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Abstract—To support the multi-Gigabit per second data rates
of 5G wireless networks, there have been significant efforts on
the research and development of Massive MIMO (M-MIMO)
technologies at the physical layer. So far, however, the under-
standing of how M-MIMO could affect the performance of
network control and optimization algorithms remains rather
limited. In this paper, we focus on analyzing the performance of
the queue-length-based joint congestion control and scheduling
framework (QCS) over M-MIMO cellular networks with limited
channel state information (CSI). Our contributions in this paper
are two-fold: i) We characterize the scaling performance of the
queue-lengths and show that there exists a phase transitioning
phenomenon in the steady-state queue-length deviation with
respect to the CSI quality (reflected in the number of bits B
that represent CSI); and ii) We characterize the congestion
control rate scaling performance and show that there also exists
a phase transitioning phenomenon in steady-state congestion
control rate deviation respect to the CSI quality. Collectively, the
findings in this paper advance our understanding of the trade-
offs between delay, throughput, and the accuracy/complexity of
CSI acquisition in M-MIMO cellular network systems.

Index Terms—Massive MIMO, channel state information,
throughput-delay trade-off, network utility optimization.

I. INTRODUCTION

To allow 5G wireless networks to support multi-Gigabit
per second data rates, there have been significant recent
efforts on the research and development of massive multiple-
input multiple-output systems, or simply being referred to
as Massive MIMO (M-MIMO). In contrast to conventional
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multi-antenna technologies, the number of antennas in M-
MIMO is on the order of hundreds or even thousands. Also, in
another key 5G technology called millimeter-wave (mmWave)
communication, one can easily pack a large antenna array
into small form factors thanks to the short wavelengths,
leading to a perfect marriage between M-MIMO and mmWave
communications. To date, various promising theoretical results
on M-MIMO capacity gain and transmit power efficiency
have been established (see, e.g., [1]-[3] for comprehensive
overviews). Also, some lab-scale M-MIMO prototypes have
been built and favorable field test results have been reported
(e.g., [4], [5]). However, in spite of all of this progress, the
existing research efforts on M-MIMO are mostly concerned
with problems at the physical layer or signal processing
aspects. The understanding of how M-MIMO could affect
the performance of network control, scheduling, and resource
allocation algorithms remains limited in the literature. In this
paper, our goal is to fill this gap by conducting an in-depth
theoretical study on the interactions between M-MIMO phys-
ical layer and network control and optimization algorithms at
higher layers, as well as their impacts on queueing delay and
throughput performances.

To this end, in this paper, we focus on the performance
analysis of the celebrated queue-length-based congestion con-
trol and scheduling framework (QCS) (see, e.g., [6]-[9], and
[10] for a survey) in M-MIMO-based cellular systems, where
the M-MIMO data transmissions can rely only on [limited
channel state information (CSI). The fundamental rationale
of our work is that, as noted by many researchers [1], [2],
CSI acquisition has become one of the most fundamental
limiting factors in the design of M-MIMO-based cellular
systems. Generally speaking, to leverage the MIMO spatial
multiplexing benefits, the transmitter must obtain CSI to per-
form spatial beamforming so that independent data streams can
be simultaneously transmitted. In conventional MIMO-based
networks, such CSI is usually learned at each mobile station
based on pilot symbols and fed back to the base station (BS).
However, due to the constraints on feedback channel capacity
and channel coherence time, this traditional CSI feedback
approach scales poorly with the increase of antennas in M-
MIMO. An alternative CSI acquisition strategy is to let the
system operate in time-division duplexing mode and, based
on channel reciprocity, use the uplink CSI measured at the BS
for downlink transmissions. However, the uplink CSI accuracy
could still be limited in practice due to multiple reasons: 1)
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As indicated in the original Introduction, it has been observed
in [1], [11] that the channel reciprocity assumption may not
perfectly hold in practice due to the magnetic properties of the
channel environment and transceiver hardware chains; 2) In
millimeter-wave (mmWave) Massive MIMO systems (where
a large number of antennas can be easily packed into a
small form factor due to the short wavelength), the channel
coherence time is around an order of magnitude lower than that
of microwave bands since Doppler shifts scale linearly with
frequencies. This short channel coherence time implies that
uplink CSI estimation in mmWave Massive MIMO systems is
challenging; 3) Due to the limited transmit power at the mobile
station and the lack of beamforming gains for uplink pilot
symbols, the accuracy of TDD-based CSI estimation through
channel reciprocity is limited.

In this paper, we accept the reality that CSI inaccuracy
is unavoidable and we do not require full CSI at the M-
MIMO BS. Instead, we assume that the CSI at the BS is
limited and accurate only to a certain degree. Such limited
CSI can be obtained by a small amount of feedback from
each mobile device using a limited number of bits to approxi-
mately represent its channel instantiation. Alternatively, the BS
could approximately measure the downlink CSI based on the
channel reciprocity assumption. In such cases, one interesting
question naturally arises: How does the limited CSI affect
the performance of the QCS framework? In particular, it is
well-known that the QCS framework is throughput-optimal
under full CSI and achieves an [O(1/K), O(K)]| utility-delay
trade-off, where K > 0 is a system parameter [8]. Also,
the average queue-length deviation and the congestion control
rate optimality gap scale as O(v/K) [12] and O(1/VK) [7],
respectively. However, when the QCS framework is adopted
in M-MIMO cellular networks with limited CSI, it begs the
following question: Will the same utility and delay perfor-
mance scaling laws continue to hold? As will be seen later, due
to the complex cross-layer interactions (e.g., precoder design,
choice of channel quantization codebook, power allocations,
etc.) in M-MIMO cellular systems, answering this question is
challenging.

The main contribution of this paper is that we theoretically
characterize the queueing delay and network utility-optimality
performance of the QCS framework in M-MIMO cellular net-
works with B-bit limited CSI. Our main results and technical
contributions are as follows:

o« We show that the queues in the network remain stable
under QCS under imperfect CSI; and the steady-state av-
erage queue-lengths still follow an O(K) linear scaling.
For an imperfect CSI scheme is accurate up to the B most
significant bit, the slope (i.e., the hidden constant in Big-O)
is affected by B: The larger the value of B (more accurate
CSI), the more gradual the slope becomes. Moreover, the
steady-state queue-length deviation from the mean exhibits a
phase transition phenomenon: There exists a critical value
B, such that: i) For all 0 < B < B, the steady-state
queue-length deviation is bounded by O(Dp)K), where
D(py > 0 is a quantity that depends on the specific channel
quantization codebook design; and ii) For all B > B,,, the
steady-state queue-length deviation scales as O(VK), i.e.,
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Fig. 1. A Massive MIMO cellular downlink with M antennas and NN users,
with M > N.

recovering the same scaling law under full CSIL.

e For any given B-bit limited CSI collection scheme, we
show that the steady-state average congestion control rates
under the QCS framework increase as B increases. Interest-
ingly, the same phase transition phenomenon also happens
in the congestion control rates in the following sense: There
exists the same critical value B.. such that: i) For all
0 < B < B, the steady-state congestion control rate
deviation scales as O(D(p)) and independent of K; and
ii) For all B > B, the steady-state congestion control
deviation scales as O(1/v/K), also recovering the same
scaling law under the full CSI.

o Collectively, all queue-length and congestion control rate
scaling results and their phase transition effects advance our
understanding of the trade-offs between delay, throughput,
and the accuracy/complexity of CSI acquisition. Also, our
results suggest that delay and throughput scalings could
potentially be employed as useful proxies to control CSI
quality and acquisition complexity in M-MIMO networks.
More importantly, our work establishes a unifying theo-
retical framework as well as design guidelines in practice
that enable the development of effective CSI quantization
schemes for M-MIMO cellular networks.

The remainder of this paper is organized as follows: In
Section II, we introduce network model and the problem for-
mulation. In Section III, we introduce the queue-length-based
congestion control and scheduling framework and present the
main results of this work. Section IV presents the numerical
results and Section V concludes this paper.

II. NETWORK MODEL AND PROBLEM
FORMULATION

Notation: We use boldface to denote matrices/vectors. We
let AT and AT denote the transpose and conjugate transpose of
A, respectively. We let vi > vy denote entry-wise inequality
between vectors. We let v, represent the m-th entry of vector
v. We use || - || and | - |1 to denote L?- and L'-norms,
respectively. We use R, C, and Z to denote real, complex,
and integer spaces, respectively.

1) Massive MIMO Downlink Channel: As shown in
Fig. 1, we consider an M-MIMO cellular downlink system,
where the BS has M antennas and serves N simultaneously
active single-antenna users. In this paper, we focus on the cases
where M > N (e.g., M is in hundreds or even thousands,
while N could be well less than tens). Thanks to such excess
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degrees of freedom at the BS, it is possible for the BS to serve
all NV users by simultaneously forming /N spatial beams. We
note that the number of users in a cell usually exceed the
number of antennas. However, the number of simultaneously
active users could be less than the number of antennas in a
Massive MIMO system, especially in small cells (a key feature
in 5G mmWave M-MIMO wireless networks) and non-peak
hours. In fact, exploiting the small number of simultaneously
active users is the foundation of most statistical multiplexing
schemes. In this paper, we focus on the case where the
number of users is less than the number of antennas and the
associated RF chains, so that the system can afford to serve
all users simultaneously. This would allow us to first simplify
the problem and fully understand the effects of imperfect CSI
(caused by numerous factors as outlined in Sec. I) in Massive
MIMO cellular systems.

We assume that the system operates under a time-slotted
fashion and time is indexed by ¢ € {0,1,2,...}. We let
H[t] € CN*M denote the channel gain matrix in time-slot ¢
between the BS and the users. We assume independent quasi-
static block fading, i.e., each entry in HJ[¢t] is constant in
one time-slot and independently varies in the next time-slot.
Moreover, one important property of M-MIMO channels with
M > N is that, under favorable propagation conditions, the
row vectors of H[t] are asymptotically orthogonal as M — oo
[2]. This property enables the use of simple matched-filter
(MF) beamforming strategy to approach the MIMO broadcast
channels [2]'. Thus, in what follows, we will briefly introduce
some related preliminaries of MF beamforming for M-MIMO.

2) Matched-Filter Beamforming: For the M-MIMO cel-
lular downlink in Fig. 1, the received signal of user n in time-
slot ¢ can be written as: y,[t] = z,[t]\/pn[t]hl [t]w,[t] +
YoIm s n @ [H1/Ds [ (1w [E] + v, [t], where h,[f] € CM
is the channel gain vector seen at user n in time-slot ¢, i.e.,
the n-th row in H[¢]; p,[t] is the power allocated to user n in
time-slot ¢; x,, [t] represents a unit-power data symbol intended
for user n in time-slot ¢; w,[t] € CV is a unit-norm linear
precoding vector for user n in time-slot ¢; and v, [t] is the white
complex Gaussian noise at user n in time-slot ¢ with power
Ny. Under MF beamforming, one simply let w,,[t] = h,[t],
i.e., the n-th row in H[¢]. In this setting, the achievable rate
under MF beamforming can be computed as:

. P} 1
o =los, (1+ Not z;-v_l,#npjmhmt]ijg
Diog, (1+ 228 m,)?). 0

where (a) follows from the fact that the rows of HI[t] in
M-MIMO channels are nearly orthogonal, i.e., hf [tjw;[t] =
hi [t]h;[t] ~ 0, Vn # j, when M is sufficiently large.

We assume that the channel fading can be characterized by a
total of F' states H(l), ... 7H(F), where each H() € CN*xM
f =1,...,F, corresponds to the channel qualities between

'For MIMO broadcast channels, it is known that dirty paper coding (DPC)
is capacity-achieving [13]. However, DPC is a nonlinear precoding scheme
that is difficult to implement. In contrast, the capacity loss of the simple MF
compared to DPC is negligible in the high signal-to-noise ratio regime [2].

the M antennas and N users in state f. For each H, we
let Cypcr) denote the achievable MF rate region, which is the
convex hull of all achievable MF rate vectors in state f under
all feasible power allocations:

ri=1og, (1+ % Int)?)

Pn > 0,91, 30 pn < Proax
where CH{-} represents the convex hull operation, p,, denotes
the power allocated of user n, and Py, denotes the maximum
transmission power at the BS. Clearly, due to the maximum
power constraint, there exists an ry,x < oo such that r,(Lf ) <
rmax . We let 1) = [rgf), . ,rj(\];)}T € RY denote the
feasible MF rates in state f. We let 7; = Pr{H][t] = H/)} be
the stationary distribution of the channel state process being in
state f. We let C denote the mean MF achievable rate region,
which can be written as:

CH(f)éCH {Téf),lgTLSN

F
C&{lr|r= war(f), vr) e Cup p . (2)
=

We note that, in this paper, neither the channel state statistics
nor C is assumed to be known at the BS under the QCS
algorithm, which will be introduced in Section III.

3) B-Bit Limited CSI: The use of MF beamforming (i.e.,
wy,[t] = hy,[t]) means that the BS requires full CSI H[¢], V¢.
However, as mentioned in Section I, it becomes increasingly
difficult to acquire full CSI as M gets large. One way to
address this challenge is to use limited CSI by quantizing the
channel (e.g., [14]-[18]). As shown in Fig. 1, such limited CSI
can be obtained from a small amount of feedback by each user
using a small number of bits to represent a quantized channel
state, which is accurate up to the B most significant bits.
Note that in the M-MIMO and millimeter-wave (mmWave)
systems literature, some hybrid beamforming/precoding archi-
tecture has been proposed for frequency division duplex (FDD)
systems with a reduced number of RF chains and reduced
CSI feedback based on second-order statistics of the channel
vectors, i.e., the channel covariance matrices (see, e.g., [19],
[20]). In these hybrid beamforming systems, due to the time
spent on analog beamforming, the time used for estimating
the effective channel CSI for digital beamforming is further
reduced, although the dimension of the effective channels is
reduced. This reduced estimation time in effective channel also
introduce inaccuracy in effective channel CSI.

Alternatively, in time-division duplex (TDD) mode, Fig. 1
represents that the BS measures the uplink CSI, which is
accurate up to the B most significant bits and will be used
for downlink transmissionsZ. In both cases, the value of B can

2Under the TDD mode, there is no need for quantized CSI feedback.
However, uplink CSI inaccuracy may still be unavoidable due to the following
reasons: 1) Due to the limited transmit power at the mobile station and the
lack of beamforming gains for uplink pilot symbols, the accuracy of TDD-
based CSI estimation through channel reciprocity is limited; 2) In mmWave
M-MIMO systems (a large number of antennas can be easily packed into a
small form factor due to the short wavelength), the channel coherence time
is around an order of magnitude lower than that of microwave bands since
Doppler shifts scale linearly with frequencies. This short channel coherence
time implies that uplink CSI estimation is challenging. Therefore, it remains
very relevant to investigate the impacts of imperfect CSI on M-MIMO cellular
systems even in the TDD mode with channel reciprocity.
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be viewed as a means to balance the trade-off between CSI
accuracy and acquisition costs. The B-bit limited CSI for each
user n can be modeled based on a vector quantization code-
book B, 2 {ct,...,c2"}, where ¢t € CM, i =1,..., 2B,
denotes a codeword. With the CSI h,, [¢] in time ¢, a codeword
for each user n is chosen by:
ir[t] = argmax |hf [t]c] | = argmin sin®(Z(h,[t],c})),(3)
je{1,...,2B} je{1,...,.2B}

where 7, [t] denotes the index of the chosen codeword. We let
H[t] € CVN*M denote the corresponding channel gain matrix
in time-slot ¢ by aggregating all codewords iy, [t], Vn. Then, by
treating H[t] as if it is the accurate CSI, the BS performs MF
beamforming to construct N spatial channels. However, due
to the inaccuracy of H]t|, multi-user interference may become
non-negligible. Clearly, the impact of multi-user interference
depends heavily on the codebook size 27 and the design of
the quantization codebook.

Let CH[t]|ﬁ[t] denote the actual MF rate region achieved

under H[t] based on the belief that Hit] is the accurate CSI.
Also, let H; [t] and H[t] represent two estimated CSI values
obtained by using B; and B, bits, respectively. Further, we
let Cyyy) denote the original MF achievable rate region under
full CSI HJt] . Then, one can show the following inclusion
result of the MF achievable rate regions under limited CSI in
M-MIMO networks (the proof is relegated to Appendix A):

Lemma 1 (MF Rate Region Inclusion). If By < B, then there
exists a CSI quantization scheme under which CH[t]\ﬁl[t] -
CH[t]|ﬁ2[t]' Further, CH[t]\ﬁ[t] —Cryy as B—oc.

4) Queueing Model: As illustrated in Fig. 1, the BS
maintains a separate queue for each user. Let a,[t] denote
the number of packets injected into queue n in time-slot t.
As shown in Fig. 1, the arrival processes {a,[t]}, Vn, are
controlled by a congestion controller. Also, we assume that
there exists a finite constant A™#* such that a,[t] < A™2*,
Vn,t.Letsp[t] £ [sp1[t],...,sp.n][t]" denote the scheduled
service rate vector in time-slot ¢ based on the belief that the
current B-bit limited CSI is accurate (the scheduling algorithm
that determines sp[t] will be presented in Section III). Then,
the queue-length of each user evolves as follows: g, [t + 1] =
(qnlt] = s.alt] + anlt]) ", ¥n, where ()% 2 max(0,-).
Let q[t] = [qi[t]],---,qn][t]]". In this paper, we adopt the
following notion of queue-stability (same as in [7], [8]): We
say that a network is stable if the steady-state total queue-
length is finite, i.e.,

limsup E { |qlf]]11} < . @
t—o0

5) Problem Statement: Let @, = limTﬁm%Zf:_Olan[t]
denote the average controlled arrival rate of user n. Each
user n is associated with a utility function U, (@, ), which
represents the utility gained by user n when data is injected
at rate a,. We assume that U,(-), Vn, is strictly concave,
monotonically increasing, and twice continuously differen-
tiable. We assume that U, (-) satisfies the following strong

concavity condition: there exist constants 0 < ¢ < ® < oo
such that ¢ < —U)/(a,) < ®, Va, € [0, A™*¥], where A™a*

is the maximum arrival rates for burst control. For example,
log(a, + €) is strongly concave for € > 0. Our goal is
to maximize 22;1 U, (@), subject to the MF beamforming
rate region CH[t]|ﬁ[t] due to limited CSI in each time-slot
and the queue-stability constraint. Putting together the models
presented above yields the following joint congestion control
and scheduling (JCCS) optimization problem:

N
JCCS: Maximize U, (an)
n=1
subject to Queue-length stability constraint in (4),
sBnlt] € Cypy gy anlt] € [0, A™] Vn, 2.

Note that, when perfect CSI is available (B — o0), the well-
known QCS algorithmic framework [6]-[9] optimally solves
Problem JCCR in the following sense: The a = [ay,...,ax] "
obtained from the QCS algorithm achieves a utility optimality
gap O(1/K) at the expense of queue-length scaling as O(K),
where K > 0 is a system parameter. It will be clear in
Section III-B that, from optimization theory perspective, this
parameter K can be interpreted as the inverse of the step-size
in a stochastic subgradient descent method. Hence, the utility
optimality gap can be made arbitrarily small by increasing
K asymptotically (implying an asymptotically large queueing
delay). However, in M-MIMO cellular networks, it is not
clear whether or not the QCS algorithmic framework will be
optimal based on B-bit limited CSI. This constitutes the main
discussions in the next section.

III. PERFORMANCE ANALYSIS OF THE QCS ALGORITHM
WITH LIMITED CSI

In this section, we first present a variant of the QCS
algorithm adapted for M-MIMO with B-bit limited CSI in
Section III-A. Then, we will examine a deterministic problem
related to Problem JCCS in Section III-B to facilitate our
discussions. The main theoretical results and their proofs will
be presented in Sections III-C and III-D, respectively.

A. The QCS Algorithm with Limited CSI

Algorithm 1: Queue-Length-Based Congestion Control and
Scheduling for M-MIMO Cellular Networks with B-Bit CSI.

Initialization:
1. Select an appropriate & > 0 and an appropriate B > 0.
Main Loop:

2. Queue-Length-Based MaxWeight Scheduler: In time-
slot t > 1, given the queue-length vector q[t] =
[@1[t], ...,qn[t]]T and the B-bit estimated CSI HI[t],
the scheduler chooses a power allocation plt] =

[p1[t],-..,pn[t]]T such that the (believed) MF achiev-
able rates r[t] = argmax, e a (q[t]) Tx. As a result,
the actual MF achievable service rates sp ,,[t], Vn, under
plt] are:

palt]| b [0, [1]]”

— (5
No+ 3270, 4, ps[t]| L[]y [¢] |2>

spn[t]=log, (H—
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3. Congestion Controller: Given the queue-length vector
qlt] = [qlt], --.,qn[t]]T, the congestion controller
chooses data inject rates a,[t], ¥n, which are integer-
valued random variables satisfying:

E{ay[t]|g.[t]} = min {U;l (q’}f[t]> ,AmaX} . (6)
E{ai [t”qn[t]} < AgmX < oo, Vg, [t], (7

where U;fl(-) represents the inverse function of first-
order derivative of U,,(+). In (6) and (7), A™2* and AR
are positive constants.

4. Queue-Length Updates: Update the queue-lengths as:

Qn[t + 1] = (Qn[t] - SBJL[t] + an[t])+ ,  vn. 3

Let t =t + 1. Go to Step 2 and repeat the scheduling
and congestion control processes.

Some remarks on Algorithm 1 are in order: First, as men-
tioned in Sec. II, we focus on the case where M > N in this
paper so that the M-MIMO BS has sufficient spatial degrees of
freedom to serve all users simultaneously. This would allow us
to first simplify the problem and fully understand the effects
of imperfect CSI. Once we gain a fundamental understanding
on the impacts of imperfect CSI on M-MIMO cellular network
optimization, we can extend these results to include user
selection/grouping for the case with M < N by imposing a
constraint that only Ny out of N users are allowed to be served
simultaneously and Ny < M. Clearly, adding this discrete
user selection scheduling constraint makes the MaxWeight
scheduling subproblem in Step 2 in Algorithm 1 non-convex
and NP-hard. Fortunately, there exists a large body of literature
on user selection scheduling schemes (see, e.g., greedy maxi-
mal matching (see, e.g., [21]-[23] and references therein) for
the QCS framework that have strong performance guarantees
and can be applied in our problem setting. We note that a
low-complexity scheduling scheme was recently proposed in
[24], where the channel hardening effect in M-MIMO was
exploited to yield a polynomial-time user selection algorithm.
However, this user selection algorithm cannot be extended to
our problem setting since our work differs [24] in the following
aspects: i) Perfect CSI was assumed in [24] to enable the
use of the channel hardening effect to approximate the rate
calculation, while we do not assume perfect CSI in this paper.
Because of this relaxation on perfect CSI assumption, the inter-
user interference cannot be eliminated due to the CSI error,
and hence it is unclear how well the channel hardening result
would continue to hold. ii) The beamforming scheme used in
[24] is the Linear Zero Forcing Beamforming (LZFBF), while
we use the Matched-Filter (MF) Beamforming. As a result,
the simplified approximate rate expression [24, Eq. (39)] does
not apply in our problem setting.

Second, since user selection is not needed in our problem
setting, now the main challenge is reflected in the limited
and inaccurate CSI, which leads to suboptimal service rates
in (5). This incurs service rate losses compared to the full
CSI case, where the MaxWeight scheduler is of the form
s[t] = arg mMaXyecy, (q[t]) "x. In what follows, we will

focus on the impact of this inaccurate MaxWeight scheduling
solution due to the B-bit limited CSI.

B. A Deterministic Problem

To facilitate the presentation of our theoretical results in
Section III-C, we first introduce a K -parameterized deter-
ministic problem, where we assume that the channel state
process is not random and fixed at its mean level. That is, the
mean achievable rate region C% £ {r|r = Zle mppf) vrlh)
€ CH(f)le} where Cpy 5 f1() Tepresents the actual MF rate
reglon achleved under H(Y) based on the belief that the CSI
is H B , i.e., the B-bit quantized CSI for state f. Also, the
congestion control and scheduling variables are time-invariant,
which are denoted as a,, and sp ,, Vn, respectively. Then, the
deterministic congestion control and scheduling problem (K-
DJCCS) can be written as:

N
K-DJCCS: Maximize K Y U,(ay)
n=1

— SB,n < Oa vn7
€ [0,a™], Vn.

subject to  ay,
Spn € @B, a

Since Problem K-DJCCS is strictly convex, an optimal solu-
tion exists and is unique. Further, we associate dual variables
gB,» > 0, Vn with the constraints a, —sp , < 0, Vn, to obtain
the Lagrangian as follows:

{K ZU ap, +Z QBn SB,n an)}a(g)

where the vector qg = [¢p.1,.--,98.N] € Rf contains all
dual variables. Then, the Lagrangian dual problem of Problem
K-DIJCCS can be written as:

Ok (qp)= max

a,speCB

K-LD-JCCS: Minimize

subject to

Ok (ap)
qB € Rﬁ.

It can be verified that Problem K-DJCCS satisfies the Slater
condition [25]. Hence, the optimal value of Problem K-LD-
JCCS is equal to that of Problem K-DJCCS. Let (a};,s%;) and
q*B,( K) be a pair of optimal primal and dual solutions. Then,
qg,( K) can be shown to have the following properties:

Lemma 2 (Optimal dual solution scaling of the deterministic
problem). For a given K, q; K) = Kqp 1y or equivalently,
ay (K) scales linearly as O(KS and the slope is determined by
the entries in q>1k3,(1)~ Further, q}lﬁ(l) > q*B%(l) if By < Bo.

Lemma 2 can be proved by examining the Karush-Kuhn-
Tucker (KKT) conditions [25] of Problem K-DJCCS (see
Appendix B). Also, by noting the fact that K is just a scaling
factor in the objective function and a3 = s}, at optimality (by
KKT conditions), we immediately have the following result for

ap:
Lemma 3 (Optimal primal solution of the deterministic prob-

lem). The optimal congestion control rate ay; is independent
of K and equal to the optimal service rate s% over CP.



6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ?, NO. 2, ?7??? 2017

C. Main Theoretical Results

In this section, we present the main performance analysis
results of Algorithm 1. Our first result says that the steady-
state queue-lengths g stay in a neighborhood of q7; J(K) (the
existence of steady-state will also be proved later). Further the
scaling of the steady-state queue-length deviation from g7 B.(K)
exhibits a phase-transition phenomenon:

Theorem 1 (Phase Transition Phenomenon of Queue-Length
Scaling). For any B-bit CSI quantization scheme in Algo-
rithm 1 with parameter K, there exists a critical value B,
that is independent of K, such that the following hold:

o Forall 0 < B < Be, E{[|a™ — aj 1[I} = O(D() K),
where the parameter D gy > 0 depends on the quantization
codebook design and shrinks as B increases;

e For all B> Bey, E{[la™ — a}; )} = O(VEK).
Collectively, Theorem 1 and Lemma 2 describe the steady-

state queue-length behaviors. In particular, they show that if

B > B, the steady state queue-length deviation is upper

bounded by O(+v/K), which is small compared to the magni-

tude of g (4, which grows linearly as O(K) and the slope
is affected by B: the larger the value of B, the more gradual
the slope. Note that the scaling of the queue-length deviation
for B > B, is the same as the classical result under full CSI

[12]. This implies an interesting and surprising insight that

full CSI is not necessary to induce certain desirable queueing

behaviors in M-MIMO cellular networks.

Now, let a%,, £ E{min{U, " (¢3°/K),a™}}, ¥n, be the
steady-state congestion control rates under some B-bit CSI
quantization and let af = [a%,,..., aF y] . Our second
main result is on the scahng of a%’’s deviation from aj;:

Theorem 2 (Phase Transition Phenomenon of Congestion

Control Rate Scaling). For any B-bit CSI quantization scheme

in Algorithm 1 with parameter K, there exists a critical value

Be; (same as in Theorem 1) such that the following hold:

o For all 0 < B < B, ||ay — aj|| = O(D(py), where the
parameter D gy > 0 is the same as in Theorem 1;

e Forall B> B, ||a¥ — a%| = O(1/VK).

Similar to the results in Theorem 1, Theorem 2 combined
with Lemma 3 suggest that a phase transition phenomenon
also exists in a%: When B < B, parameter K becomes
ineffective in the control of aDBO’s deviation from a. On the
other hand, when B > B, a%’s deviation from a} scales
as O(1/+/K) and can be made arbltrarlly small by increasing
K. Since this O(1/v/K) scaling is the same as that under full
CSI [7], [8], Be: represents the smallest codebook size of the
given CSI quantization scheme that recovers the performance
control functionality of parameter K.

D. Proofs of the Main Theorems

In this subsection, we provide proofs for Theorems 1 and 2.
To this end, we first show a positive Harris-recurrence result
of the queue-length process, which implies the existence of
steady-state and will be useful for proving Theorems 1 and 2
later. Let 1 4(x) be the indicator function that takes value 1
if x € A and 0 otherwise. The queue-length positive Harris-
recurrence result can be stated as follows:

Theorem 3 (Queue-Length Positive Recurrence). Consider a
Lyapunov function V (q[t]) £ 75z|q[t] —dp () |? for a given
K. For the scheduler (5) and congestion controller (6)—(7),
there exist constants 6,1 > 0, both independent of K, such
that the queue-length process {q[t]}2, satisfies the following
conditional mean drift condition:

E{AV (qft]lalt])} = E{V (qlt +

)
< —ﬁHQ[t]

1)) = V(alt)lalt]}
[t]) + nls(qlt]),

where B = {q € Z¥||la—q} o)l < BK} for some constant
B > 0 and B¢ denotes the complement of B in Zf .

— A5 (x| 18 (a (10)

We relegate the proof details of Theorem 3 to Appendix C.
The inequality in (10) shows that the conditional mean drift
is negative when the deviation of the queue-length vector
q[t] away from ap () is sufficiently large. Since (10) is
exactly the Foster-Lyapunove criterion [26, Proposition 1.5.3],
{q[t]}$2, is positive recurrent, a steady-state distribution of
queue-lengths exists. We denote the queue-length vector in
steady-state as q°°. With Theorem 3, we are now in a position
to prove Theorem 1.

Proof of Theorem 1. To prove Theorem 1, we use an a-
parameterized quadratic Lyapunov function: V,(q[t]) =
s |lalt] — q};’(K)HQ, where the parameter « € {0,1} and
its value will be specified later. Different choices of the
« value would lead to different Lyapunov functions, which
subsequently lead to different scaling laws for different CSI
accuracy levels. Following similar steps in the proof of Theo-
rrem 3 (see Appendix C), we can bound the conditional mean
Lyapunov drift as follows:

E{Va(alt + 1)) — Va(alt)lalt)}
< L (alt] - a ) TEaltal]) - si)+
KlaE{( (1]~ s (1)) T (85 — ss[t)lalt]} + %
< % [ — LKllq[t] — a0+ D0}+
L] (al] — i) 5 s l)alt]}
< %[— 7Hq ~ a0l +D0]+
%E{(q[t])T(s* ~sali)]al} a

where Dy £ & (AP®* 4 (sm%)2) and s* £ limp_,o sj. In
(11), (a) follows from adding and subtracting s%;; (b) follows
from (36); and (c¢) follows from s} < s* (by Lemma 1)
and the scheduler design, which implies (qj; K))TSBM <
(q*B,(K))TS*B' Next, consider the 7'-step conditional mean
Lyapunov drift. For any q[0] > 0, we have that

E{Va (alT])|a0]} - Va( ZE{V (alt+1)) =V (alt)la[0]}
t=0
“”ZZPr 1= alal0)E{Va(alt+1])~Va(alt))alf] =a}]

t= OqezN
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(b)T 1

<3 3 et =alalo) {gz [z it i o o}

t qEZN

+Z > Pr(aft]=qlq[0 ]){%E{QT(S**SBM)}},(12)
t=0qez¥

where (a) follows from the fact that q[t] is a discrete state
Markov chain in Z% and (b) follows from (11). Note that for
any q[t] € ZY, limr_o0 7 S Pr(qft] = qlql0]) = o
where 7 denotes the stationary distribution of the Markov
chain q[t]. Moving V(q[0]) to the right hand side, dividing
both sides by 7', and letting T' — oo yields:

O§J+Z7rg°(q)T

qezy
where J limy 00 4 ZZ:()l quZi’ Pr(qlt]
dal){z=[ sFxlalt q)ll> + Dol},
argmaxyee, o (@>°)Tx represents the
service rates with B-bit CSL

Next, consider the term E{(q>) " (s* — s%)} in (13). For
any given realization of g™ in the steady-state, from the design
of the MaxWeight scheduler in (5), we have that

(@*)'s" < max (¢°)'x=(q
XGCH[OO]

(s*—s¥)=J+E{(q (s*—s¥}, (13)

Sy =
steady-state

OO)T OO)TSOO. (14)
where s° £ limpg_, o s% and H[oo] represent the full CSI in
the steady state. Hence, for any realization of g such that
q>™ # ps* for some p € R, if B is sufficiently large, we
must have (q)s* — (q*°)"s¥ < 0. Hence, there exists

a critical value B, such that for all B > B, the average

value of (q*°)"s* —(q°)"s% can be made non-positive, i.e.,
E{(g®)T(s* —s¥)} < 0. Hence we consider two cases
based on the positivity of E{(q*) " (s* —s%)} as follows:

Case I): B > B, such that ]E{(q
this case, it follows from (13) that

th 0 quzN

{%[— oy llate —q}},(K)HQ —|—Do}}. (15)

We now consider the term in the second line in (15) by setting
o = 0. Similar to the proof of Theorem 3, suppose that ||q[t] —
qap () H > B\F where  will be specified shortly. This

T(s* —s%)} <0:In

0< lim
T— 00

= q|q[0])

al

implies that ﬁ % Then, the second line in (15)
K
can be upper boundeé )
aelalt) =i o | + Do = avaeall=db.o
(Hq{t] — A0l . DyeVE )
VK lalt] = a ()

D0<I>>
< - T - — . 16
< CID\FHq qB,(K)H (ﬂ 3 (16)

Hence, by choosing 8 > +/Dy®, we have

1 N 2 5

7“‘1#]“13,(1{)“ +Dy < —WHQ (A7)
where § = 8 — % > 0. Plugging in 5 > +/Dy® to define

aball B2 {q: |a—dqj gl < VDo®K}, we have that if
q[t] € B¢, the following holds:

1 2 *
7’|Q[ﬂ_ K)H +D0<—THQH ag, ) ll-

On the other hand, when ||q[t] — af )|l < VDo®K, it is

clear that —(1/®K)||q[t] — qj (K)||2 + Dy < n for some
1 > 0. Combining these facts, we have

. 2
7K|}Q[t] —dB,(K) |+ Do
5 .
< —zellalt] = ak ) s (alt]) + nls(alt]).  (18)
Substituting (18) into (15) yields:
0<Th_r)r;o—z > Pr(qlt] = qlq[0])
t=0 quN
g .
(- <lalt - ai (K)H]lsc( ) +nls()
=0y T - ——= Z la—ap llrg. (19
qeB qu"
where we use the fact that, Vq S Zfrv s
limy_e0 & 3o Pr{q(t] = qlq[0]} = 7. Re-arranging

the terms and with some manipulations, the above inequality
can be written as:

\ﬁZHq A e Z(n+ g — qB(K)”)
qGZN qeB
<(n+08) > 7y < (n+6p), (20)
qeB

where the second inequality follows from the definition of B.
Note here that the left-hand-side is precisely %]’E{quo -

ap, (i) I} Thus, multiplying both sides by VK /§, we have:

E{lla* — a1} < (8+ F) VE = OVE). D)
Case 11): B < B, such that E{(q*)" (s* —s%)} > 0: In
this case, we set o = 1. It thus follows from (11) that:
E{AVi(alf)lalf]} < — g ||al~ab.oo | +
llalll = ab o) 1D + 22, @2

where D p) is defined in the proof of Theorem 3 (cf. Eq. (33)).
Note that (22) is identical to (37). Then, following exactly the
same steps as in the proof of Theorem 3, we have:

E{AVi(q[t])|alt] |15 (q)+m s, (q).

where 1, 11, and B; are the same as in the proof of
Theorem 3. Then, it follows from (12) that

E{Vi(a[T]al0])}—Vi(al0) <m > ZPr{q = q|q[0]}

q631 t=0

Z la — af x|l ZPr{q

qEBL

01 .
=q} S—?HQ—QB,(K)

=dlql0]}. (23)



8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. ?, NO. 2, ?7??? 2017

Following similar steps as in Case I to divide 7" on both sides
on (23) and let T — oo, we have 0 < 1 qub’l T
& qese 14— d (507G Re-arranging the terms and with

some mampulatlons the above inequality can be written as:

- Z la —ap,x)llmq

quN

<2

(771+ la—ap (K)||>
q€B;

<(m+6p) > 7y

qeB

(m +151),

where (31 is the same as in the proof of Theorem 3. Note that
the left-hand-side is %L E{[q> — a3 (x|} Multiplying both
sides by g, we have:

o0 * 77
E{lla™ — aj o1} < (51 4 61) K

= ([(Di5)®) + /(D @) + 4Ds0) + 1) K
= O(D(p)K).

This completes the proof of Theorem 1. O

One important remark regarding B, is in order: From the
proof of Theorem 1, we can see that B, is determined by the

condition E{(q>) " (s* —s%)} = 0. Note that
E{(a™)"(s" —s¥)} = E{(a™) " (s" — s + 5 —s¥)}
= E{(qoo)T(S* _ Soo)}JrE{(qoo)T(soo B SOBO)}
<0 l0as B—0

From the analysis in the proof of Theorem 1, we know that
E{(q™)7(s* —s*)} < 0 and E{(q™)" (s> —s§)} | 0
as B — oo, both of which are due to the MaxWeight
scheduling property. Therefore, B, depends on the quantities
q*>°, s*, and s*°, which determine how negative the term
E{(q®) " (s* — s®)} is. Note that the quantities q>, s*,
and s* are determined by the specific problem instance
factors, such as the utility functions U, (+), ¥n, the mean MF
achievable rate region C, etc.

Proof of Theorem 2. To show the results in Theorem 2, we
first note that Ea, [t]|g, (1]} = min{U}, (sl Amax)) and
aX =U,~ (%

" n ) Vn. Thus, we have:

la —ap| <llaf —agl1

E{ min {Un (q"

I
M=

A - ()
{Jon (it (G )} =i ()
{lo () v (22

v () (5 -5}

3
Il
=

—
S]
=

M=

E

3
Il
-

—~
=
~

IA
M=
&=

3
I
-

1=
M=
&=

3
Il
-

¢ 9B,k

S

}

K K
1 *
< Z]E{ a7~ ,(K),n’} = @E{HQOO_QBV(K)HJ
\F
(bKE{Hq _qB K)H} (24)

where (a) follows from Jensen’s inequality and the convexity
of the L'-norm; (b) follows from relaxing the projection onto
[0, A™2x]; (¢) follows from the mean value theorem; and (d)
follows from the inverse function lemma. Recall in the proof
of Theorem 1 (cf. (13)), we have 0< J—i—zqezﬁﬂrg"(q)T(s*—

=J+E{(q™) " (s*—s

°B°)} Again, based on the positivity
of the term E{(

q™) " (s*—s%¥)}, we consider two cases:

Case I): B > B, such that E{(q (s* —s%)} <0:In
this case, we can again discard E{(q”)T(s —s%)} in (13)
and let a = 0 to obtain:

0< fim 23 quzw

{ - @qu - q*B,(K)||2} + Dy.

By re-arranging, multiplying both sides by ® K, and noting

= d|q[0]) x

that limy_, & 37" Pr{q[t] = q|q[0]} = 7, we have
E{lla> — aj x|} < Do®K. (25)
It then follows from (24) that
o0 * f * 2
o = < (Sl — o}
(@) N ND,
—¢2K2E{Hq K)H }<¢2K2DO¢K_¢ ,(26)

where (a) follows from Jensen’s inequality; and (b) follows
from (25). Taking square root on both sides of (26) yields
laf —aj] = 0(1/VK).

Case Il): B < B, such that E{(q*) " (s* —s%)} > 0: In
this case, we set = 1 and it follows from (11 that

B{Aa) ]} < ~ gz [l | +
D B) * DO
—2> ] = s o) T+ 52
1 . D(B)(I)K
= —(I)KQ(HQ[t] - qB,(K)H B — +D, (27

where D(p 3 is defined in the proof of Theorem 3 (cf. Eq. (33))

and D £ (B) +3 D s1¢- Telescoping the inequality in (27) from
tzOtOT—lylelds

BV (@)D}~ Vi (al0) <~ =S 3 Prialf =afal}
t=0qez¥
x (HQ[t] —ap )| — D(B%M() +DT. (28

Dividing both sides of (28) by %, letting T" — oo, and noting

that limy_ + 3210 Pr{q[t] = q|q[0]} = 7%, Vq € 2V,
we have that:
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D @K\ 2
E{ (qu — a5 0l - “2) } < DOK?.

Taking square root on both sides yields:

D g ®K\2)72
{E{ (qu — a0l - “2) H < KvVD®.
(29)

Moreover, examining the left-hand-side of (29), we have
[E{ <!|q°° = 0| - D(B%(M(YH 5
N
v E{ Kllqc’o —dp 0l - D(B;(M{f} 2}
]E{’quo — a0l - D(B;w(‘}

Dip K
Bl - a0l - 250 )

Y

2
Dp)®K

= ]E{quo - q};’,(K)H} T (30)

where (a) follows from Jensen’s inequality. Combining (24),
(29), and (30) yields:

[e%e] * \/N [ee) *
|ag —apll < (b—KIE{Hq — i 0l
VN ([ D(p)®K
=—|————+KVvDd )| =0(Dp).
oK ( 5 TEV ) (D))
Note that Cases I and II are exactly the same results as stated
in Theorem 2. This completes the proof. O

I'V. NUMERICAL RESULTS

In this section, we conduct numerical experiments to verify
the theoretical results presented in Section III. In our sim-
ulations, we use a 128-antenna M-MIMO base station with
MF precoding to serve four users. Each user’s channel is
i.i.d. Rayleigh faded. The maximum total signal-to-noise ratio
(SNR) of the BS is set to 30dB. We use log(- + 0.001)
as the utility function for each user, i.e., the proportional
fairness metric [10]. In our numerical studies, the channel
states (i.e., the channel gain matrix H[t] in each time-slot ¢)
are randomly generated in MATLAB. In the perfect CSI case,
we directly use HJt] in each time slot ¢ as CSI input in Step
2 in Algorithm 1. We adopt the random vector quantization
(RVQ) scheme, which has been widely used in the MIMO
limited CSI feedback literature [14], [15], [18]. The value of
B is set to be 1, 2, 4, 8, 16, 32, 53, and 64, covering cases
from the simplest two-state channel quantization to channel
quantizations with high granularity.

We first study the impacts of B on the delay performance.
The results of average queue-length deviations with respect to
the changes of B are illustrated in Fig. 2. In Fig. 2, each solid
curve represents the average queue-length deviation scaling
with respect to K under a certain CSI accuracy parameterized
by B. For each scaling curve, we also plot an accompanying
line (the red dash lines). The bottom 4 accompanying lines
represent (starting from bottom) 0.44vVK s 0.5vVK , 0.58vVEK s
0.58vK, and 0.64v/K. They correspond to B = 64,53, 32,

and 16, respectively. Fig. 2 shows that the average queue-
length deviation curves sit below each accompanying line
when B > 16, confirming that the average queue-length
deviations are bounded by the O(v/K) scaling. On the other
hand, when B < 16, there is no O(v/K) accompanying
lines that can dominate the average queue-length deviation
curves, which means that the average queue-length deviation
grows faster than the square root law and approximately
exhibits a linear growth with respect to K. To see this, in
Fig. 2, we plot 3 straight accompanying lines. We can see that
the average queue-length deviation curves hovering around
these linear scaling accompanying lines, confirming the linear
scaling growth. Finally, combining two parts, we can see that
B = 16 is the critical point, where the phase transition from
O(K) scaling to O(v/K) happens.

Also, when B = 64, we can see that the queue-length
deviations almost coincide with that in the full CSI case,
showing that the 64-bit RVQ scheme is almost as accurate
as full CSI. Note that, as discussed earlier, obtaining full CSI
is costly or even unrealistic in practice: On one hand, if CSI
is measured at the mobile station, then the mobile station
needs to have long enough time to measure the channels
from all transmit antennas. This is unrealistic in Massive
MIMO systems because the channel measurement time grows
with the number of antennas, while the channel coherence
time is essentially a constant. On the other hand, if CSI
is measured at the base station under the TDD mode and
based on channel reciprocity, then the base station needs to
have enough computing resources to measure the channels
between transmit-receive antenna pairs simultaneously, which
incurs high hardware costs. Also, the massive antenna arrays
need to be carefully calibrated to compensate the reciprocity
impairments in practice, which complicates the base station
hardware design.

The results of average queue-lengths’ growth with respect
to K under different values of B are illustrated in Fig. 3. We
can see from Fig. 3 that the average queue-lengths increase
linearly with respect to K under all B values, agreeing with
Lemma 2. Also, the value of B plays an important role in
the slope of the linear scaling: the large the B value, the more
gradual the slope, again confirming Theorem 1. Also, the slope
of B=64 is almost the same as that of full CSI.

Next, we study the impacts of B on the congestion control
performance and the results are illustrated in Fig. 4. When B
is small, we can observe in Fig. 4 that a% are independent
of K and only affected by B. The congestion control rates
approach that under full CSI as B increases. This confirms the
first part of Theorem 2 and Lemma 3. Similar to the growths
of queue-length deviations, we can also observe that B =
16 is the critical point, beyond which the congestion control
rates start to exhibit an O(1/v/K) shrinking gap to a’%. All of
these observations agree with the phase transitioning results in
Theorem 2.

V. CONCLUSION

In this paper, we conducted an in-depth theoretical study
on the impact of limited CSI on the performances of the
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Fig. 4. The steady-state congestion control rates with respect to K for B =
1,2,4,8,16,32,53, and 64.

queue-length-based joint congestion control and scheduling
algorithm in M-MIMO cellular networks. We have theoreti-
cally characterized the queueing delay and congestion control
scalings under limited CSI. We showed that there exist phase

transitioning phenomena in the steady-state queue-length and
congestion control rate deviations with respect to CSI quality.
Collectively, our theoretical results in this paper advance the
understanding of the interactions and trade-offs between delay,
throughput, and the accuracy/complexity of CSI acquisition
in M-MIMO networks. Our work also establishes a unifying
theoretical framework as well as practical design guidelines
to enable the development of effective channel quantization
schemes for M-MIMO networks. Similar to various known
schemes (see, e.g., [27]-[29]) that enhance the original QCS
framework for traditional wireless networks under perfect CSI,
it is highly interesting to consider new algorithmic techniques
to further sharpen the throughput and delay performances
for Massive MIMO under imperfect CSI. Also, it is very
important to further incorporate user selection/grouping into
the MaxWeight scheduling component. To that end, our work
serves as an important step toward an exciting M-MIMO net-
working research paradigm that explores various new conges-
tion control and scheduling algorithmic designs, which could
potentially offer better throughput and delay performances
under limited CSI.

APPENDIX A
PROOF OF LEMMA 1

For ease of exposition, we first show the second part of
Lemma 1. Let {p,[t],n=1,..., N} be an arbitrary feasible
power allocation. Since the BS performs MF beam forming
by treating H[t] as if it is the accurate CSI, the received
signal can be written as yn[t] = s [tlpa[t]h,) [t]W,[t] +
Z;V:L#nsj[t}pj[t]h;[t}v?rj[t} + vn[/t\], where w;[t] = h,t],
1 < j < N, ie., the j-th row of H[t]. Hence, the MF rates
sp.n|t] achieved under HJt] based on the belief that the CSI
is B-bit CSI H][f] can be computed as:

spnlt] = log, pulfl[ (R[4
prlfi =l (H No+z?_17¢npj[t1|h2[t1hj[t1|2)
< log, (1 + pj@[j} th[t]H2> = sp[t], Vn, (€2))

where the inequality in (31) holds because |hf, [t]fln [tH2 <
b, [t]][2 and |hf[t]h;[t]|> > 0. Thus, for every rate point
splt] = [spalt],....sBn[t]" € Cypy gy its correspond-
ing power allocation {p1][t],...,pn[t]} achieves a rate point
s[t] = [s1[t], ...,sn[t]]T € Caypy that dominates splt] in
every coordinate. Hence, Cﬁ[t] C CH[t]. Also, as B — oo,
ﬁ[t] — H]t]. It thus follows from (31) that sp[t] 1 s[t], which
implies that Cﬁ[t] — CHJy-

Next, we argue why the first part of Lemma 1 is true.
Let B and B2 denote the vector quantization codebooks
corresponding to By and Bs bits, respectively. Since B; < Bo,
it follows that the codebook sizes |BL| < |B2|. Hence, given
codebook B}, one can construct B2 by simply retaining all
codewords in B} and adding new code words that are not
in B, which implies B} C BZ. As a result, for any given
CSI h,,[t], one can always find a codeword in B2 whose
distance to h,, [t] is not larger than that from B}, in the sense of
(3). Hence, the SINR term in (31) becomes larger under B,%,
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implying sp, n[t] < sp,.n[t]. Since this is true for arbitrary

power allocation, we have CH[t”H - CH[t”ﬁg[t]'

APPENDIX B
PROOF OF LEMMA 2

Dividing K on both sides of (9), we have +Ox(qp) =

maxy speCB {Z,]Ll Un(an) + 25:1 aB,n(SB,n - an)},
where g, = ¢pn/K. Note that the right hand side is
precisely ©1(qp), for which the maximizer is q = q*B,(l).
Hence, we have ©k(q) is maximized at Kqj ). This
proves the first part of Lemma 2.

To show the second part of Lemma 2, we first note from the
KKT complementary slackness condition and the monotonic-
ity of U, (+) that, at optimality, a = 8B p» Vn. We let aj, (By1)
and a, (By) denote the optimal congestion control rates under
Bj and B, respectively. If B; < B,, we have from Lemma 1
that s ,, < sp, ,» Which further implies a;,(B1) < a;,(Ba).
On the other hand, from the KKT stationarity condition, we
have U/ (a%(B)) — 4(p),, = 0. Since al(By) < a* *(Ba), it
follows from the concavity of Un() that q(p,) ,, = ¢(p,) .-
This completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Consider the quadratic Lyapunov function defined in Theo-
rem 3: V(qlt]) = 7% /lalt] — af (K)HQ, where qt] represents
the queue length vector in time-slot ¢ under parameters K and
B; and q7 B.(x) denotes the optimal dual solution for the static
version of Problem JCCR under parameter K. Then, the one-
slot mean Lyapunov drift of Vi (q[t]), which can computed
as:

BVt + 1) = Vil o)
= B {(alt+ 1]~ alf) " (alt + 1]+ alf] — 20 )|l }
< LE{(spliall) " all 20 m—sB[t +alt])| ]

1

= lalt] —dp k) (—splt]+alt]) +

where (a) follows from the non-expansive property of the
max{0, -} operation. Note that, from the definition of Al-
gorithm 1, we have E{|/a[t]||?|q[t]} < AT**N. Also, since
sp.n[t] falls in a bounded instantaneous capacity region Cﬁ[t]’
Vn, we must have sp ,[t] < s™** for some s™** > 0. Hence,
by defining Dy £ £ (AP®* + (s™*)2), which is a constant
upper bound of the second moments of the arrival and service
processes, we have

E(AV(glt)lalf]} < (@] — b, a0) TE {alt] — snl]} + o0
@ 2 (all] ~ i )" (Efaldlall} — i)+

FE(al] ~ ab,0) (5~ spl)lalfl) + 22,
< L (al] ~ s )T Ealt)alt]} — )+

llald] — s ) < Bl — ssllald]} + 22,

(32)

]E{”_SB t)+alt]l*},

where s} is such that (s, qp, ( K)) is a pair of optimal primal
and dual solutions to Problem K-DJCCS under parameter
K. In (32), (a) follows from adding and subtracting s}, as
well as the fact that a[t] is independent of the channel state
and determined solely by q[t]; and (b) follows from Cauchy-
Schwarz inequality.

Note from Lemma 3 that s% is independent of K and
spalt] € Ciypy is upper-bounded. Thus, we have

E{llsz —sslilllalt]} < D) = _max Eflsy —szlal,

a:llall= (33)
where D(p) is a constant depending only on the CSI accuracy
B and independent of K, which bounds the cross term in (32).
Hence, we can further upper bound (32) as:

E{AV(d[t])]alt]} < %(Q[t]—q*fe,m)T(E{a[t]IQ[t]}—SEH

1 Dy
?HQH dp, K)) ||D(B)+ , (34

Now, let us consider the first term on the right hand side in

(4. ice. (all] = aj ) (E{altllalt]} ). Since U, ()
is concave and increasing, Vn, we have

* T r_ n t ’_ q*7 n
s 1 (82) - (52 o

Thus, by Cauchy-Schwatz inequality, we have:

(alt] — 4 (x0)) T (E{alt][alt]} - sp) g |~ @ 0m)
e () - () < S
i (50) o () o

By the strong convexity of —U,, () and the Lipschitz continuity
of U/ (-), we have

U (an1) = Uy (an2)] < @ a1 — anol.

Therefore, by the inverse function lemma, we have

1 | qnlt] 1 ((anlt] 1 (9B.(K)n
<\U mi —2R).n

+ _qE,(K),n
P K K

Hence, we can further upper-bound (35) as:

)|

—(;KE_j (anlt}-

1 . 2
K HQ[t]*QB,(K)H . (36)
Substituting (36) into (34), we have

(alt] = ap k) " (E{alt]lalt]} — k) <

QE,(K),n)2:*

2
HQ[t]—q*B,(K)H +

1
dK?2
1
?HQH

E{AV(d[t])l]alt]} < -

Dy
az, K)) ||D(B)+7~ (37)

Now, suppose that Hq[t] —qp (K)H > 51K, where 31 will



be specified shortly. Note also that i > 1, we have [11]
1 < 1 < i
lalt] = ap ol — LK T B [12]
It then follows that (37) can be further upper bounded as: 13
1 . lalt] — a0 |
EAV(al)lalf]} = g lall] - ai |-

1 * T * 0
+—=llq|t|— Dgy+|lalt]—
K lalt] QB,(K)) l (B) ||Q[ ] 4B, (K) || qu_qfs,(l{) HK[IS]

(38)

D0<I>>. [16]

1 *
< —@qu — a5 (51 —Dp)® - B

D@
B1

By choosing (31 such that 53 — D1 P —

o .
E(AV (alf)lalt]} < o llali] — db | 39
where (§1 = ﬁl—D(B)(D— DﬁO;I) . SOlVng Bl_D(B)(I)— Dﬁo;I’ =0

and plugging in the obtained (; to define a ball B; £ {q :

la = a5, 0|l < 5D @) + /(D) ®)? + 4Dp @]}, we
have

E(AV (alt)lalt]) < ~2lalt] — b, . i alt] € B,
(40)

- [22]
where §; £ %. On the other hand, when q[t] € By, it is

clearly true that E{AV(q[t])|q[t]} < m1 for some 1, > 0.
Combining these facts yields the following:

> 0, we have [17]

(18]

[19]

[20]

[21]

5 [23]
E{AV(qt])lalt]=a} <= lla—dk ) 15 (@) +0 Ls, ().

This completes the proof of Theorem 3. (241
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