is independent of the arm-related parameters, which
is more practical. In addition, we also provide a fundamental
lower bound for sample complexities of any algorithms under
Bernoulli distributions, and show that the sample complexities
of the proposed three algorithms match that of the lower bound
in the sense of log 1

δ
. Finally, we validate our theoretical results

through numerical experiments.

I. INTRODUCTION

The multi-armed bandit (MAB) problem has been exten-
sively studied in recent decades. Classic MAB formulation
is an abstraction of balancing exploration vs. exploitation
under uncertainty, which has shown its applications in various
areas, such as channel selection [2], [27], medical trials [30],
cloud computing [7], and crowdsourcing [4], [20]. Generally,
a bandit player faces a set of arms with unknown distributions.
Based on the past observations and selection history, the player
adaptively pulls arms and receives random reward until some
criteria is met or the budget runs out. Depending on different
objectives, existing works on MAB can be classified into
two categories: i) cumulative regret minimization (the regret
denotes the deviations of suboptimal arms to the optimal one);
and ii) pure arm exploration. i.e., finding the optimal arm
within a fixed budget or a fixed confidence level.

Surprisingly, despite numerous works on pure exploration
problems, few works focus on the best arm exploration based
on reward to cost ratio, whose application are prevalent
in daily life. Take the opportunistic scheduling in wireless
communication as an example: A transmitter hopes to choose
the best channel among a number of candidates to transmit.

However, the channel state information is often unknown to
the transmitter and needs to be probed. The quality of each
channel is characterized by the SNR (signal to noise ratio). At
each probing round, the transmitter sends some pilot symbols
to the receiver. The receiver will calculate the SNR value by
measuring the corresponding signal and noise power levels
(see, e.g., [32] for signal and noise power measurement).
Based on the past selection history and observations, the
transmitter adaptively choose its sampling in the next round
until the channel with the largest empirical SNR value is
selected with certain confidence level. This problem can be
perfectly formulated as a best arm identification problem with
reward to cost ratio. Each channel can be viewed as an
arm and its quality depends on the ratio of reward to cost,
where its reward corresponds to the signal power and the
cost corresponds to the noise power. Besides opportunistic
scheduling, there are many other applications that can be
modeled as MAB with best reward to cost ratio exploration
problem (see more applications in [14]).

Given the significance of the applications, in this paper, we
study the best arm identification with reward to cost ratio in
stochastic bandit with fixed confidence δ. In our MAB model,
each arm is associated with a random reward and a random
cost. Specifically, a bandit machine player faces a set of K
arms. Once pulling an arm, the player will receive a random
reward and pay a random cost from unknown distributions.
After a certain pulling times, the player needs to distinguish
these K arms and find the one with the top reward to cost
ratio with probability at least 1 − δ. By defining the pulling
times of an algorithm as its sample complexity, the objective
of the player is to design an algorithm and find the optimal
arm within the confidence level and with minimum sample
complexity.

To the best of our knowledge, this is the first work to explore
the best arm with reward to cost ratio with fixed confidence
setting. Considering a ratio-based arm setting brings much
challenges for this new problem. This is because during the
playing process, the player has to observe both the rewards
and costs of arms and estimate their corresponding expecta-
tions simultaneously. Such two-dimensional observations will
dramatically augment the uncertainty and inevitably result in
more samplings to distinguish multiple arms. As a result, the
sample complexity for finding the best arm will be signifi-
cantly increased. Thus, to achieve the designed objective, the
player naturally faces a dilemma: how to achieve accurate
estimations of both rewards and costs to select the best arm



and minimize the sample complexity as few as possible?
Although many studies have been devoted to the best arm
identification problem in MAB model, most of them assume
that each arm is only related to a random reward and cannot
be directly extended to our settings.

To address these challenges, we adopt the variance in-
formation of arms and a refined gaps (i.e., the deviations
between suboptimal arms to the optimal arm) to deal with
the estimations of expectations for both rewards and costs.
The variance information includes the empirical variances
of both reward and cost for each arm. The refined gaps,
which were proposed in [14], characterize the ratio differences
between optimal arm and suboptimal arms from both the
reward and cost perspectives. By carefully incorporating these
two characteristics into our algorithm design, we achieve the
finer-grained empirical means of both rewards and costs with
fewer sampling times and develop three algorithms to select
the best arm. Further, we prove that our algorithms could
not only accurately estimate the expectations of rewards and
costs and identify the best arm, but also achieve significantly
reduced sample complexity. In addition, compared with the
existing Upper Confidence Bound (UCB) type algorithms, our
elimination-type algorithms are more challenging as they are
independent of the arm-related parameters and more practical.

Our main contributions can be summarized as follows.
• We propose three algorithms with different assumptions

of arms’ gap knowledge to select the optimal arm with
probability at least 1 − δ for any δ ∈ (0, 1). We prove
that their sample complexities are all on the order of
O(c log 1

δ ), where c is a constant depending on problem
instances. Our theoretical results are verified by the
numerical simulations.

• Compared to existing works, our elimination-type al-
gorithms have two advantages: i) the use of variance
information and refined gaps lead to significantly reduced
sample complexity; ii) the running of algorithms is inde-
pendent of the arm distribution parameters, which makes
them more applicable to the real world applications.

• Assuming the reward and cost distributions for the arms
follow Bernoulli distributions, we provide a fundamental
lower bound of the sample complexities of any algorithm-
s. Moreover, we prove that the sample complexity of the
lower bound match those of the three proposed algorithms
via both theoretical analysis and numerical experiments.

The rest of the paper is organized as follows. In Section
II we review the related works. we present the problem
formulation in Section III. In Section IV, we propose three
algorithms and establish their corresponding sample complex-
ity. A fundamental lower bound is proved in Section V. We
conclude the paper in Section VIII.

II. RELATED WORKS

The best arm identification problem in MAB has been
extensively investigated in the past decades [3], [10], [17],
[28]. Generally speaking, these studies can be divided into
two settings: fixed confidence and fixed budget settings.

Fixed confidence: In this setting, the player needs to find
the best arm under a fixed confidence level δ with minimal
sampling times. In the original work [16], Maron et al.
proposed the Hoeffding races technique to find the best model
for training a set of data. Based on this, Mnih et al. in [19]
and Maurer et al. [21] utilized the variance information and
proposed Bernstein bounds to further reduce the sample com-
plexity. Later, different variants of MAB models are studied on
this setting, such as selecting a top-m arms in one bandit [13],
the linear banidts [11], the combinatorial bandits [28] and the
bandit with bipartite graphs [33]. Another line of works paid
attention to the probably approximately correct (PAC) bound,
which aims to find an ε-optimal arm with probability of at least
1 − δ. Even-Dar et. al in the seminal work [1], [22] proved
that the sample complexity is on the order of O(Kε2 log 1

δ ).
Kalyanakrishnan et. al in [24], [25] proposed a variant of
explore-k problem, and analyzed the upper and lower bounds
of sample complexity. Ren. et. al in [15] and Chaudhuri et.
al [8] studied the infinitely multi-armed bandit. Different with
their traditional bandit settings, our work is focused on the
reward to cost ratio of arms. In addition, different with [24],
[25], we apply the changing distributions and KL divergence
to analyze the lower bound.

Fixed budget: In this setting, the player aims to find the best
arm within a fixed number of sampling. The seminal work is
[6], where Madani et. al proposed the Budgeted Multi-armed
Bandit Problem. Bubeck et. al in [18], [29] discussed the
relationships between pure exploration and cumulative regret.
Later, Audibert et. al in [5] proved that the error probabilities
are bounded by O(exp(−cn)), where n is the fixed budget
and c is arm-related constant. Follow-up works [12], [26], [31]
extended the problem into different bandit models. However,
none of these works takes the reward to cost ratio of arms into
consideration.

The most related line of works to ours are [14] and [9]. Xia.
et. al in [14] aimed to identify the arm with the largest reward
to cost ratio under the fixed budget setting. However, our work
differs significantly from theirs in the following key aspects:
First, we incorporate the variance information into discarding
criteria design of elimination-type algorithm. By doing so,
we obtain finer-grained empirical means of both rewards and
costs with fewer sampling times. Second, the running of UCB-
type algorithm in [14] depends on the arm-related parameters,
which may not be realistic in practice. While our algorithms
have no such limitations. Last but not the least, our goal is to
find optimal arm with a fixed confidence level and a minimal
sample complexity. Li et al in [9] optimized the cumulative
regret based on the reward to cost ratio. In contrast, our work
is focused on the best arm identification.

III. PROBLEM FORMULATION

There are K arms contained in a set S , where S =
{1, 2, ...,K}. Each arm i ∈ S is characterized by a random
reward distribution as well as a random cost distribution, both
having a bounded support [0, 1]. In each round t, if arm i is
pulled, the player will receive a random reward value Xµ

i,t



at a random cost value Xc
i,t. For each arm i, we assume

that Xµ
i,t and Xc

i,t are independent with each other, and also
independent of the past samples of these two distributions.
For arm i, we use µi and σµi to denote the expectation and
variance of its reward distribution, i.e., µi = E{Xµ

i } and
σµi = E{(Xµ

i −µi)2}. Similarly, the expectation and variance
of cost distribution are denoted by ci and σci respectively, i.e.,
ci = E{Xc

i }, σci = E{(Xc
i − ci)2}. As the reward and cost

are bounded by [0, 1], we have {µi, ci, σµi , σci } ∈ (0, 1) for all
1 ≤ i ≤ K.

The optimal arm is defined as the one with the largest ratio
of the expected reward to the expected cost. For simplicity,
we assume that there is only one optimal arm. Without loss
of generality, we assume that µ1

c1
> µ2

c2
> ... > µK

cK
. Note

that such order information is assumed for the convenience
of theoretical analysis. The player in real world has no such
information a priori. In addition, our algorithms still work
without such assumptions.

Next, we define the sample complexity and present our
problem definition accordingly.

Definition 1: Sample Complexity: For a best arm iden-
tification problem in MAB model, the sample complexity is
defined as the pulling times of all arms when the best arm is
selected.

Problem definition: In a best arm with reward to cost ratio
identification problem, given a set of K arms and a confidence
level δ, we aim to find the arm with the largest reward to cost
ratio with probability at least 1 − δ and minimum sample
complexity.

IV. ALGORITHM DESIGN

In this section, we will first present a genie-aided algorithm
with known gaps information, where the gaps denotes the
deviations between suboptimal arms to the optimal arm. Final-
ly, based on the insights from the algorithm, two successive
elimination algorithms with unknown gaps are designed.

A. Preliminaries

Before we present these algorithms, we introduce some
useful definitions and notation. First, for any arm i ∈ S, t
is the pulling rounds, let µ̂i,t, ĉi,t be the empirical means of
reward and cost, respectively. i.e.,

µ̂i,t =
1

t

t∑
s=1

Xµ
i,s, and ĉi,t =

1

t

t∑
s=1

Xc
i,s. (1)

Next, following [14], we introduce two types of gaps
between the optimal arm and a suboptimal arm:

∆i =
µ1

c1
− µi
ci
, and ξi =

c1ci∆i

µ1 + c1 + µi + ci
. (2)

Clearly, ∆i denotes the gap between the optimal arm with arm
i. ξi also characterizes the differences between the best arm
and other arms. The meaning of ξi is that increasing c1, µi
with ξi, and decreasing µ1 and ci with ξi, we can make the
ratio of the best arm equals to that of arm i, i.e.,

µ1 − ξi
c1 + ξi

=
µi + ξi
ci − ξi

. (3)

Note that for i ≥ 2, we can get µ1 > ξi and ci > ξi. In

addition, we define that ξ1 = mini≥2 ξi and H1 =
K∑
i=1

ξ−2
i .

Finally, following the Theorem 11 in [21], we can show the
following useful Bernstein bound:

Bernstein bound: For an random variable X with t samples,
let X̂t be the average over these t sample values and σX is
the variance of X . Then, for any δ ∈ (0, 1), with probability
at least 1− δ we have

E[X] ≤ X̂t +

√
2σX log 2

δ

t
+

7 log 2
δ

3(t− 1)
. (4)

B. Algorithm Design with Known Gaps

In this subsection, we focus on a genie-aided scenario that
the expectations of reward and cost are known, while their
matching to arms are still unknown. Although such a scenario
maybe not realistic in real world applications, it provide the
insights for the subsequent algorithm design with unknown
gaps. Specifically, consider a genie-aided algorithm based on
the hidden information {ξi}Ki=1.

Algorithm 1 Genie-Aided Algorithm
Input: The K arms set S, and a confidence level δ.
Output: The optimal arm i∗.
1: for i = 1 to K do
2: Pull arm i for ti = d 1

2ξ2i
log 2K

δ e times.
3: Calculate µ̂i and ĉi based on Eq. (1).
4: end for
5: return i∗ = arg maxi∈S

µ̂i
ĉi

.

In the genie-aided algorithm, by using the Hoeffding bound
and the gaps knowledge, one can compute the sampling times
for each arm and accurately estimate the expectations of both
reward and cost within the confidence level. Therefore, the
optimal arm can be selected by comparing the empirical means
of reward and cost for each arm. For simplicity, we use GA
to denote Genie-Aided algorithm in the rest of this paper. The
following theorem shows the sample complexity of the GA
algorithm.

Theorem 1: To return an optimal arm with probability
at least 1 − δ, the sample complexity for GA algorithm is

O(H1 log 2K
δ ), where H1 =

K∑
i=1

ξ−2
i .

Proof: If the output of naive selection algorithm is a
suboptimal arm, we can know that the following event EGA
happens,

EGA =

K⋃
i=2

( µ̂i
ĉi
≥ µ̂1

ĉ1

)
, (5)

which means at least one of the following two events is true,
µ̂i
ĉi
≥ µ1 − ξi
c1 + ξi

or
µ̂1

ĉ1
≤ µi + ξi
ci − ξi

. (6)

Intersecting the event EGA and the events in Eq. (6), we can



obtain that

EGA =

K⋃
i=2

{ µ̂i
ĉi
≥ µ̂1

ĉ1

}
⊆

K⋃
i=2

{( µ̂1

ĉ1
≤ µ1 − ξi
c1 + ξi

)⋃( µ̂i
ĉi
≥ µi + ξi
ci − ξi

)}
.

(7)

Decomposing Eq. (7), we obtain:

EGA ⊆
K⋃
i=2

{
(µ̂1 ≤ µ1 − ξi) ∪ (ĉ1 ≥ c1 + ξi)

∪ (µi ≥ µi + ξi) ∪ (ĉi ≤ ci − ξi)
}

=

K⋃
i=2

{
(µ̂i ≥ µi + ξi) ∪ (ĉi ≤ ci − ξi)

}
∪ (µ̂1 ≤ µ1 − ξi) ∪ (ĉ1 ≥ c1 + ξi).

(8)

In the GA algorithm, each arm i is pulled ti = d 2
ξ2i

log 2K
δ e

times, which is deterministic. Thus, according to the Hoeffding
inequality, we have that

P(EGA) ≤
K⋃
i=2

{
P(µi ≥ µi + ξi) + P(ĉi ≤ ci − ξi)

}
+ P(µ̂1 ≤ µ1 − ξi) + P(ĉ1 ≥ c1 + ξi)

≤ 2

K∑
k=1

exp(−2ξ2
i ti) = δ,

(9)

which means that under the GA algorithm, the optimal arm
will be selected with probability at least 1 − δ. The proof is
complete.

Remark 1. From the Theorem 1, we can see that the
sample complexity of the GA algorithm is on the order of
O(log 1

δ ), which grows logarithmically with respect to 1
δ . In

addition, the sample complexity of the GA algorithm depends
the parameters ξi (1 ≤ i ≤ K). As we can see later, ξi also
plays an important role in the proofs of other algorithms. In

fact, the quantity H1 =
K∑
i=1

ξ−2
i characterizes of the hardness

of the problem. We define H1 as the complexity hardness of
the GA algorithm.

The limitation of the GA algorithm is that a player needs
to know all gaps in advance, which is not realistic in practice.
To overcome this limitation, we will develop two algorithms
without knowing {ξi}Ki=1 in the following subsection.

C. Algorithm Design with Unknown Gaps

In this subsection, we propose the successive elimination
algorithm without prior gaps information. The basic idea of
elimination-type algorithms (e.g. [1], [12]) is to sequentially
eliminate suboptimal arms. We adopt arm-elimination into
our algorithm design to overcome the limitations of the GA
algorithm. The successive elimination algorithm are conducted
as follows. In each round, all the arms are uniformly pulled
one time. Then, these arms whose ratios are smaller than a
certain threshold from the optimal arm will be eliminated.
Upon the completion of the algorithm, the final surviving arm
is the presented optimal one. Note that in our algorithm, the

threshold depends on the round number as well as the δ, and
is independent of the gaps parameter {ξi}Ki=1.

We will firstly present a βt-modulated unified algorithmic
framework in Algorithm 2, where βt is the threshold relat-
ed parameters. Based on this framework, we develop two
elimination-type algorithms with their specified βt.

Algorithm 2 βt-Modulated Successive Elimination Algorithm
Framework
Input: The arm set S and a confidence level δ.
Output: S.
1: Set t = 1.
2: while |S| > 1 do
3: Pull each arm in S once. For any arm i ∈ S , update

the µ̂i,t and ĉi,t.
4: Let µ∗

t

c∗t
← maxi

µ̂i,t
ĉi,t

and i∗ ← arg maxi
µ̂i,t
ĉi,t

.
5: For each algorithm, compute the specified βt.
6: if µ∗t − 2βt ≤ 0 then
7: Go to Line 16
8: end if
9: for each arm i in S \ {i∗} do

10: if ĉi,t − 2βt ≤ 0 then
11: Back to Line 9
12: else if µ̂∗

t−2βt
ĉ∗t+2βt

>
µ̂i,t+2βt
ĉi,t−2βt

then
13: S ← S \ {i}.
14: end if
15: end for
16: t← t+ 1
17: end while
18: return S

In Algorithm 2 Line 4, at each round, if the number
of optimal arm is larger than 1, we randomly pick one of
them. Moreover, in Line 5 of Algorithm 2, the expression
µ∗t − 2βt may be smaller than zero. This means that zero is
within the lower confidence bound of best arm reward with
high probability. Thus, we should continue to pull all arms
and obtain more accurate estimations of rewards. The same
explanations are also applicable to the Line 10 in Algorithm
2.

The first algorithm is named as SEUG (Successive
Elimination with Unknown Gaps) algorithm. The specified βt
of SEUG is defined as βt =

√
log 4K

δ

2t in Line 5 of Algorithm
2. In SEUG, as we will prove later, the βt and the discarding
criteria are carefully designed to make sure that the best arm
can be selected with probability at least 1 − δ. We present
the sample complexity of SEUG algorithm in the following
theorem.

Theorem 2: To return an optimal arm with probability at
least 1 − δ, the sample complexity for SEUG algorithm is

O(H1 log 4K
δ ), where H1 =

K∑
i=1

ξ−2
i .

Proof: Our proof is organized in three steps. First, we
prove that under a certain event, the optimal arm can be finally
selected with probability at least 1 − δ. Second, we show an



upper bound of pulling times for all the suboptimal arms. In
the last step, based on the results from the previous two steps,
we calculate the sample complexity.

Step 1: We define an event E1 as:
E1 , {| µ̂i,t − µi |≤ βt, | ĉi,t − ci |≤ βt,∀i ∈ S,∀t ∈ T },

where the set T , {1, 2, ..., T}.
According to the Hoeffding inequality and the union bound,

the probability for event E1 can be lower bounded by:

P(E1) ≥ 1− 4TK exp(−2tβ2
t ) ≥ 1− δ. (10)

Next, we prove that under the event E1, the optimal arm with
the best ratio of reward to cost can be identified. We assume
i is an arbitrary suboptimal arm and is deleted in round ti. It
is easy to see that for any suboptimal arm i, under the event
E1 and in any round t, we have that

µ̂1,t + βt
ĉ1,t − βt

>
µ1

c1
>
µi
ci
>
µ̂i,t − βt
ĉi,t + βt

. (11)

The inequality in (11) means that with probability at least
1 − δ, the optimal arm with the highest reward to cost ratio
will never be eliminated. Moreover, since βt decreases as t
increases, all suboptimal arms will be eliminated when t is
sufficiently large.

Step 2: Next, we establish an upper bound of the pulling
times for all suboptimal arms. Assume that a suboptimal arm
i is deleted in round ti. Under the event E1, we will show that

ti ≥
2 log 4K

δ

ξ2
i

. (12)

We prove Eq. (12) by contradiction. Assume that

ti <
2 log 4K

δ

ξ2
i

, (13)

which means that ξi < 2βti . According to Algorithm 2, if
arm i is deleted from the set S at ti, the condition µ̂1−βti

ĉ1+βti
≥

µ̂i,ti+βti
ĉi,ti−βti

is satisfied. Combined with the event E1, we can
conclude that

µ1 − 2βti
c1 + 2βti

≥ µ̂1 − βti
ĉ1 + βti

≥ µ̂i,ti + βti
ĉi,ti − βti

≥ µi + 2βti
ci − 2βti

. (14)

Further, combined with Eq. (2), we can obtain that
µ1 − 2βti
c1 + 2βti

≥ µ1 − ξi
c1 + ξi

=
µi + ξi
ci − ξi

≥ µi + 2βti
ci − 2βti

. (15)

From both the sides of the equality in Eq. (15), we can derive
that

ξi ≥ 2βti ⇒ ti ≥
2 log 4K

δ

ξ2
i

, (16)

which contradicts Eq. (13). Thus, Eq. (12) is proved.
Step 3: Let τ1 denote the sample complexity of SEUG

algorithm. Thus, τ1 =
∑K
i=1 ti = O(H1 log 4K

δ ), where

H1 =
K∑
i=1

ξ−2
i . The proof is complete.

Remark 2. From Theorem 2, we can see that the sample
complexity of SEUG also grows logarithmatically with 1

δ ,
which is of the same order as that of the GA algorithm. In
addition, we can see that both of their sample complexities

depend on H1. However, in practice, the SEUG algorithm
needs much more samples to identify the best arm. This is
because that the SEUG algorithm has no prior knowledge
about H1. Hence, to better estimate the differences between
arms and eliminate uncertainty, the player will sample more
times on each arm to narrow the empirical means of both
reward and cost, which results in a larger sample complexity.
This phenomenon will also be observed by the numerical
simulations.

As stated in the Remark 2, the uncertainty of gaps in
SEUG algorithm results in much higher sample complexi-
ty. To overcome this limitation, we consider to utilize the
variance information of both reward and cost to achieve
lower complexity. Intuitively, a suboptimal arm with small
variances of reward or cost needs a smaller number of rounds
to be deleted. To this end, we propose a variant of SEUG
algorithm, which incorporates the variances into the βt-index
and hence is called SEUG-V. Specifically, for arm i, we define
σ̂µi,t = 1

t−1

∑t
s=1(µi,s − µ̂i)2, σ̂ci,t = 1

t−1

∑t
s=1(ci,s − ĉi)2 to

be empirical variances for reward and cost, respectively. The
specified βt for arm i of SEUG-V in Algorithm 2 is defined
as

βµi,t =

√
log 2K

δ σ̂
µ
i,t

t
+

7 log 2K
δ

3(t− 1)
, (17)

βci,t =

√
log 2K

δ σ̂
c
i,t

t
+

7 log 2K
δ

3(t− 1)
. (18)

Based on the above definitions, in Algorithm 2, by substi-
tuting the expression (µ̂∗t − 2βt) with (µ̂∗t − 2βµi∗,t) in Line 6
and 12, the expression (ĉ∗t + 2βt) with (ĉ∗t + 2βci∗,t) in Line
12, the expression (µ̂i,t + 2βt) with (µ̂i,t + 2βµi,t) in Line 12,
the expression (ĉi,t − 2βt) with (ĉi,t − 2βci,t) in Line 12, we
can obtain the SEUG-V algorithm. The sample complexity is
presented in the following Theorem 3.

Theorem 3: To return an optimal arm with probability at
least 1 − δ, the sample complexity for SEUG-V algorithm is

O(H2 log 2K
δ ), where H2 =

∑K
i=1

log 2K
δ (σmax

i +

√
(σmax
i )2+

7ξi
3 )2

ξ2i
.

Proof: The proof process is similar to the proof of SEUG
algorithm. We divide this process into three steps and omit
some details for brevity.

Step 1: We define an event E2 as:
E2 ={| µ̂i,t − µi |≤ βµi,t, | ĉi,t − ci |≤ β

c
i,t,∀i ∈ S,∀t ∈ T }.

According to the empirical Bernstein bound (Theorem 11,
[21]) and the union bound, E2 holds with probability at least
1− δ. Thus, similar to the proof of SEUG algorithm, step 1,
under event E2, we have

µ̂1,t + βµ1,t
ĉ1,t − βc1,t

>
µ1

c1
>
µi
ci
>
µ̂i,t − βµi,t
ĉi,t + βci,t

. (19)

which means that under event E2, the best arm will never be
deleted with probability at least 1 − δ. Moreover, with the
growth of rounds, all suboptimal arms will be deleted.

Step 2: Under event E2, we present an upper bound for the
pulling times of each arm i ∈ S. By contradiction, to delete



a suboptimal arm i, the following condition has been to be
satisfied:

ξi ≥ 2 max{βµ1,ti , β
c
1,ti , β

µ
i,ti
, βci,ti}, 2 ≤ i ≤ K. (20)

Similar to the step 2 in SEUG algorithm, assume that arm
i is deleted in round tvi . Combined with Eqs. (17) and (18),
we have

tvi ≥
log 2K

δ (σmax
i +

√
(σmax
i )2 + 7ξi

3 )2

ξ2
i

, 2 ≤ i ≤ K, (21)

where σmax
i = max{σµ1 , σc1, σ

µ
i , σ

c
i }. Let τv to be the sample

complexity of SEUG-V algorithm. we have,

τv = tv1 +

K∑
i=2

tvi = O(H2 log
2K

δ
), (22)

where H2 =
∑K
i=1

log 2K
δ (σmax

i +

√
(σmax
i )2+

7ξi
3 )2

ξ2i
. The proof is

complete.
Remark 3. As we can see in Theorem 3, the SEUG-V

algorithm introduces an new notion of hardness H2, which is
related to both {ξi}Ki=1 and variance information. It is easy
to check that H1 ≥ H2 if both rewards and costs are in the
range of [0, 1]. Therefore, compared to the SEUG algorithm,
the sample complexity will be significantly reduced in SEUG-
V. However, since it still cannot accurately estimate the gaps,
its sample complexity is larger than that of GA algorithm. Such
results will also be validated by the numerical simulations.

V. LOWER BOUND OF SAMPLE COMPLEXITY

In this section, we present a fundamental lower bound for
the sample complexity. We assume the both the rewards and
costs of all the arms follow the Bernoulli distribution, which
has been widely used in the lower bound analysis in multi-
armed bandit problems. Similar to [14], we define a series of
notation as follows.

First, we introduce the Kullback-Leibler divergence (KL-
divergence) under the Bernoulli distributions. For two Bernoul-
li distributions with parameters p, q, their KL-divergence is
defined as

D(p‖q) = p log
p

q
+ (1− p) log

1− p
1− q

, p, q ∈ (0, 1). (23)

Second, for any i ≥ 2 and γ > 0 we define a constant εi(γ)
as follows

εi(γ) =
c1ci∆i

γµ1 + c1
. (24)

Intuitively, εi(γ) is an adaptive version of ∆i: By increasing
µi by εi(γ) and decreasing ci by γεi(γ), one can make arm i

to be the best arm, i.e., µ1

c1
= µi+εi(γ)

ci−γεi(γ) .
In MAB literature (e.g., [5], [23]), the key element to estab-

lish a distribution-dependent lower bound lies in the changes
of distributions. Specifically, it is related to the probabilities of
the same event under two different bandit models. Thus, we
use ν and v to denote two bandit models respectively, which
are both a product of Bernoulli distributions. Precisely,

ν = ⊗Ki=1Ber(νµi ) × ⊗Ki=1Ber(νci ),

v = ⊗Ki=1Ber(vµi ) × ⊗Ki=1Ber(vci ).
(25)

In Eq. (25), Ber(p) denotes the Bernoulli distribution with
parameter p. We use ⊗ and × to represent the products of
distributions. The term ⊗Ki=1Ber(νµi ) denotes the products
of K independent Bernoulli distribution, and the i-th one
has parameter νµi . Moreover, {νµi , νci , vµi , vci } ∈ (0, 1) for
1 ≤ i ≤ K.

In the best arm identification problem in our setting, the
player needs to design a mechanism to select the arm with
optimal reward to cost ratio. Similar to [23], we define a
algorithm A with a triplet A = {at, τ, a∗τ}, which is stated
as follows:

1) The sampling rule. Based on the historical observations, a
sampling rule decides those arms that are chosen to be sampled
at round t. Thus, the arm set St is Ft-measurable, where Ft =
σ{a1, X

µ
a1 , X

c
a1 , ..., at, X

µ
at , X

c
at} is a σ-algebra of historical

observations and selected arms.
2) The stopping rule. A stopping rule determines the end of

the sampling process and is represented by a stopping time τ .
τ is associated with Ft and P(τ < +∞) = 1.

3) The recommendation rule. A recommendation rule selects
the optimal based on the observation of Fτ . The final selected
arm at τ is denoted by a∗τ .

A. A Fundamental Lower Bound

Based on the above definitions, we assume Ti(t) =∑t
s=1 1(i ∈ as) is the number of sampling times for arm i up

to round t. Specifically, for an algorithm A with the stopping
time τ , Ti(τ) is the number of total samples for arm i when
A is stopped. For two bandit models ν, v and the history
observations, we can obtain the following lemma.

Lemma 1: For two bandit models ν, v with K arms, as-
sume τ is the stopping time based on the historical observation
Ft. For each event E ∈ Fτ ,

K∑
i=1

E[Ti(τ)](D(νµi ‖v
µ
i )+D(νci ‖vci ))≥D(Pν(E)‖Pv(E)). (26)

Proof: For an algorithm A with stopping time τ and
the corresponding observations and historical selections Fτ ,
we introduce the log-likelihood ratio Lτ of Fτ . According to
Theorem 8, [9], we have

Lτ =

K∑
i=1

Ti(τ)∑
s=1

log
νµi X

µ
i,s + (1− νµi )(1−Xµ

i,s)

vµi X
µ
i,s + (1− vµi )(1−Xµ

i,s)

+

K∑
i=1

Ti(τ)∑
s=1

log
νciX

c
i,s + (1− νci )(1−Xc

i,s)

vciX
c
i,s + (1− vci )(1−Xc

i,s)
,

(27)

where Xµ
i,s and Xc

i,s are the reward and cost sampled in
round s, respectively. According to the Lemmas 18, 19 in
[23], for any event E ∈ Fτ , one have that

Pv(E) = Eν [exp(−Lτ )1(E)]

= Eν [exp(−Lτ )1(E)|1(E) = 1]Pν(E)

= Eν [exp(−Lτ )|E ]Pν(E)

≥ exp(Eν [−Lτ |E ])Pν(E).

(28)



Thus, we can obtain that:

exp(Eν [−Lτ |E ]) ≥ log
Pν(E)

Pv(E)
. (29)

For any event E ∈ Fτ , E ∈ Fτ . Thus, the following equality
also holds

exp(Eν [−Lτ |E ]) ≥ log
Pν(E)

Pv(E)
. (30)

Combining Eqs. (29) and (30), we have,
Eν [Lτ ] = E[Lτ |E ]Pν(E) + Eν [Lτ |E ]Pν(E)

≥ Pν(E) log
Pν(E)

Pv(E)
+ Pν(E) log

Pν(E)

Pv(E)
,

= D(Pν(E)‖Pv(E)).

(31)

Moreover, according to Eq. (27) and Lemma 19 in [23],

Eν [Lτ ] = Eν
[ K∑
i=1

Ti(τ)∑
s=1

log
νµi X

µ
i,s + (1− νµi )(1−X

µ
i,s)

vµi X
µ
i,s + (1− vµi )(1−X

µ
i,s)

]
+ Eν

[ K∑
i=1

Ti(τ)∑
s=1

log
νciX

c
i,s + (1− νci )(1−Xc

i,s)

vciX
c
i,s + (1− vci )(1−X

µ
i,s)

]
=

K∑
i=1

E[Ti(τ)](D(νµi ‖v
µ
i ) + D(νµi ‖v

µ
i )).

(32)

Combing Eqs. (31) and Eq. (32), we can obtain the stated
results in Lemma 1. The proof is complete.

Next, we state the lower bound of sample complexity in the
following theorem.

Theorem 4: Let Γj = {γj |j ∈ {2, ...,K}, µj + εj(γ) <
1, cj − γεj(γ) > 0, γj ≥ 0}. For the best arm identification
problem with Bernoulli distributions, the sample complexity τ
of any algorithm A under fixed confidence level δ satisfies

E[τ ] ≥
K∑
j=1

D(1− δ‖δ)
D∗j

, (33)

where D∗j = supγj∈Γj{D(µj‖µj+εj(γ))+D(cj‖cj−γεj(γ))}
and D∗1 = minj={2,...,K} D∗j

Proof: To derive the lower bound, we specialize the bandit
model ν, v, and E . For an algorithm A with stopping time τ
and the corresponding Fτ , we have

ν = ⊗Ki=1Ber(µi)×⊗Ki=1Ber(ci);
v = vµ ⊗ vc,where

vµ = ⊗j−1
i=1 Ber(µi)⊗ Ber(µj + εj(γ) + α)⊗Ki=j+1 Ber(µi);

vµ = ⊗j−1
i=1 Ber(ci)⊗ Ber(cj − γεj(γ)− α)⊗Ki=j+1 Ber(ci),

(34)

where the γ and α are constrained by µj+εj(γ)+α ∈ (0, 1),
cj − γεj(γ)− α ∈ (0, 1) and j ≥ 2.

Based on above definitions, we can see that the optimal
arm in bandit model v is arm j instead of arm 1. Hence,
for any algorithms under fixed confidence δ, assume event
E , {1 = arg maxi

µ̂i,τ
ĉi,τ
} ∈ Fτ . Then Pν(E) ≥ 1 − δ, and

Pv(E) ≤ δ. Plugging notations into (26), we have that

E[Tj(τ)] ≥
D(Pν(E)‖Pv(E)

D(νµj ‖v
µ
j ) + D(νcj‖vcj )

≥ D(1− δ‖δ)
D(µj‖µj+εj(γ)+α)+D(cj‖cj−γεj(γ)−α)

.

(35)

For j ∈ {2, ...,K}, let Γj = {γj |j ∈ {2, ...,K}, µj+εj(γ) <
1, cj − γεj(γ) > 0, γj ≥ 0}. Let D∗j = supγj∈Γj{D(µj‖µj +
εj(γ)) + D(cj‖cj − γεj(γ))}. Taking α→ 0, we have

E[Tj(τ)] ≥ D(1− δ‖δ)
D∗j

. (36)

For j = 1, let D∗1 = minj∈{2,...,K}D
∗
j . Summing (36) over

all j ∈ {1, ...,K}, we obtain a lower bound of stopping time
τ :

E[τ ] =

K∑
j=1

E[Tj(τ)] ≥
K∑
j=1

D(1− δ‖δ)
D∗j

. (37)

The proof is complete.
Remark 4. In essence, the lower bound in Theorem 4

matches the sample complexity for the three proposed algo-
rithms on the order of log 1

δ . According to [23], in (33) of
Theorem 4, for any δ ∈ (0, 1), the expression D(1− δ‖δ)) ≥
log 1

2.4δ . Moreover, the denominator
∑K
j=1 1/D∗j depends on

the specific distribution parameters and is bounded. Thus, the
lower bound is on the order of Ω(log 1

δ ), which matches the
upper bounds from the proposed algorithms. This shows that
both of our algorithms are order-optimal with respect to δ.

B. Discussions

In this subsection, we discuss the asymptotic property of the
lower bound when the number of arms K grows. In Theorem
4, when δ is fixed, the numerator of the lower bound is a
constant, while the denominator is a linear function of K.
Thus, such lower bound grows linearly with K. This result,
however, is not consistent with the results of the three proposed
algorithms, as their sample complexities are on the order
of O(K logK). This loose lower bound is caused by the
imprecise estimation of the probability Pv(E) in the inequality
in (35). In our bandit model v, arm j is the optimal arm, and
arm 1 is one of K−1 suboptimal arms. Under any algorithms
with a fixed confidence δ, arm j will be finally selected with
probability at least 1 − δ. Moreover, since arm 1 is one of
the K − 1 suboptimal arms, the upper bound of Pv(E), i.e.,
the probability for arm 1 to be finally selected, is smaller than
δ. Such an overestimation leads to the mismatch of the lower
bound and the upper bounds of three algorithms.

Next, we show that the asymptotic performance with regard
to K depends on the specific bandit models. We apply two spe-
cial examples to analyze the impacts of different bandit models
on the asymptotic performance of the sample complexity of
lower bound with respect to K. By this way, we show that
under certain conditions, the lower bound matches the upper
bound as K grows. In the first example, we assume in bandit
model v, arm 1 dominates over the other K − 1 suboptimal
arms, in the sense that the ratio of the expected reward to
expected cost is much larger than the other suboptimal arms.
Therefore, Pv(E) → δ as K grows. Then, as we have stated
in the previous paragraph, the sample complexities of any
algorithms grow linearly with respect to K. On the contrary,
in the second example, we assume that in bandit model
v, the expected rewards and the expected costs for all the



K − 1 suboptimal arms are very similar. Thus, their ratios of
reward to cost are nearly the same. Under such circumstance,
Pv(E) → δ

K−1 with high probability. One can easily check
that when δ is fixed, D(1 − δ‖ δ

K−1 ) grows logarithmatically

with K. Moreover, the expression
K∑
j=1

1
D∗
j

is a linear function

of K. Consequently, the lower bound in Theorem 4 has a
growth rate K logK and matches the upper bound of the
proposed algorithms. These theoretical results will also be
validated by numerical simulations.

VI. NUMERICAL RESULTS

A. Parameter Settings

In this section, we evaluate our designed algorithms by
numerical simulations. Each point in the figures is averaged
over 100 realizations. We consider a 10-armed model and a 30-
armed model. Gaussian and Bernoulli distributions are used in
simulations. Thus, four types of bandit models are considered
in our settings:
• A 10-armed bandit model with Gaussian distribution.
• A 30-armed bandit model with Gaussian distribution.
• A 10-armed bandit model with Bernoulli distribution.
• A 30-armed bandit model with Bernoulli distribution.
For all bandit models, arm 1 is optimal. Table I shows the

detailed parameters for each arm in the 10-armed bandits.
The 30-armed bandits are generated by duplicating the last
five arms in 10-arm bandit for five times, while arm 1 is still
the optimal arm. The variances of rewards and costs for all
arms with Gaussian distribution are 0.1, while the variance
for each arm under Bernoulli settings depends on its specific
expectations.

TABLE I
THE EXPECTATIONS OF EACH ARM IN 10-ARMED BANDIT MODEL.

No. 1 2 3 4 5 6 7 8 9 10
µ 0.7 0.5 0.9 0.8 0.1 0.5 0.8 0.2 0.3 0.1
c 0.1 0.3 0.6 0.7 0.1 0.5 0.8 0.5 0.9 0.9

B. Comparisons of Different Algorithms

Fig. 1(a) and Fig. 1(b) illustrate the sample complexities
of the three proposed algorithms under Gaussian distribution.
From these two figures, we can make two observations: i)
for all three algorithms, the sample complexity increases as δ
decreases; ii) GA algorithm achieves best performance while
SEUG algorithm has the highest sample complexity. Although
SEUG-V algorithm is not as good as GA algorithm, it is
much better than SEUG algorithm. The first observation is
intuitive since that in the GA algorithm, the player has the prior
knowledge of gaps for each suboptimal arm. Therefore, the
sampling time for each arm could be accurately estimated by
the Hoeffding bound. On the contrary, in the SEUG algorithm,
the player has no such knowledge. Consequently, it has to
spend more time on pulling each arm to narrow the confidence
levels of empirical means, which results in the much larger
sample complexity. The second observation is because that the
incorporation of variance information achieves a finer-grained
empirical means of both rewards and costs, which further leads

to significantly reduced sample complexity. Moreover, as we
will see in Fig. 3(a), the smaller variances, the fewer sample
complexity.

Fig. 1(c) and Fig. 1(d) show the sample complexities under
Bernoulli distribution for both the 10-armed bandit model and
30-armed bandit model. Similarly, we can see that the SEUG
algorithm has the largest sample complexity, while the GA
algorithm achieves the smallest one. The SEUG-V algorithm
is better than the SEUG algorithm and worse than the GA
algorithm, which agrees with our theoretical results.

C. Lower Bound Analysis

In this subsection, we demonstrate the tightness of the lower
bound of Theorem 4 in Fig. 2 with respect to 1

δ and K,
respectively, where LB is the abbreviation of Lower Bound.
We take the average of 50 independent simulation runs for
all three algorithms. In this experiment, we apply a different
bandit model from Table I, which are presented in the Table
II. We can see that arm 1 is still the optimal arm and the
suboptimal arms ratios are more similar, which is consistent
with the second example in Section V-B.

TABLE II
THE PARAMETERS OF A 10-ARMED BANDIT MODEL IN LOWER BOUND

ANALYSIS.
No. 1 2 3 4 5 6 7 8 9 10
µ 0.7 0.5 0.6 0.7 0.5 0.8 0.7 0.6 0.5 0.4
c 0.3 0.4 0.5 0.6 0.5 0.9 0.8 0.7 0.4 0.5

Fig. 2(a) shows the asymptotic performance of the lower
bound and algorithms with respect to 1

δ with K = 10. An
zoom-in view figure for the lower bound curve is shown in
Fig. 2(b). We can see that the sample complexities for all the
three algorithms and the lower bound follow the growth rate
log 1

δ .
Fig. 2(c) shows the asymptotic performance of the lower

bound and algorithms with respect to K. When K > 10, we
simply set parameters µi = 0.3 and ci = 0.4 for any i > 10.
The LB-ideal curve corresponds to the seconde example we
discussed in Section V-B, where the suboptimal arms in a
bandit model are very similar with each other. Fig. 2(d) is
an zoom-in view of LB and LB-ideal. From Fig. 2(c) and
2(b), we can see that the sample complexities of algorithms
and LB-ideal have the same asymptotic performance, which is
O(K logK). In addition, the fundamental lower bound grows
linearly with K. These results verify our theoretical analyses.

D. Impacts of Variances

Fig. 3 shows the impacts of variances on sample complexity.
The experiments are based on the 10-armed model in Table
I with both Gaussian and Bernoulli distributions with δ =
0.15. Similarly, each point on the figures is averaged over 100
realizations.

Fig. 3(a) presents the impacts of variances under Gaussian
distribution. The parameter settings for each arm are the same
as that of Table I. The variances of reward and cost for optimal
arm remain 0.1, while those of the other suboptimal arms
change from 0.1 to 0.5. We can see that the SEUG algorithm
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Fig. 1. The sample complexity under different bandit model and distributions.
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Fig. 2. The asymptotic performance of lower bound.
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Fig. 3. The impacts of variances on sample complexity.

achieves the largest sample complexity while GA algorithm
has the smallest. The performance SEUG-V algorithm is
better than SEUG and poorer than GA. Such results confirm
our theoretical analyses. In addition, as variance grows, the
sample complexity of GA and SEUG algorithms remain nearly
constant, while the sample complexity of SEUG-V algorithm
grows. The reason is that the sample complexities of GA
and SEUG algorithms is independent of variances, while the
sample complexity of SEUG-V algorithm is a function of vari-
ances. Essentially, a larger variance means that each sample
value has a large deviation with respect to its expectation,
which makes it harder for the average of sample values to
converge to its expectation and requires more pulling times.

Fig. 3(b) shows the impacts of variances for Bernoulli distri-
butions. In Bernoulli distributions, the variance depends on the
expectation and has the largest value 0.25. Thus, we assume
variances of these suboptimal arms range from 0.1 to 0.25.
Similar to the Gaussian setting, SEUG-V is better than SUEG
and poorer than GA. Moreover, we can see that as variances
grow, the sample complexity of the SEUG algorithm decreases
sharply while those of the other two algorithms decrease
more gradually. This is because we assume the variances

grow with the expectations. Thus, for each suboptimal arm
with Bernoulli distribution, larger variances represent larger
expectations for both reward and cost. Since we keep the
reward and cost expectations of the optimal arm unchanged,
the gaps ξi between the optimal arm and suboptimal arms will
become larger with the growth of variances. Consequently, the
sample complexity will be reduced.
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VIII. CONCLUSION

In this paper, we study the exploring best arm with reward
to cost problem with fixed confidence budget δ. Each arm in
our settings is associated with a random reward and a random
cost, and the best arm is defined as the one with the largest
ratio of the expected reward to expected cost. We proposed
three algorithms to address this problem and proved that the
sample complexities for all algorithms grow logarithmically as
δ grows. In addition, we derived a fundamental lower bound
of sample complexities for any algorithms under Bernoulli
distributions, and proved that the sample complexities of the
proposed three algorithms match that of the lower bound.

Under certain settings, in our future work, we will consider
how to derive the probable approximately correct bound for
our arm settings, i.e., to find a ε-optimal arm? We will also
investigate how to characterize the relationships and find the
best arm if the reward and cost are dependent with each other.
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