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ABSTRACT
In recent years, there have been significant efforts on the re-
search and development of Massive MIMO (M-MIMO) tech-
nologies at the physical layer. So far, however, the under-
standing of how M-MIMO could affect the performance of
network control and optimization algorithms remains rather
limited. In this paper, we focus on analyzing the perfor-
mance of the queue-length-based joint congestion control
and scheduling framework (QCS) over M-MIMO cellular
networks with limited channel state information (CSI). Our
contributions in this paper are two-fold: i) We characterize
the scaling performance of the queue-lengths and show that
there exists a phase transitioning phenomenon in the steady-
state queue-length deviation respect to the CSI quality (re-
flected in the number of bits B that represent CSI); and ii)
We characterize the congestion control rate scaling perfor-
mance and show that there also exists a phase transitioning
phenomenon in steady-state congestion control rate devia-
tion respect to the CSI quality. Collectively, the findings
in this paper advance our understanding of the trade-offs
between delay, throughput, and the accuracy/complexity of
CSI acquisition in M-MIMO cellular network systems.

CCS Concepts
•Networks→Network resources allocation; Network
control algorithms; Network performance modeling;

1. INTRODUCTION
To allow 5G wireless networks to support multi-Gigabit

per second data rates, there have been significant recent ef-
forts on the research and development of massive multiple-
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input multiple-output systems, or simply Massive MIMO
(M-MIMO). In contrast to conventional multi-antenna tech-
nologies, the number of antennas in M-MIMO is on the order
of hundreds or even thousands. To date, various promising
theoretical results on M-MIMO capacity gain and transmit
power efficiency have been established (see, e.g., [1–3] for
comprehensive overviews). Also, some lab-scale M-MIMO
prototypes have been built and favorable field test results
have been reported (e.g., [4, 5]). However, in spite of all
of this progress, the existing research efforts on M-MIMO
are mostly concerned about problems at the physical layer
or signal processing aspects. The understanding of how
M-MIMO could affect the performance of network control,
scheduling, and resource allocation algorithms remains lim-
ited in the literature. In this paper, our goal is to fill this gap
by conducting an in-depth theoretical study on the interac-
tions between M-MIMO physical layer and network control
and optimization algorithms at higher layers, as well as their
impacts on queueing delay and throughput performances.

To this end, in this paper, we focus on the performance
analysis of the celebrated queue-length-based congestion con-
trol and scheduling framework (QCS) (see, e.g., [6–9], and
[10] for a survey) in M-MIMO-based cellular systems, where
the M-MIMO data transmissions can rely only on limited
channel state information (CSI). The fundamental rationale
of our work is that, as noted by many researchers [1,2], CSI
acquisition has become one of the most fundamental limit-
ing factors in the design of M-MIMO-based cellular systems.
Generally speaking, to leverage the MIMO spatial multi-
plexing benefits, the transmitter must obtain CSI to per-
form spatial beamforming so that independent data streams
can be simultaneously transmitted. In conventional MIMO-
based networks, such CSI is usually learned at each mobile
station based on pilot symbols and fed back to the base sta-
tion (BS). However, due to the constraints on feedback chan-
nel capacity and channel coherence time, this traditional CSI
feedback approach scales poorly with the increase of anten-
nas in M-MIMO. An alternative CSI acquisition strategy is
to let the system operate in time-division duplexing mode
and, based on channel reciprocity, use the uplink CSI mea-
sured at the BS for downlink transmissions. However, as
observed in [1, 11], the channel reciprocity assumption may
not hold in practice due to the magnetic properties of the
channel environment and transceiver hardware chains.

In this paper, we accept the reality that CSI inaccuracy is
unavoidable and we do not require full CSI at the M-MIMO
BS. Instead, we assume that the CSI at the BS is limited and
accurate only to a certain degree. Such limited CSI can be



obtained by a small amount of feedback from each mobile de-
vice using a limited number of bits, say B, to approximately
represent its channel instantiation. Alternatively, the BS
could use B bits to approximately represent the downlink
CSI based on the channel reciprocity assumption. In such
cases, one interesting question naturally arises: How does the
B-bit limited CSI affect the performance of the QCS frame-
work? In particular, it is well-known that the QCS frame-
work is throughput-optimal under full CSI and achieves an
[O(1/K), O(K)] utility-delay trade-off, where K > 0 is a
system parameter [8]. Also, the average queue-length devia-
tion and the congestion control rate optimality gap scale as
O(
√
K) [12] and O(1/

√
K) [7], respectively. However, when

the QCS framework is adopted in M-MIMO cellular net-
works with limited CSI, it begs the following question: Will
the same utility and delay performance scaling laws continue
to hold? As will be seen later, due to the complex cross-layer
interactions (e.g., precoder design, choice of channel quan-
tization codebook, power allocations, etc.) in M-MIMO cel-
lular systems, answering this question is challenging.

The main contribution of this paper is that we theoret-
ically characterize the queueing delay and network utility-
optimality performance of the QCS framework in M-MIMO
cellular networks with B-bit limited CSI. Our main results
and technical contributions are as follows:

• We show that the queues in the network remain stable un-
der QCS for any given B-bit limited CSI scheme; and the
steady-state average queue-lengths still follow an O(K)
linear scaling. However, the slope (i.e., the hidden con-
stant in Big-O) is affected by B: The larger the value
of B (more accurate CSI), the more gradual the slope be-
comes. Moreover, the steady-state queue-length deviation
from the mean exhibits a phase transition phenomenon:
There exists a critical value Bcr such that: i) For all
0 < B < Bcr, the steady-state queue-length deviation
is bounded by O(D(B)K), where D(B) > 0 is a quantity
that depends on the specific channel quantization code-
book design; and ii) For all B ≥ Bcr, the steady-state

queue-length deviation scales as O(
√
K), i.e., recovering

the same scaling law under full CSI.

• For any given B-bit limited CSI scheme, we show that the
steady-state average congestion control rates under the
QCS framework increase as B increases. Interestingly,
the same phase transition phenomenon also happens in
the congestion control rates in the following sense: There
exists the same critical value Bcr such that: i) For all
0 < B < Bcr, the steady-state congestion control rate
deviation scales as O(D(B)) and independent of K; and
ii) For all B ≥ Bcr, the steady-state congestion control

deviation scales as O(1/
√
K), also recovering the same

scaling law under the full CSI.

• Collectively, all queue-length and congestion control rate
scaling results and their phase transition effects advance
our understanding of the trade-offs between delay, through-
put, and the accuracy/complexity of CSI acquisition. Also,
our results suggest that delay and throughput scalings
could potentially be employed as useful proxies to con-
trol CSI quality and acquisition complexity in M-MIMO
networks. More importantly, our work establishes a uni-
fying theoretical framework as well as design guidelines
in practice that enable the development of effective CSI
quantization schemes for M-MIMO cellular networks.
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Figure 1: A Massive MIMO cellular downlink with
M antennas and N users, with M � N .

The remainder of this paper is organized as follows: In
Section 2, we introduce network model and the problem for-
mulation. In Section 3, we introduce the queue-length-based
congestion control and scheduling framework and present
the main results of this work. Section 4 presents the numer-
ical results and Section 5 concludes this paper.

2. NETWORK MODEL AND PROBLEM
FORMULATION

Notation: We use boldface to denote matrices/vectors.
We let A> and A† denote the transpose and conjugate trans-
pose of A, respectively. We let v1 ≥ v2 denote entry-wise
inequality between vectors. We let vm represent the m-th
entry of vector v. We use ‖ · ‖ and ‖ · ‖1 to denote L2- and
L1-norms, respectively. We use R, C, and Z to denote real,
complex, and integer spaces, respectively.

1) Massive MIMO Downlink Channel: As shown in
Figure 1, we consider an M-MIMO cellular downlink system,
where the BS has M antennas and serves N active single-
antenna users. We assume that the system operates under a
time-slotted fashion and time is indexed by t ∈ {0, 1, 2, . . .}.
We let H[t] ∈ CN×M denote the channel gain matrix in time-
slot t between the BS and the users. We assume indepen-
dent quasi-static block fading, i.e., each entry in H[t] is con-
stant in one time-slot and independently varies in the next
time-slot. In M-MIMO cellular networks, it is typical that
M � N (e.g., M is in hundreds or even thousands, while N
could be well less than tens). Thanks to such excess degrees
of freedom at the BS, it is possible for the BS to serve all N
users by simultaneously formingN spatial beams. Moreover,
one important property of M-MIMO channels is that, under
favorable propagation conditions, the row vectors of H[t] are
asymptotically orthogonal as M → ∞ [2]. This property
enables the use of simple matched-filter (MF) beamform-
ing strategy to approach the MIMO broadcast channels [2]1.
Thus, in what follows, we will briefly introduce some related
preliminaries of MF beamforming for M-MIMO.

2) Matched-Filter Beamforming: For the M-MIMO
cellular downlink in Figure 1, the received signal of user n in
time-slot t can be written as: yn[t] = xn[t]

√
pn[t]h†n[t]wn[t]+∑N

j=1,6=n xj [t]
√
pj [t]h

†
n[t]wj [t] + vn[t], where hn[t] ∈ CM is

the channel gain vector seen at user n in time-slot t, i.e.,
the n-th row in H[t]; pn[t] is the power allocated to user

1For MIMO broadcast channels, it is known that dirty paper
coding (DPC) is capacity-achieving [13]. However, DPC is
a nonlinear precoding scheme that is difficult to implement.
In contrast, the capacity loss of the simple MF compared to
DPC is negligible in the high signal-to-noise ratio regime [2].



n in time-slot t; xn[t] represents a unit-power data symbol
intended for user n in time-slot t; wn[t] ∈ CN is a unit-norm
linear precoding vector for user n in time-slot t; and vn[t]
is the white complex Gaussian noise at user n in time-slot
t with power N0. Under MF beamforming, one simply let
wn[t] = hn[t], i.e., the n-th row in H[t]. In this setting, the
achievable rate under MF beamforming can be computed as:

rn[t] = log2

(
1 +

pn[t]|h†n[t]wn[t]|2

N0 +
∑N
j=1,6=n pj [t]|h

†
n[t]wj [t]|2

)
(a)
≈ log2

(
1 +

pn[t]

N0
‖hn[t]‖2

)
, (1)

where (a) follows from the fact that the rows of H[t] in
M-MIMO channels are nearly orthogonal, i.e., h†n[t]wj [t] =
h†n[t]hj [t] ≈ 0, ∀n 6= j, when M is sufficiently large.

We assume that the channel fading can be characterized
by a total of F states H(1), . . . ,H(F ), where each H(f) ∈
CN×M , f = 1, . . . , F , corresponds to the channel qualities
between the M antennas and N users in state f . For each
H(f), we let CH(f) denote the achievable MF rate region,
which is the convex hull of all achievable MF rate vectors in
state f under all feasible power allocations:

CH(f) ,CH

{
r(f)
n , 1≤n≤N

∣∣∣∣∣ r(f)
n =log2

(
1+ pn

N0
‖h(f)

n ‖2
)

pn ≥ 0, ∀n,
∑N
n=1 pn ≤ Pmax

}
,

where CH{·} represents the convex hull operation, pn de-
notes the power allocated of user n, and Pmax denotes the
maximum transmission power at the BS. Clearly, due to the
maximum power constraint, there exists an rmax <∞ such

that r
(f)
n ≤ rmax, ∀n, f . We let r(f) = [r

(f)
1 , . . . , r

(f)
N ]> ∈

RN denote the feasible MF rates in state f . We let πf ,
Pr{H[t] = H(f)} be the stationary distribution of the chan-
nel state process being in state f . We let C̄ denote the mean
MF achievable rate region, which can be written as:

C̄ ,

r

∣∣∣∣∣∣r =

F∑
f=1

πfr
(f), ∀r(f) ∈ CH(f)

 . (2)

We note that, in this paper, neither the channel state statis-
tics nor C̄ is assumed to be known at the BS under the QCS
algorithm, which will be introduced in Section 3.

3) B-Bit Limited CSI: The use of MF beamforming
(i.e., wn[t] = hn[t]) means that the BS requires full CSI
H[t], ∀t. However, as mentioned in Section 1, it becomes
increasingly difficult to acquire full CSI as M gets large.
One way to address this challenge is to use limited CSI by
quantizing the channel (e.g., [14–18]). As shown in Figure 1,
such limited CSI can be obtained from a small amount of
feedback by each user using a small number of bits B to
represent a quantized channel state. Alternatively, in time-
division multiplexing mode, Figure 1 represents that the BS
uses B bits to quantize the uplink CSI, which will be used
for downlink transmissions. In both cases, the value of B
can be viewed as a means to balance the trade-off between
CSI accuracy and acquisition costs. The B-bit limited CSI
for each user n is based on a vector quantization codebook

Bn , {c1
n, . . . , c

2B

n }, where cin ∈ CM , i = 1, . . . , 2B , denotes
a codeword. With the CSI hn[t] in time t, a codeword for
each user n is chosen by:

i∗n[t] = arg max
j∈{1,...,2B}

∣∣h†n[t]cjn
∣∣ = arg min

j∈{1,...,2B}
sin2(∠(hn[t], cjn)), (3)

where i∗n[t] denotes the index of the chosen codeword. We let

Ĥ[t] ∈ CN×M denote the corresponding channel gain matrix
in time-slot t by aggregating all codewords i∗n[t], ∀n. Then,

by treating Ĥ[t] as if it is the accurate CSI, the BS performs
MF beamforming to construct N spatial channels. However,

due to the inaccuracy of Ĥ[t], multi-user interference may
become non-negligible. Clearly, the impact of multi-user
interference depends heavily on the codebook size 2B and
the design of the quantization codebook.

Let CH[t]|Ĥ[t] denote the actual MF rate region achieved

under H[t] based on the belief that Ĥ[t] is the accurate CSI.

Also, let Ĥ1[t] and Ĥ2[t] represent two estimated CSI values
obtained by using B1 and B2 bits, respectively. Further, we
let CH[t] denote the original MF achievable rate region under
full CSI H[t] . Then, one can show the following inclusion
result of the MF achievable rate regions under limited CSI in
M-MIMO networks (the proof is relegated to Appendix A):

Lemma 1 (MF Rate Region Inclusion). If B1 ≤ B2,
then there exists a CSI quantization scheme under which
CH[t]|Ĥ1[t]⊆CH[t]|Ĥ2[t]. Further, CH[t]|Ĥ[t]→CH[t] as B→∞.

4) Queueing Model: As illustrated in Figure 1, the BS
maintains a separate queue for each user. Let an[t] denote
the number of packets injected into queue n in time-slot t.
As shown in Figure 1, the arrival processes {an[t]}, ∀n, are
controlled by a congestion controller. Also, we assume that
there exists a finite constant Amax such that an[t] ≤ Amax,

∀n, t. Let sB [t] , [sB,1[t], . . . , sB,N [t]]> denote the sched-
uled service rate vector in time-slot t based on the belief
that the current B-bit limited CSI is accurate (the schedul-
ing algorithm that determines sB [t] will be presented in Sec-
tion 3). Then, the queue-length of each user evolves as

follows: qn[t + 1] =
(
qn[t] − sB,n[t] + an[t]

)+
, ∀n, where

(·)+ , max(0, ·). Let q[t] = [q1[t]], . . . , qN [t]]>. In this pa-
per, we adopt the following notion of queue-stability (same
as in [7, 8]): We say that a network is stable if the steady-
state total queue-length is finite, i.e.,

lim sup
t→∞

E {‖q[t]‖1} <∞. (4)

5) Problem Statement: Let ān, limT→∞
1
T

∑T−1
t=0 an[t]

denote the average controlled arrival rate of user n. Each
user n is associated with a utility function Un(ān), which
represents the utility gained by user n when data is injected
at rate ān. We assume that Un(·), ∀n, is strictly concave,
monotonically increasing, and twice continuously differen-
tiable. We assume that Un(·) satisfies the following strong
concavity condition: there exist constants 0 < φ < Φ < ∞
such that φ ≤ −U ′′n (an) ≤ Φ, ∀an ∈ [0, Amax], where Amax

is the maximum arrival rates for burst control. For exam-
ple, log(an + ε) is strongly concave for ε > 0. Our goal is

to maximize
∑N
n=1 Un(ān), subject to the MF beamforming

rate region CH[t]|Ĥ[t] due to limited CSI in each time-slot and

the queue-stability constraint. Putting together the models
presented above yields the following joint congestion control
and scheduling (JCCS) optimization problem:

JCCS: Maximize

N∑
n=1

Un(ān)

subject to Queue-length stability constraint in (4),

sB,n[t] ∈ CH[t]|Ĥ[t], an[t] ∈ [0, Amax] ∀n, t.



Note that, when perfect CSI is available (B →∞), the well-
known QCS algorithmic framework [6–9] optimally solves

Problem JCCR in the following sense: The ā , [ā1, . . . , āN ]>

obtained from the QCS algorithm achieves a utility opti-
mality gap O(1/K) at the expense of queue-length scaling
as O(K), where K > 0 is a system parameter. Hence, the
utility optimality gap can be made arbitrarily small by in-
creasing K asymptotically (implying an asymptotically large
queueing delay). However, in M-MIMO cellular networks, it
is not clear whether or not the QCS algorithmic framework
will be optimal based on B-bit limited CSI. This constitutes
the main discussions in the next section.

3. PERFORMANCE ANALYSIS OF THE QCS
ALGORITHM WITH LIMITED CSI

In this section, we first present a variant of the QCS al-
gorithm adapted for M-MIMO with B-bit limited CSI in
Section 3.1. Then, we will examine a deterministic problem
related to Problem JCCS in Section 3.2 to facilitate our dis-
cussions. The main theoretical results and their proofs will
be presented in Sections 3.3 and 3.4, respectively.

3.1 The QCS Algorithm with Limited CSI

Algorithm 1: Queue-Length-Based Congestion Control and
Scheduling for M-MIMO Cellular Networks with B-Bit CSI.

Initialization:

1. Select an appropriateK > 0 and an appropriateB > 0.

Main Loop:

2. Queue-Length-Based MaxWeight Scheduler: In time-
slot t ≥ 1, given the queue-length vector q[t] , [q1[t],

. . . , qN [t]]> and theB-bit estimated CSI Ĥ[t], the sched-
uler chooses a power allocation p[t] = [p1[t], . . . , pN [t]]>

such that the (believed) MF achievable rates r[t] =
arg maxx∈C

Ĥ[t]
(q[t])>x. As a result, the actual MF

achievable service rates sB,n[t], ∀n, under p[t] are:

sB,n[t]=log2

(
1+

pn[t]
∣∣h†n[t]ĥn[t]

∣∣2
N0 +

∑N
j=1,6=n pj [t]

∣∣h†n[t]ĥj [t]
∣∣2
)
. (5)

3. Congestion Controller: Given the queue-length vec-
tor q[t] , [q1[t], . . . , qN [t]]>, the congestion controller
chooses data inject rates an[t], ∀n, which are integer-
valued random variables satisfying:

E{an[t]|qn[t]} = min

{
U
′−1
n

(
qn[t]

K

)
, Amax

}
, (6)

E{a2
n[t]|qn[t]} ≤ Amax

2 <∞, ∀qn[t], (7)

where U
′−1
n (·) represents the inverse function of first-

order derivative of Un(·). In (6) and (7), Amax and
Amax

2 are positive constants.
4. Queue-Length Updates: Update the queue-lengths as:

qn[t+ 1] = (qn[t]− sB,n[t] + an[t])+ , ∀n. (8)

Let t = t+ 1. Go to Step 2 and repeat the scheduling
and congestion control processes.

Some remarks on Algorithm 1 are in order: Different
from traditional cellular networks, the M-MIMO BS has
sufficient spatial degrees of freedom to serve all users si-
multaneously thanks to the large number of antennas and

transceiver chains. Hence, the user selection challenge (po-
tentially NP-hard) in the scheduling component in tradi-
tional QCS algorithms does not exist in Algorithm 1. In-
stead, now the main challenge is reflected in the limited and
inaccurate CSI, which leads to suboptimal service rates in
(5). This incurs service rate losses compared to the full
CSI case, where the MaxWeight scheduler is of the form
s[t] = arg maxx∈CH[t]

(q[t])>x. In what follows, we will fo-

cus on the impact of this inaccurate MaxWeight scheduling
solution due to the B-bit limited CSI.

3.2 A Deterministic Problem
To facilitate the presentation of our theoretical results in

Section 3.3, we first introduce a K-parameterized determin-
istic problem, where we assume that the channel state pro-
cess is not random and fixed at its mean level. That is, the
mean achievable rate region C̄B , {r|r =

∑F
f=1 πf r̂

(f), ∀r(f)

∈ C
H(f)|Ĥ(f)

B

}, where C
H(f)|Ĥ(f)

B

represents the actual MF

rate region achieved under H(f) based on the belief that

the CSI is Ĥ
(f)
B , i.e., the B-bit quantized CSI for state f .

Also, the congestion control and scheduling variables are
time-invariant, which are denoted as an and sB,n, ∀n, re-
spectively. Then, the deterministic congestion control and
scheduling problem (K-DJCCS) can be written as:

K-DJCCS: Maximize K

N∑
n=1

Un(an)

subject to an − sB,n ≤ 0, ∀n,

sB,n ∈ C̄B , an ∈ [0, amax], ∀n.

Since Problem K-DJCCS is strictly convex, an optimal so-
lution exists and is unique. Further, we associate dual vari-
ables qB,n ≥ 0, ∀n with the constraints an − sB,n ≤ 0, ∀n,
to obtain the Lagrangian as follows:

ΘK(qB), max
a,sB∈C̄B

{
K

N∑
n=1

Un(an)+

N∑
n=1

qB,n(sB,n−an)

}
,(9)

where the vector qB , [qB,1, . . . , qB,N ]> ∈ RN+ contains all
dual variables. Then, the Lagrangian dual problem of Prob-
lem K-DJCCS can be written as:

K-LD-JCCS: Minimize ΘK(qB)

subject to qB ∈ RN+ .

It can be verified that Problem K-DJCCS satisfies the Slater
condition [19]. Hence, the optimal value of Problem K-LD-
JCCS is equal to that of Problem K-DJCCS. Let (a∗B , s

∗
B)

and q∗B,(K) be a pair of optimal primal and dual solutions.
Then, q∗B,(K) can be shown to have the following properties:

Lemma 2 (Optimal dual solution scaling). For a
given K, q∗B,(K) = Kq∗B,(1), or equivalently, q∗B,(K) scales
linearly as O(K) and the slope is determined by the entries
in q∗B,(1). Further, q∗B1,(1) ≥ q∗B2,(1) if B1 ≤ B2.

Lemma 2 can be proved by examining the Karush-Kuhn-
Tucker (KKT) conditions [19] of Problem K-DJCCS (see
Appendix B). Also, by noting the fact that K is just a
scaling factor in the objective function and a∗B = s∗B at
optimality (by KKT conditions), we immediately have the
following result for a∗B :

Lemma 3 (Optimal primal solution). The optimal
congestion control rate a∗B is independent of K and equal to
the optimal service rate s∗B over C̄B.



3.3 Main Results
In this section, we present the main performance analysis

results of Algorithm 1. Our first result says that the steady-
state queue-lengths q∞ stay in a neighborhood of q∗B,(K)

(the existence of steady-state will also be proved later). Fur-
ther, the scaling of the steady-state queue-length deviation
from q∗B,(K) exhibits a phase-transition phenomenon:

Theorem 1 (Phase Transition of Queue-Length).
For any B-bit CSI quantization scheme in Algorithm 1 with
parameter K, there exists a critical value Bcr that is inde-
pendent of K, such that the following hold:

• For all 0 < B < Bcr, E{‖q∞ − q∗B,(K)‖} = O(D(B)K),
where the parameter D(B) ≥ 0 depends on the quantiza-
tion codebook design and shrinks as B increases;

• For all B ≥ Bcr, E{‖q∞ − q∗B,(K)‖} = O(
√
K).

Collectively, Theorem 1 and Lemma 2 describe the steady-
state queue-length behaviors. In particular, they show that
if B ≥ Bcr, the steady state queue-length deviation is upper
bounded by O(

√
K), which is small compared to the magni-

tude of q∗B,(K), which grows linearly as O(K) and the slope
is affected by B: the larger the value of B, the more gradual
the slope. Note that the scaling of the queue-length devia-
tion for B ≥ Bcr is the same as the classical result under full
CSI [12]. This implies an interesting and surprising insight
that full CSI is not necessary to induce certain desirable
queueing behaviors in M-MIMO cellular networks.

Now, let a∞B,n , E{min{U
′−1
n (q∞n /K), amax}}, ∀n, be the

steady-state congestion control rates under some B-bit CSI
quantization and let a∞B , [a∞B,1, . . . , a

∞
B,N ]>. Our second

main result is on the scaling of a∞B ’s deviation from a∗B :

Theorem 2 (Phase Transition of Rate-Control).
For any B-bit CSI quantization scheme in Algorithm 1 with
parameter K, there exists a critical value Bcr (same as in
Theorem 1) such that the following hold:

• For all 0 < B < Bcr, ‖a∞B − a∗B‖ = O(D(B)), where the
parameter D(B) ≥ 0 is the same as in Theorem 1;

• For all B ≥ Bcr, ‖a∞B − a∗B‖ = O(1/
√
K).

Similar to the results in Theorem 1, Theorem 2 combined
with Lemma 3 suggest that a phase transition phenomenon
also exists in a∞B : When B < Bcr, parameter K becomes
ineffective in the control of a∞B ’s deviation from a∗B . On the
other hand, when B ≥ Bcr, a

∞
B ’s deviation from a∗B scales as

O(1/
√
K) and can be made arbitrarily small by increasing

K. Since this O(1/
√
K) scaling is the same as that under

full CSI [7, 8], Bcr represents the smallest codebook size of
the given CSI quantization scheme that recovers the perfor-
mance control functionality of parameter K.

3.4 Proofs of the Main Theorems
In this subsection, we provide proofs for Theorems 1 and 2.

To this end, we first show a positive Harris-recurrence result
of the queue-length process, which implies the existence of
steady-state and will be useful for proving Theorems 1 and 2
later. Let 1A(x) be the indicator function that takes value 1
if x ∈ A and 0 otherwise. The queue-length positive Harris-
recurrence result can be stated as follows:

Theorem 3 (Queue-Length Positive Recurrence).

Consider a Lyapunov function V (q[t]) , 1
2K
‖q[t]−q∗B,(K)‖2

for a given K. For the scheduler (5) and congestion con-
troller (6)–(7), there exist constants δ, η > 0, both indepen-
dent of K, such that the queue-length process {q[t]}∞t=0 sat-
isfies the following conditional mean drift condition:

E{∆V (q[t]|q[t])} , E{V (q[t+ 1])− V (q[t])|q[t]}

≤ − δ

ΦK

∥∥q[t]− q∗B,(K)

∥∥1Bc(q[t]) + η1B(q[t]), (10)

where B , {q ∈ ZN+ |‖q− q∗B,(K)‖ ≤ βK} for some constant

β > 0 and Bc denotes the complement of B in ZN+ .

We relegate the proof details of Theorem 3 to Appendix C.
The inequality in (10) shows that the conditional mean drift
is negative when the deviation of the queue-length vector
q[t] away from q∗B,(K) is sufficiently large. Since (10) is ex-
actly the Foster-Lyapunove criterion [20, Proposition I.5.3],
{q[t]}∞t=0 is positive recurrent, a steady-state distribution
of queue-lengths exists. We denote the queue-length vector
in steady-state as q∞. With Theorem 3, we are now in a
position to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we use an
α-parameterized quadratic Lyapunov function: Vα(q[t]) =

1
2Kα
‖q[t] − q∗B,(K)‖2, where the parameter α ∈ {0, 1} and

its value will be specified later. Following similar steps in
the proof of Theorrem 3 (see Appendix C), we can bound
the conditional mean Lyapunov drift as follows:

E{Vα(q[t+ 1])− Vα(q[t])|q[t]}
(a)

≤ 1

Kα
(q[t]− q∗B,(K))

>(E{a[t]|q[t]} − s∗B)+

1

Kα
E{(q[t]− q∗B,(K))

>(s∗B − sB [t])|q[t]}+
D0

Kα
,

(b)

≤ 1

Kα

[
− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
+D0

]
+

1

Kα
E
{

(q[t]− q∗B,(K))
>(s∗B − sB [t])

∣∣q[t]
}

(c)

≤ 1

Kα

[
− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
+D0

]
+

1

Kα
E
{

(q[t])>(s∗ − sB [t])
∣∣q[t]

}
, (11)

where D0 , N
2

(Amax
2 + (smax)2) and s∗ , limB→∞ s∗B . In

(11), (a) follows from adding and subtracting s∗B ; (b) follows
from (36); and (c) follows from s∗B ≤ s∗ (by Lemma 1)
and the scheduler design, which implies (q∗B,(K))

>sB [t] ≤
(q∗B,(K))

>s∗B . Next, consider the T -step conditional mean
Lyapunov drift. For any q[0] ≥ 0, we have that

E{Vα(q[T ])|q[0]}−Vα(q[0])=

T−1∑
t=0

E{V (q[t+ 1])−V (q[t])|q[0]}

(a)
=

T−1∑
t=0

∑
q∈ZN+

[
Pr(q[t]=q|q[0])E

{
Vα(q[t+1])−Vα(q[t])|q[t]=q

}]
(b)

≤
T−1∑
t=0

∑
q∈ZN+

Pr(q[t]=q|q[0])
{ 1

Kα

[ −1

ΦK

∥∥q[t]−q∗B,(K)

∥∥2
+D0

]}

+

T−1∑
t=0

∑
q∈ZN+

Pr(q[t]=q|q[0])
{ 1

Kα
E
{
q>(s∗−sB [t])

}}
, (12)



where (a) follows from the fact that q[t] is a discrete state
Markov chain in ZN+ and (b) follows from (11). Note that

for any q[t] ∈ ZN+ , limT→∞
1
T

∑T−1
t=0 Pr(q[t]=q|q[0]) = π∞q ,

where π∞q denotes the stationary distribution of the Markov
chain q[t]. Moving V (q[0]) to the right hand side, dividing
both sides by T , and letting T →∞ yields:

0≤J+
∑

q∈ZN+

π∞q (q)>(s∗−s∞B )=J+E
{

(q∞)>(s∗−s∞B
}
, (13)

where J , limT→∞
1
T

∑T−1
t=0

∑
q∈ZN+

Pr(q[t] = q|q[0]){ 1
Kα

[

−1
ΦK
‖q[t]−q∗(K)‖2 +D0]}, s∞B , arg maxx∈C

H[∞]|Ĥ[∞]
(q∞)>x

represents the steady-state service rates with B-bit CSI.
Next, consider the term E

{
(q∞)>(s∗ − s∞B )

}
in (13). For

any given realization of q∞ in the steady-state, from the
design of the MaxWeight scheduler in (5), we have that

(q∞)>s∗ ≤ max
x∈CH[∞]

(q∞)>x = (q∞)>s∞. (14)

where s∞ , limB→∞ s∞B and H[∞] represent the full CSI
in the steady state. Hence, for any realization of q∞ such
that q∞ 6= ρs∗ for some ρ ∈ R, if B is sufficiently large, we
must have (q∞)>s∗ − (q∞)>s∞B ≤ 0. Hence, there exists
a critical value Bcr such that for all B > Bcr, the average
value of (q∞)>s∗ − (q∞)>s∞B can be made non-positive,
i.e., E

{
(q∞)>(s∗ − s∞B )

}
≤ 0. Hence, we consider two cases

based on the positivity of E
{

(q∞)>(s∗ − s∞B )
}

as follows:

Case I): B ≥ Bcr such that E
{

(q∞)>(s∗ − s∞B )
}
≤ 0: In

this case, it follows from (13) that

0 ≤ lim
T→∞

1

T

∑T−1

t=0

∑
q∈ZN+

Pr(q[t] = q|q[0])×{ 1

Kα

[
− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
+D0

]}
. (15)

We now consider the term in the second line in (15) by set-
ting α = 0. Similar to the proof of Theorem 3, suppose that∥∥q[t] − q∗B,(K)

∥∥ ≥ β
√
K, where β will be specified shortly.

This implies that 1
‖q[t]−q∗

B,(K)
‖ ≤

1
β

. Then, the second line

in (15) can be upper bounded as:

− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
+D0 = − 1

Φ
√
K

∥∥q[t]−q∗B,(K)

∥∥×(‖q[t]− q∗B,(K)‖√
K

+
D0Φ
√
K

‖q[t]− q∗B,(K)‖

)
≤ − 1

Φ
√
K

∥∥q[t]− q∗B,(K)

∥∥(β − D0Φ

β

)
. (16)

Hence, by choosing β >
√
D0Φ, we have

− 1

ΦK

∥∥q[t]−q∗B,(K)

∥∥2
+D0 ≤ −

δ̂

Φ
√
K

∥∥q[t]−q∗B,(K)

∥∥, (17)

where δ̂ = β − D0Φ
β

> 0. Plugging in β >
√
D0Φ to define a

ball B , {q : ‖q− q∗B,(K)‖ ≤
√
D0ΦK}, we have

− 1

ΦK

∥∥q[t]−q∗B,(K)

∥∥2
+D0≤−

δ√
K
‖q[t]−q∗B,(K)‖, if q[t]∈Bc.

On the other hand, when ‖q[t] − q∗B,(K)‖ ≤
√
D0ΦK, it

is clear that −(1/ΦK)
∥∥q[t] − q∗B,(K)

∥∥2
+ D0 ≤ η for some

η > 0. Combining these facts, we have

− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
+D0

≤ − δ

K
‖q[t]− q∗B,(K)‖1Bc(q[t]) + η1B(q[t]). (18)

Substituting (18) into (15) yields:

0 ≤ lim
T→∞

1

T

T−1∑
t=0

∑
q∈ZN+

Pr(q[t] = q|q[0])×

(
− δ

K
‖q[t]− q∗B,(K)‖1Bc(q) + η1B(q)

)
= η

∑
q∈B

π∞q −
δ√
K

∑
q∈Bc

‖q− q∗B,(K)‖π∞q . (19)

where we use the fact that, ∀q ∈ ZN+ , limT→∞
1
T

∑T−1
t=0 Pr{q[t]

= q|q[0]} = π∞q . Re-arranging the terms and with some ma-
nipulations, the above inequality can be written as:

δ√
K

∑
q∈ZN+

‖q−q∗B,(K)‖π∞q ≤
∑
q∈B

(
η +

δ√
K
‖q− q∗B,(K)‖

)
π∞q

≤ (η + δβ)
∑
q∈B

π∞q ≤ (η + δβ), (20)

where the second inequality follows from the definition of B.
Note here that the left-hand-side is precisely δ√

K
E{‖q∞ −

q∗B,(K)‖}. Thus, multiplying both sides by
√
K/δ, we have:

E{‖q∞ − q∗B,(K)‖} ≤
(
β +

η

δ

)√
K = O(

√
K). (21)

Case II): B ≤ Bcr such that E
{

(q∞)>(s∗ − s∞B )
}
> 0: In

this case, we set α = 1. It thus follows from (11) that:

E
{

∆V1(q[t])|q[t]
}
≤ − 1

ΦK2

∥∥q[t]−q∗B,(K)

∥∥2
+

1

K
‖q[t]− q∗B,(K))

>‖D(B) +
D0

K
, (22)

whereD(B) is defined in the proof of Theorem 3 (cf. Eq. (33)).
Note that (22) is identical to (37). Then, following exactly
the same steps as in the proof of Theorem 3, we have:

E{∆V1(q[t])|q[t]=q}≤− δ1
K
‖q−q∗B,(K)‖1Bc1(q)+η11B1(q).

where δ1, η1, and B1 are the same as in the proof of Theo-
rem 3. Then, it follows from (12) that

E{V1(q[T ]|q[0])}−V1(q[0]) ≤ η1

∑
q∈B1

T−1∑
t=0

Pr{q[t] = q|q[0]}

− δ1
K

∑
q∈Bc1

‖q− q∗(K)‖
T−1∑
t=0

Pr{q[t] = q|q[0]}. (23)

Following similar steps as in Case I to divide T on both
sides on (23) and let T → ∞, we have 0 ≤ η1

∑
q∈B1 π

∞
q −

δ1
K

∑
q∈Bc1

‖q−q∗B,(K)‖π∞q . Re-arranging the terms and with

some manipulations, the above inequality can be written as:

δ1
K

∑
q∈ZN+

‖q−q∗B,(K)‖π∞q ≤
∑
q∈B1

(
η1+

δ1
K
‖q−q∗B,(K)‖

)
π∞q

≤ (η1 + δ1β1)
∑
q∈B

π∞q ≤ (η1 + δ1β1),

where β1 is the same as in the proof of Theorem 3. Note
that the left-hand-side is δ1

K
E{‖q∞−q∗B,(K)‖}. Multiplying

both sides by K
δ1

, we have:

E{‖q∞ − q∗B,(K)‖} ≤
(
β1 +

η1

δ1

)
K



=

([
(D(B)Φ) +

√
(D(B)Φ)2 + 4D0Φ

]
+
η

δ

)
K = O(D(B)K).

This completes the proof of Theorem 1.

Proof of Theorem 2. To show the results in Theorem 2,

we first note that E{an[t]|qn[t]} = min{U
′−1
n ( qn[t]

K
, Amax)}

and a∗n = U
′−1
n (

q∗n
K

), ∀n. Thus, we have:

‖a∞B − a∗B‖ ≤ ‖a∞B − a∗B‖1

=

N∑
n=1

∣∣∣∣E{min
{
U
′−1
n

(q∞n
K
,Amax

)}}
− U

′−1
n

(q∗B,(K),n

K

)∣∣∣∣
(a)

≤
N∑
n=1

E
{∣∣∣min

{
U
′−1
n

(q∞n
K
,Amax

)}
− U

′−1
n

(q∗B,(K),n

K

)∣∣∣}
(b)

≤
N∑
n=1

E
{∣∣∣U ′−1

n

(q∞n
K

)
− U

′−1
n

(q∗B,(K),n

K

)∣∣∣}
(c)
=

N∑
n=1

E
{∣∣∣[U ′−1

n

( q̃n
K

)]′(q∞n
K
−
q∗B,(K),n

K

)∣∣∣}
(d)

≤
N∑
n=1

E
{∣∣∣ 1

U ′′n ( q̃n
K

)

∣∣∣∣∣∣q∞n
K
−
q∗B,(K),n

K

∣∣∣}

≤
N∑
n=1

E
{

1

φK

∣∣q∞n −q∗B,(K),n

∣∣} =
1

φK
E
{∥∥q∞−q∗B,(K)

∥∥
1

}
≤
√
N

φK
E
{∥∥q∞−q∗B,(K)

∥∥}, (24)

where (a) follows from Jensen’s inequality and the convexity
of the L1-norm; (b) follows from relaxing the projection onto
[0, Amax]; (c) follows from the mean value theorem; and (d)
follows from the inverse function lemma. Recall in the proof
of Theorem 1 (cf. (13)), we have 0≤J+

∑
q∈ZN+

π∞q (q)>(s∗−
s∞B )=J+E

{
(q∞)>(s∗−s∞B )

}
. Again, based on the positivity

of the term E
{

(q∞)>(s∗−s∞B )
}

, we consider two cases:

Case I): B > Bcr such that E
{

(q∞)>(s∗ − s∞B )
}
≤ 0: In

this case, we can again discard E
{

(q∞)>(s∗ − s∞B )
}

in (13)
and let α = 0 to obtain:

0 ≤ lim
T→∞

1

T

∑T−1

t=0

∑
q∈ZN+

Pr(q[t] = q|q[0])×{
− 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥2
}

+D0.

By re-arranging, multiplying both sides by ΦK, and noting
that limT→∞

1
T

∑T−1
t=0 Pr{q[t] = q|q[0]} = π∞q , we have

E
{
‖q∞ − q∗B,(K)‖2

}
≤ D0ΦK. (25)

It then follows from (24) that

‖a∞B − a∗B‖2 ≤
(√

N

φK
E
{∥∥q∞ − q∗B,(K)

∥∥})2

(a)

≤ N

φ2K2
E
{∥∥q∞−q∗B,(K)

∥∥2} (b)

≤ N

φ2K2
D0ΦK=

ND0

φ2K
, (26)

where (a) follows from Jensen’s inequality; and (b) follows
from (25). Taking square root on both sides of (26) yields

‖a∞B − a∗B‖ = O(1/
√
K).

Case II): B ≤ Bcr such that E
{

(q∞)>(s∗ − s∞B )
}
> 0: In

this case, we set α = 1 and it follows from (11) that:

E
{

∆V1(q[t])|q[t]
}
≤ − 1

ΦK2

∥∥q[t]−q∗B,(K)

∥∥2
+

D(B)

K
‖q[t]− q∗B,(K))

>‖+
D0

K

= − 1

ΦK2

(∥∥q[t]− q∗B,(K)

∥∥− D(B)ΦK

2

)2

+D, (27)

whereD(B) is defined in the proof of Theorem 3 (cf. Eq. (33))

and D ,
D(B)

4
+ D0

ΦK
. Telescoping the inequality in (27) from

t = 0 to T − 1 yields:

E{V1(q[T ]|q[0])}−V1(q[0])≤− 1

ΦK2

T−1∑
t=0

∑
q∈ZN+

Pr{q[t]=q|q[0]}

×
(∥∥q[t]− q∗B,(K)

∥∥− D(B)ΦK

2

)2

+DT. (28)

Dividing both sides of (28) by T
K2 , letting T → ∞, and

noting that limT→∞
1
T

∑T−1
t=0 Pr{q[t] = q|q[0]} = π∞q , ∀q ∈

ZN+ , we have that:

E
{(∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

)2}
≤ DΦK2.

Taking square root on both sides yields:[
E
{(∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

)2}] 1
2

≤ K
√
DΦ. (29)

Moreover, examining the left-hand-side of (29), we have[
E
{(∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

)2}] 1
2

(a)

≥ E
{[(∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

)2] 1
2
}

= E
{∣∣∣∣∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

∣∣∣∣}
≥ E

{∥∥q∞ − q∗B,(K)

∥∥− D(B)ΦK

2

}
= E

{∥∥q∞ − q∗B,(K)

∥∥}− D(B)ΦK

2
, (30)

where (a) follows from Jensen’s inequality. Combining (24),
(29), and (30) yields:

‖a∞B − a∗B‖ ≤
√
N

φK
E
{∥∥q∞ − q∗B,(K)

∥∥}
=

√
N

φK

(
D(B)ΦK

2
+K
√
DΦ

)
= O(D(B)).

Note that Cases I and II are exactly the same results as
stated in Theorem 2. This completes the proof.

4. NUMERICAL RESULTS
In this section, we conduct numerical experiments to ver-

ify the theoretical results presented in Section 3. In our
simulations, we use a 128-antenna M-MIMO base station
with MF precoding to serve four users. Each user’s channel
is i.i.d. Rayleigh faded. The maximum total signal-to-noise
ratio (SNR) of the BS is set to 30dB. We use log(·+0.001) as
the utility function for each user, i.e., the proportional fair-
ness metric [10]. We adopt the random vector quantization
(RVQ) scheme, which has been widely used in the MIMO
limited CSI feedback literature [14, 15, 15, 18]. The value of
B is set to be 1, 2, 4, 8, 16, 32, 53, and 64, covering cases
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Figure 2: Average queue-length deviation E{‖q∞−
q∗B,(K)‖} with respect to K for B=1, 2, 4, 8, 16, 32, 53, 64.

from the simplest two-state channel quantization to channel
quantizations with high granularity.

We first study the impacts of B on the delay performance.
The results of average queue-length deviations with respect
to the changes of B are illustrated in Figure 2. For each scal-
ing curve, we also plot an accompanying line (the red dash
lines) to highlight its growth trend. We can observe that
when B is small, the average queue-length deviation grows
faster than the square root law and approximately exhibits a
linear growth with respect to K. This confirms the first part
of Theorem 1. In this example, B = 16 bits turns out to be
the critical point of phase transitioning, beyond which the
queue-length deviations are bounded by the O(

√
K) scaling

curves. This confirms the second part of Theorem 1. Also,
when B = 64, we can see that the queue-length deviations
almost coincide with that in the full CSI case, showing that
the 64-bit RVQ scheme is almost as accurate as full CSI.

The results of average queue-lengths’ growth with respect
to K under different values of B are illustrated in Figure 3.
We can see from Figure 3 that the average queue-lengths in-
crease linearly with respect to K under all B values, agreeing
with Lemma 2. Also, the value of B plays an important role
in the slope of the linear scaling: the large the B value, the
more gradual the slope, again confirming Theorem 1. Also,
the slope of B=64 is almost the same as that of full CSI.

Next, we study the impacts of B on the congestion con-
trol performance and the results are illustrated in Figure 4.
When B is small, we can observe in Figure 4 that a∞B are
independent of K and only affected by B. The congestion
control rates approach that under full CSI as B increases.
This confirms the first part of Theorem 2 and Lemma 3.
Similar to the growths of queue-length deviations, we can
also observe that B = 16 is the critical point, beyond which
the congestion control rates start to exhibit an O(1/

√
K)

shrinking gap to a∗B . All of these observations agree with
the phase transitioning results in Theorem 2.

5. CONCLUSION
In this paper, we conducted an in-depth theoretical study

on the impact of limited CSI on the performances of the
queue-length-based joint congestion control and scheduling
algorithm in M-MIMO cellular networks. We have theoret-
ically characterized the queueing delay and congestion con-
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Figure 4: The steady-state congestion control rates
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trol scalings under limited CSI. We showed that there exist
phase transitioning phenomena in the steady-state queue-
length and congestion control rate deviations with respect to
CSI quality. Collectively, our theoretical results in this paper
advance the understanding of the interactions and trade-offs
between delay, throughput, and the accuracy/complexity of
CSI acquisition in M-MIMO networks. Our work also es-
tablishes a unifying theoretical framework as well as prac-
tical design guidelines to enable the development of effec-
tive channel quantization schemes for M-MIMO networks.
Moreover, our work serves as a first step toward an excit-
ing M-MIMO networking research paradigm that explores
various new congestion control and scheduling algorithmic
designs, which could potentially offer better throughput and
delay performances under limited CSI.
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APPENDIX
A. PROOF OF LEMMA 1

For ease of exposition, we first show the second part of
Lemma 1. Let {pn[t], n = 1, . . . , N} be an arbitrary fea-
sible power allocation. Since the BS performs MF beam

forming by treating Ĥ[t] as if it is the accurate CSI, the re-
ceived signal can be written as yn[t] = sn[t]pn[t]h>n [t]ŵn[t]+∑N
j=1,6=nsj [t]pj [t]h

>
n [t]ŵj [t] + vn[t], where ŵj [t] = ĥj [t], 1 ≤

j ≤ N , i.e., the j-th row of Ĥ[t]. Hence, the MF rates sB,n[t]
achieved under H[t] based on the belief that the CSI is B-bit

CSI Ĥ[t] can be computed as:

sB,n[t] = log2

(
1 +

pn[t]
∣∣h†n[t]ĥn[t]

∣∣2
N0 +

∑N
j=1,6=n pj [t]

∣∣h†n[t]ĥj [t]
∣∣2
)

< log2

(
1 +

pn[t]

N0

∥∥hn[t]
∥∥2
)

= sn[t], ∀n, (31)

where the inequality in (31) holds because
∣∣h†n[t]ĥn[t]

∣∣2 ≤
‖hn[t]‖2 and |h†n[t]ĥj [t]|2 ≥ 0. Thus, for every rate point
sB [t] = [sB,1[t], . . . , sB,N [t]]T ∈ CH[t]|Ĥ[t], its correspond-

ing power allocation {p1[t], . . . , pN [t]} achieves a rate point
s[t] = [s1[t], . . . , sN [t]]> ∈ CH[t] that dominates sB [t] in ev-
ery coordinate. Hence, CĤ[t] ⊆ CH[t]. Also, as B → ∞,

Ĥ[t] → H[t]. It thus follows from (31) that sB [t] ↑ s[t],
which implies that CĤ[t] → CH[t].

Next, we argue why the first part of Lemma 1 is true. Let
B1
n and B2

n denote the vector quantization codebooks corre-
sponding to B1 and B2 bits, respectively. Since B1 ≤ B2,
it follows that the codebook sizes |B1

n| ≤ |B2
n|. Hence, given

codebook B1
n, one can construct B2

n by simply retaining all
codewords in B1

n and adding new code words that are not
in B1

n, which implies B1
n ⊂ B2

n. As a result, for any given
CSI hn[t], one can always find a codeword in B2

n whose dis-
tance to hn[t] is not larger than that from B1

n in the sense of
(3). Hence, the SINR term in (31) becomes larger under B2

n,
implying sB1,n[t] ≤ sB2,n[t]. Since this is true for arbitrary
power allocation, we have CH[t]|Ĥ1[t] ⊆ CH[t]|Ĥ2[t].

B. PROOF OF LEMMA 2
Dividing K on both sides of (9), we have 1

K
ΘK(qB) =

maxa,sB∈C̄B

{∑N
n=1 Un(an) +

∑N
n=1 q̂B,n(sB,n − an)

}
, where

q̂B,n = qB,n/K. Note that the right hand side is precisely
Θ1(qB), for which the maximizer is q̂ = q∗B,(1). Hence, we
have ΘK(q) is maximized at Kq∗B,(1). This proves the first
part of Lemma 2.

To show the second part of Lemma 2, we first note from
the KKT complementary slackness condition and the mono-
tonicity of Un(·) that, at optimality, a∗n = s∗B,n, ∀n. We let
a∗n(B1) and a∗n(B2) denote the optimal congestion control
rates under B1 and B2, respectively. If B1 ≤ B2, we have



from Lemma 1 that s∗B1,n ≤ s∗B2,n, which further implies
a∗n(B1) ≤ a∗n(B2). On the other hand, from the KKT sta-
tionarity condition, we have U ′n(a∗n(B))− q∗(B),n = 0. Since
a∗n(B1) ≤ a∗n(B2), it follows from the concavity of Un(·) that
q∗(B1),n ≥ q∗(B2),n. This completes the proof.

C. PROOF OF THEOREM 3
Consider the quadratic Lyapunov function defined in The-

orem 3: V (q[t]) = 1
2K
‖q[t]−q∗B,(K)‖2, where q[t] represents

the queue-length vector in time-slot t under parameters K
and B; and q∗B,(K) denotes the optimal dual solution for the
static version of Problem JCCR under parameter K. Then,
the one-slot mean Lyapunov drift of VK(q[t]), which can
computed as:

E{V (q[t+ 1])− V (q[t])|q[t]}

=
1

2K
E
{

(q[t+ 1]− q[t])>(q[t+ 1] + q[t]− 2q∗B,(K))
∣∣∣q[t]

}
(a)

≤ 1

2K
E
{

(−sB [t]+a[t])>(2q[t]−2q∗B,(K)−sB [t]+a[t])
∣∣∣q[t]

}
=

1

K
(q[t]−q∗B,(K))

>(−sB [t]+a[t])+
1

2K
E
{
‖− sB [t]+a[t]‖2

}
,

where (a) follows from the non-expansive property of the
max{0, ·} operation. Note that, from the definition of Al-
gorithm 1, we have E{‖a[t]‖2|q[t]} < Amax

2 N . Also, since
sB,n[t] falls in a bounded instantaneous capacity region CĤ[t],

∀n, we must have sB,n[t] ≤ smax for some smax > 0. Hence,

by defining D0 , N
2

(Amax
2 + (smax)2), we have

E {∆V (q[t])|q[t]} ≤ 1

K
(q[t]− q∗B,(K))

>E {a[t]− sB [t]}+D0

K
(a)
=

1

K
(q[t]− q∗B,(K))

>(E{a[t]|q[t]} − s∗B)+

1

K
E{(q[t]− q∗B,(K))

>(s∗B − sB [t])|q[t]}+
D0

K
,

(b)

≤ 1

K
(q[t]− q∗B,(K))

>(E{a[t]|q[t]} − s∗B)+

1

K
‖q[t]− q∗B,(K))

>‖ × E
{
‖s∗B − sB [t]‖|q[t]

}
+
D0

K
,(32)

where s∗B is such that (s∗B ,q
∗
B,(K)) is a pair of optimal primal

and dual solutions to Problem K-DJCCS under parameter
K. In (32), (a) follows from adding and subtracting s∗B as
well as the fact that a[t] is independent of the channel state
and determined solely by q[t]; and (b) follows from Cauchy-
Schwarz inequality.

Note from Lemma 3 that s∗B is independent of K and
sB,n[t] ∈ CĤ[t] is upper-bounded. Thus, we have

E
{
‖s∗B−sB [t]‖|q[t]

}
≤ D(B) , max

q:‖q‖=1
E{‖s∗B−sB‖q}, (33)

where D(B) signifies that its value depends on B. Hence, we
can further upper bound (32) as:

E {∆V (q[t])|q[t]} ≤ 1

K
(q[t]−q∗B,(K))

>(E{a[t]|q[t]}−s∗B)+

1

K
‖q[t]− q∗B,(K))

>‖D(B) +
D0

K
, (34)

Now, let us consider the first term on the right hand side
in (34), i.e., 1

K
(q[t]−q∗B,(K))

>(E{a[t]|q[t]}−s∗). Since Un(·)
is concave and increasing, ∀n, we have(
qn[t]− q∗B,(K),n

)> [
U
′−1
n

(
qn[t]

K

)
− U

′−1
n

(
q∗B,(K),n

K

)]
≤ 0.

Thus, by Cauchy-Schwatz inequality, we have:

(q[t]− q∗B,(K))
>(E{a[t]|q[t]} − s∗B) =

N∑
n=1

(
qn[t]− q∗B,(K),n

)>
×
[
U
′−1
n

(
qn[t]

K

)
− U

′−1
n

(
q∗B,(K),n

K

)]
≤ −

N∑
n=1

∣∣qn[t]−

q∗B,(K),n

∣∣ ∣∣∣∣U ′−1
n

(
qn[t]

K

)
−U

′−1
n

(
q∗B,(K),n

K

)∣∣∣∣ . (35)

By the strong convexity of −Un(·) and the Lipschitz conti-
nuity of U ′n(·), we have∣∣U ′n (an,1)− U ′n (an,2)

∣∣ ≤ Φ |an,1 − an,2| .

Therefore, by the inverse function lemma, we have

1

Φ

∣∣∣∣qn[t]

K
−
q∗B,(K),n

K

∣∣∣∣≤ ∣∣∣∣U ′−1
n

(
qn[t]

K

)
−U

′−1
n

(
q∗B,(K),n

K

)∣∣∣∣ .
Hence, we can further upper-bound (35) as:

(q[t]− q∗B,(K))
>(E{a[t]|q[t]} − s∗B) ≤ − 1

ΦK

N∑
n=1

(
qn[t]−

q∗B,(K),n

)2
=− 1

ΦK

∥∥q[t]−q∗B,(K)

∥∥2
. (36)

Substituting (36) into (34), we have

E {∆V (q[t])|q[t]} ≤ − 1

ΦK2

∥∥q[t]−q∗B,(K)

∥∥2
+

1

K
‖q[t]− q∗B,(K))

>‖D(B) +
D0

K
. (37)

Now, suppose that
∥∥q[t]− q∗B,(K)

∥∥ ≥ β1K, where β1 will
be specified shortly. Note also that K ≥ 1, we have

1

‖q[t]− q∗B,(K)‖
≤ 1

β1K
≤ 1

β1
.

It then follows that (37) can be further upper bounded as:

E{∆V (q[t])|q[t]} = − 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥ · ∥∥q[t]− q∗B,(K)

∥∥
K

+
1

K
‖q[t]−q∗B,(K))

>‖D1+
∥∥q[t]−q∗B,(K)

∥∥ D0∥∥q[t]−q∗B,(K)

∥∥K
≤ − 1

ΦK

∥∥q[t]− q∗B,(K)

∥∥(β1 −D(B)Φ−
D0Φ

β1

)
. (38)

By choosing β1 such that β1 −D1Φ− D0Φ
β1

> 0, we have

E{∆V (q[t])|q[t]} ≤ − δ̂1
ΦK

∥∥q[t]− q∗B,(K)

∥∥ (39)

where δ̂1 = β1−D(B)Φ−D0Φ
β1

. Solving β1−D(B)Φ−D0Φ
β1

= 0

and plugging in the obtained β1 to define a ball B1 , {q :∥∥q−q∗B,(K)

∥∥ ≤ K
2

[(D(B)Φ)+
√

(D(B)Φ)2 + 4D0Φ]}, we have

E{∆V (q[t])|q[t]} ≤ − δ1
K

∥∥q[t]− q∗B,(K)

∥∥, if q[t] ∈ Bc1, (40)

where δ1 , δ̂1
Φ

. On the other hand, when q[t] ∈ B1, it is
clearly true that E{∆V (q[t])|q[t]} ≤ η1 for some η1 > 0.
Combining these facts yields the following:

E{∆V (q[t])|q[t]=q}≤− δ1
K
‖q−q∗B,(K)‖1Bc1(q)+η11B1(q).

This completes the proof of Theorem 3.




