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Abstract—Network-consensus-based decentralized learning op-
timization algorithms have attracted a significant amount of
attention in recent years due to their rapidly growing applications.
However, most of the existing decentralized learning algorithms
could not achieve low sample and communication complexities
simultaneously – two important metrics in evaluating the trade-
off between computation and communication costs of decentral-
ized learning. To overcome these limitations, in this paper, we
propose a triple hybrid decentralized stochastic gradient descent
(TH-DSGD) algorithm for efficiently solving non-convex network-
consensus optimization problems for decentralized learning. We
show that to reach an ε2-stationary solution, the total sample
complexity of TH-DSGD is O(ε−3) and the communication
complexity is O(ε−3), both of which are independent of dataset
sizes and significantly improve the sample and communication
complexities of the existing works. We conduct extensive experi-
ments with a variety of learning models to verify our theoretical
findings. We also show that our TH-DSGD algorithm is stable as
the network topology gets sparse and enjoys better convergence
in the large-system regime.

I. INTRODUCTION

In recent years, advances in machine learning have achieved
enormous success in a many areas, including medical image
analysis, financial prediction, natural language processing, just
to name a few. Mathematically, the training phase of machine
learning can be formulated as solving an optimization problem.
However, with the rapidly growing size of training datasets
and high dimensionality of modern (deep) learning models,
efficient and scalable learning is increasingly challenging. To
address this difficulty, a natural idea is to utilize decentralized
computational resources in a networked system, which could
be in either a server-worker architecture [1], [2], [3] or a
distributed peer-to-peer network structure [4], [5]. Moreover,
thanks to the advantages in system robustness, data privacy
and implementation simplicity, decentralized learning over
networked systems has received a lot of attention recently,
and has found many new and emerging applications in various
science and engineering fields (e.g., dictionary learning [6],
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multi-agent systems [7], [8], [9], multi-task learning [10], [11],
information retrieval [12], energy allocation [13], etc.).

Among the large body of literature of decentralized learning
over networks, one of the most popular and effective approaches
is the so-called network consensus optimization, which traces
its roots to the seminal work by Tsitsiklis in 1984 [14].
In addition, there have been ever-increasing applications of
network consensus optimization in the areas of robotics control
[8], [9], network resource allocation[13], [15], etc. In network
consensus optimization, there are a set of geographically dis-
persed computing nodes collaborating to solve an optimization
problem. Each node is associated with a local dataset that could
be either too large to be aggregated at a central location due
to high communication costs, or need to stay locally because
of privacy/security concerns. A defining feature of network
consensus optimization is that there is no shared memory due
to the lack of a dedicated parameter server. As a result, every
node needs to exchange information with its neighbors to arrive
at a consensus of a global optimal solution, hence the name
“network consensus optimization.”

However, the design of high-performance network consensus
optimization algorithms faces two fundamentally conflicting
challenges: i) On one hand, due to the high dimensionality
of most learning problems, it is only feasible to use first-
order (stochastic) gradient information to determine the update
direction in each iteration. The variance of a stochastic gradient
highly depends on the number of samples in each mini-batch.
However, the more samples an algorithm uses, the higher the
computational cost. The high computational cost is further
exacerbated by the fact that in edge-computing environments,
the computing devices could be limited by hardware resource
and/or battery capacity. ii) On the other hand, if one intends to
use fewer samples per iteration to lower the computational cost,
the stochastic gradient information is noisier, which necessitates
more communication rounds to reach certain training accuracy
(i.e., slow convergence). The low communication efficiency is
particularly problematic in wireless edge networks, where the
communication links could be low-speed and highly dynamic.

Due to the above fundamental trade-off between computation
and communication costs, the notions of sample complexity
and communication complexity (to be formally defined in
Section II) become two of the most important performance
metrics in evaluating the performances of a given decentralized
learning algorithm. However, in the literature, most existing



decentralized learning algorithms have either low sample
complexity or low communication complexity, but not both
(see Section II for more in-depth discussions). The limitations
of these existing approaches naturally prompt the following
question: Could we design a decentralized learning algorithm
that strikes a good balance between sample complexity and
communication complexity?

In this paper, we show that the answer to the above question
is affirmative by proposing a new triple hybrid approach that
achieves low sample and communication complexities. Our
main results and contributions are summarized as follows:

• We propose a new decentralized stochastic gradient de-
scent algorithm for solving non-convex network consensus
optimization problems. Specifically, inspired by a hybrid
SARAH-SGD estimator developed for centralized machine
learning [16], we proposed a decentralized learning algorithm
that first updates the local gradient estimator with a modified
SARAH-SGD hybrid estimator and then estimates the global
gradient with the gradient tracking method. In this sense,
our proposed algorithm can be viewed as a triple hybrid
of the decentralized stochastic gradient descent, variance
reduction and gradient tracking techniques. For this reason,
we name our proposed algorithm “triple hybrid decentralized
stochastic gradient descent” (TH-DSGD) method.
• We show that under some mild assumptions and parameter
conditions, our TH-DSGD algorithm enjoys an O(T−2/3)
convergence rate, where T is the maximum number of
iterations the algorithm is executed. Note that this rate
is much faster than the rate of O(T−1/2) for the classic
decentralized stochastic algorithms, e.g., DSGD [17], PSGD
[5] and GNSD [18]. Also, we show that to reach an ε2-
stationary solution (to be defined in Section II) in non-
convex learning, the sample complexity of TH-DSGD is
O(mε−3) and the communication complexity is O(ε−3),
which are independent of dataset sizes and strike a good
balance between these two performance metrics.
• To examine the performance of our TH-DSGD algorithm

and verify our theoretical results, we conduct extensive nu-
merical experiments by using non-convex logistic regression
with the LibSVM datasets [19]. Our results show that the
proposed TH-DSGD algorithm outperforms the other existing
state-of-the-art algorithms for problem instances with large
datasets and networked systems with low computational
speeds. Also, we numerically show that our TH-DSGD is
stable as the network topology gets sparse and enjoys better
convergence performance in the large-system regime.

The rest of the paper is organized as follows. In Section II,
we first provide the preliminaries of network consensus
optimization and discuss related works with a focus on sample
and communication complexities. In Section III, we present
our proposed TH-DSGD algorithm. The convergence rate and
sample complexity analysis of TH-DSGD are also provided
in Section III. We provide numerical results in Section IV to
verify the theoretical results of our TH-DSGD algorithm. In
Section V, we provide concluding remarks.

II. PRELIMINARIES AND RELATED WORK

To facilitate subsequent technical discussions, in Section II-A,
we first provide a primer on the basics of network consensus
optimization and formally define the notions of sample and
communication complexities of decentralized optimization al-
gorithms for solving network consensus optimization problems.
Next, in Section II-B, we give an overview on the historical
development of (centralized) stochastic first-order optimization
algorithms for solving non-convex learning problems in terms
of their sample and communication complexities. Here, we pay
special attention to several algorithmic acceleration techniques
that motivate our TH-DSGD algorithm. Lastly, in Section II-C,
we focus on the recent advances of optimization algorithms
for solving decentralized learning problems, putting our work
into comparative perspectives.

A. Network Consensus Optimization: A Primer
As mentioned in Section I, in decentralized learning, there

are a set of geographically dispersed computing nodes that form
a network. We represent a networked distributed computing
system as an undirected connected network G = (N ,L), where
N and L are the sets of nodes and edges, respectively, with
|N | = m. The nodes have local computation capabilities
and are able to communicate with their neighbors via the
edges in L. The goal of decentralized learning is to have the
nodes distributively and collaboratively solving a network-wide
optimization problem as follows:

min
x∈Rp

f(x) = min
x∈Rp

1

m

m∑
i=1

fi(x), (1)

where each local objective function fi(x) , Eζ∼Difi(x; ζ) is
only observable to node i and not necessarily convex. Here, Di
represents the distribution of the dataset at node i, which could
be a finite dataset (offline finite-sum setting) or an infinite
dataset (online setting), and fi(x, ζ) represents a loss function
that evaluates the discrepancy between the learning model’s
output and the ground truth of a training sample ζ. To solve
Problem (1) in a decentralized fashion, a common approach is
to reformulate Problem (1) in the following equivalent form:

Minimize
1

m

m∑
i=1

fi(xi) (2)

subject to xi = xj , ∀(i, j) ∈ L.

where x , [x>1 , · · · ,x>m]>, and xi is an introduced local copy
at node i. In Problem (2), the constraints enforce that the local
copy at each node is equal to those of its neighbors, hence
the name “consensus.” Clearly, the solution of Problems (1)
solves Problem (2) and vice versa.

In the literature of network consensus optimization, a main
goal in algorithm design for solving Problem (2) is to attain
an ε2-stationary point x defined as follows:∥∥∥ 1

m

m∑
i=1

∇fi(x̄)
∥∥∥2︸ ︷︷ ︸

Global gradient magnitude

+
1

m

m∑
i=1

‖xi − x̄‖2︸ ︷︷ ︸
Consensus error

≤ ε2, (3)



where x̄ , 1
m

∑m
i=1 xi represents the spatial average across

all nodes. Note that different from the ε2-stationary point
for traditional centralized optimization problems, the above
criterion in Eq. (3) contains two components: the first term is
the global gradient magnitude for the non-convex objectives
and the second term is the average consensus error across
all local copies in the network. So far, various decentralized
algorithms have been proposed to find the above ε2-stationary
point (see more in-depth discussion in Section II-C). However,
most of these algorithms suffer either a high sample complexity
due to full gradient evaluation or a high communication
complexity. To facilitate subsequent discussions, we first state
the formal definitions of sample complexity and communication
complexity from the literature (see, e.g., [20]):

Definition 1 (Sample Complexity). The sample complexity
is defined as the total number of the incremental first-order
oracle (IFO) calls required across all the nodes to find an
ε2-stationary point defined in Eq. (3), where one IFO call
evaluates a pair of (fi(x; ζ),∇fi(x; ζ)) on a sample ζ ∼ Di
and parameter x ∈ Rp at node i.

Definition 2 (Communication Complexity). The communica-
tion complexity is defined as the total rounds of communications
required to find an ε2-stationary point defined in Eq. (3), where
each node can send and receive a p-dimensional vector with
its neighboring nodes in one communication round.

To put these two performance metrics into perspective,
consider the classic (centralized) gradient descent (GD) method
in optimization for solving Problem (1) as an example. It is
well-known that the GD method has an O(1/T ) convergence
rate for non-convex objective functions, which implies O(ε−2)
communication complexity. Also, it requires a full gradient
evaluation in each iteration, i.e., O(n) sample complexity per
iteration, where n is the total number of training samples.
This implies O(nε−2) sample complexity to reach an ε2-
stationary point. Clearly, if the dataset size n is large, the
sample complexity of the GD method is high.

In comparison, consider yet another classic algorithm – the
stochastic gradient descent (SGD), which is the most widely
used algorithm in machine learning. A key motivation of using
the SGD algorithm is to reduce the computational cost by using
only a mini-batch of training samples for gradient estimation
in each iteration. It is well-known that (see, e.g.,[21], [22],
[23]), due to the noise from the random training samples in
the mini-batch, the convergence rate of the SGD algorithm
for non-convex optimization is reduced to O(1/

√
T ). Thus, to

attain an ε2-stationary point x with ‖∇f(x)‖2 ≤ ε2, the SGD
method has O(ε−4) sample complexity, which could be either
higher or lower than the O(nε−2) sample complexity of the
GD method, depending on the relationship between n and ε.

B. Related Work: Centralized Stochastic First-Order Methods
with Improved Sample and Communication Complexities

Next, we provide an overview on several centralized stochas-
tic first-order optimization methods, which inspire our TH-
DSGD algorithm design. In the context of centralized learning,

to reduce the overall sample and communication complexities
of the classic GD and SGD algorithms, various variance
reduction methods have been proposed, most notably SVRG
[24], [25], SAGA [26] and SCSG [27]. It have been shown
that these algorithms yield an overall sample complexity of
O(n+ n2/3ε−2). Recently, Fang et al. [28] proposed another
variance reduction method named stochastic path-integrated
differential estimator (SPIDER) based on the SARAH gradient
estimator developed by Nguyen et al. [29]. SPIDER further
improves the overall sample complexity to O(n +

√
nε−2),

which matches the theoretical lower bound Ω(
√
nε−2) for

finding an ε2-stationary point when n = O(ε−4). However, in
practice, SPIDER does not perform well due to the constraint
on the small step-size O(εL−1). In [30], Wang et al. proposed
an algorithm named SpiderBoost that allows a larger constant
step-size O(L−1), while the sample complexity remains being
O(n+

√
nε−2). However, it should be noted that the significant

complexity improvement is due to a more restrictive assumption
that the same universal Lipschitz smoothness parameter exists
for all individual components f(·; ζi) ∀i, which implies that
the objectives are “similar” across all training samples in terms
of smoothness. Meanwhile, to achieve the optimal complexity,
SPIDER and SpiderBoost require a (nearly) full gradient
evaluation every

√
n iterations and a mini-batch stochastic

gradient evaluation with batch size
√
n at each iteration.

To address the above limitations, very recently, Tran-Dinh
et al. [16] introduced a hybrid stochastic gradient descent
(Hybrid-SGD) algorithm, where the main idea is to use a convex
combination of the SARAH estimator [29] and an unbiased
stochastic gradient as the gradient estimator. In Hybrid-SGD,
the individual Lipschitz smoothness assumption in SpiderBoost
is relaxed to an average Lipschitz smoothness assumption.
Also, it only needs to evaluate gradient with two samples
per iteration. It is shown that Hybrid-SGD yields a sample
complexity of O(ε−3), which is independent of dataset size.
These salient features motivate us to propose a “triple hybrid”
approach for decentralized learning following a similar token.
Interestingly, we show that in decentralized settings, our TH-
DSGD method can further improve the gradient evaluation
to only one sample per iteration, while not degrading the
communication complexity order.

C. Related Work: Decentralized Optimization Algorithms

In the literature, various decentralized learning optimization
algorithms have been developed to solve Problem (1), e.g.,
first-order methods [4], [31], [32], [33], prime-dual methods
[34], [35], the Newton’s method [36], [37], etc. We refer the
readers to recent surveys [38], [39] for a comprehensive review.
In this work, we focus on decentralized first-order methods for
non-convex network consensus optimization in Problem (2).
Towards this end, Zeng and Yin [40] studied the convergence
rate of the well-known decentralized gradient descent (DGD)
algorithm [4] for non-convex optimization and showed that
the algorithm converges with an O(1/T ) rate to a step-size-
dependent error neighborhood of a stationary point when a
constant step-size is used. Later, Lorenzo and Scutari [33]



proposed a gradient tracking method to find an ε2-stationary
point with O(1/T ) by adopting a constant step-size. However,
these methods utilize a full gradient evaluation at each iteration,
which leads to O(nε−2) sample complexity.

To reduce the per-iteration sample complexity, stochastic
algorithms have been adopted in the decentralized optimization
framework, e.g., DSGD [17], PSGD [5], GNSD [18], etc. In
these algorithms, a stochastic gradient is used to approximate
the true gradient. Due to the random noise in stochastic
gradients, the convergence rate is decayed to O(1/

√
T ). Thus,

the total sample and communication complexities for these
stochastic algorithms are O(ε−4) and O(m−1ε−4), much
higher than O(mnε−2) total sample and O(ε−2) communi-
cation complexities for the deterministic counterparts.

To address the limitations in stochastic decentralized algo-
rithms, in this work, we propose to adopt the variance reduction
techniques from centralized optimization in Section II-B to
reduce the sample and communication complexities for the
non-convex network consensus optimization. In the litera-
ture, there are several works on the decentralized stochastic
variance reduction methods, such as DSA [41], diffusion-
AVRG [42] and GT-SAGA [43] etc. However, most of these
works focus on convex objectives. To our knowledge, the
only algorithm for non-convex problems is the decentralized
gradient estimation and tracking (D-GET) algorithm proposed
by Sun et al. [20], which is the most related work to ours.
D-GET combines the decentralized gradient tracking method
[18] and the SpiderBoost gradient estimator [30], and has
O(mn+m

√
nε−2) dataset-size-dependent sample complexity

and O(ε−2) communication complexity. Recall that the sample
and communication complexities of TH-DSGD are O(mε−3)
and O(ε−3), respectively. Thus, if dataset size n = Ω(ε−2),
D-GET has a higher sample complexity than TH-DSGD. For
example, for ε = 0.01, if n is on the order of ten thousands
(not uncommon in modern machine learning datasets), D-GET
has higher sample complexity. Moreover, D-GET still suffers
the same Lipschitz smoothness weakness of SpiderBoost as
we discussed in Section II-B.

III. TRIPLE HYBRID DECENTRALIZED STOCHASTIC
GRADIENT DESCENT METHOD (TH-DSGD)

In this Section, we will first introduce our TH-DSGD
algorithm in Section III-A. Then, we will present the main
theoretical results and their key insights in Section III-B. The
proofs for the main results will be provided in Section III-C.

A. The TH-DSGD Algorithm

To solve Problem (2), in the literature, a well-known starting
point is to reformulate the problem as [4]:

Minimize
1

m

m∑
i=1

fi(xi) (4)

subject to (W ⊗ Ip)x = x,

where Ip denotes the p-dimensional identity matrix, the operator
⊗ denotes the Kronecker product, and W ∈ Rm×m is often
referred to as the consensus matrix. We use [W]ij to represent

the entry in the i-th row and the j-th column in W. In order
for Problem (4) to be equivalent to Probelm (2), W should
satisfy the following properties:

(a) Doubly Stochastic:
m∑
i=1

[W]ij =
m∑
j=1

[W]ij = 1, ∀i, j∈N .

(b) Symmetric: [W]ij = [W]ji, ∀i, j ∈ N .
(c) Network-Defined Sparsity Pattern: [W]ij > 0 if (i, j) ∈
L; otherwise [W]ij = 0, ∀i, j ∈ N .

These properties imply that all eigenvalues of W are real and
lie in the interval (−1, 1], and thus can be sorted. Without
loss of generality, we denote these eigenvalues as −1 < λm ≤
· · · ≤ λ1 = 1. We let λ , max{|λ2|, |λm|} denote the second-
largest eigenvalue in magnitude. We will see later that λ plays
an important role in the step-size selection and characterizing
the convergence rate of our proposed algorithm.

As mentioned in Section II-B, our TH-DSGD algorithm
is inspired by the Hybrid-SGD estimator [16] proposed for
centralized learning. Therefore, we restate the search direction
of Hybrid-SGD (using our notation) as follows:

vt = β (vt−1 +∇f(xt; ζt)−∇f(xt−1; ζt))︸ ︷︷ ︸
SARAH estimator

+ (1− β) ∇f(xt; ξt)︸ ︷︷ ︸
Stochastic gradient

, (5)

where ζt and ξt are two independent random training samples
and β ∈ (0, 1) is a parameter of the algorithm. It can be seen
that the gradient estimator in (5) is a convex combination of
two independent components: the first one is a biased SARAH
estimator [29] and the second one is an unbiased stochastic
gradient estimator.

Clearly, the hybrid estimator in (5) requires two independent
training samples (or two independent mini-batches of training
samples), which complicates the estimation procedure, (e.g.,
waiting for enough data and/or splitting the dataset, etc.).
Moreover, from the theoretical result in [16], the optimal (1−β)
should be on the order of O(T−2/3), which is close to zero
for typical T -values in practice. As a result, the information
in the unbiased part could be overwhelmed by the biased
SARAH estimator. Moreover, due to the need for minimizing
the consensus error (i.e.,

∑m
i=1 ‖xi − x̄‖2), it is infeasible

to directly apply the hybrid estimator in (5) in decentralized
consensus optimization.

To achieve the benefits of (5) in decentralized learning while
avoiding its limitations, in this paper, we propose a new hybrid
estimator. First, each node estimates its local gradient as:

vi,t=βvi,t−1+∇fi(xi,t; ζi,t)−β∇fi(xi,t−1; ζi,t). (6)

It is easy to see that the structure of Eq. (6) is also a hybrid
of the biased SARAH estimator and an unbiased stochastic
gradient estimator similar to Eq. (5), with the exception that
Eq. (6) is only based on a single sample.

Then, we track the global gradient by performing the
following local weighted aggregation:

yi,t =
∑

j∈Ni

[W]ijyi,t−1 + vi,t − vi,t−1 (7)



where xi,t, vi,t and ζi,t are the parameter, hybrid gradient
estimator and a random sample at node i in the tth iteration,
respectively, and Ni,{j ∈N : (i, j)∈L}. Note that Eq. (7)
shares a similar spirit with the gradient tracking technique [33].

Lastly, we update local parameters following the conventional
decentralized stochastic gradient descent (DSGD) step [4]:

xi,t+1 =
∑

j∈Ni

[W]ijxj,t − ηyi,t, (8)

where the constant η is the step-size. We can see from the above
three steps that our proposed algorithm is a triple hybrid scheme
that integrates the SARAH estimator, the gradient tracking,
and the decentralized stochastic gradient descent techniques.
We formally state our algorithm in Algorithm 1.

Algorithm 1: Triple Hybrid Decentralized Stochastic Gradient
Descent Algorithm (TH-DSGD).

Initialization:
1. Choose T > 0 and let t = 1. Set initial value xi,0 = x0, ∀i,

and compute vi,0 = 1
|Si,0|

∑
j∈Si,0 ∇fi(xi,0; ζi,j) based on

a mini-batch of samples Si,0 and set yi,0 = vi,0, ∀i.
Main Loop:
2. In the t-th iteration, each node sends xi,t−1 and yi,t−1 to its

neighbors. Meanwhile, upon the reception of all neighbors’
information, each node performs the following:

a). Update the paramter with the neighboring copies and
global gradient estimator:

xi,t =
∑

j∈Ni

[W]ijxj,t−1 − ηyi,t−1; (9)

b). Sample data ζi,t and update local gradient estimator:

vi,t = βvi,t−1 +∇fi(xi,t; ζi,t)
− β∇fi(xi,t−1; ζi,t); (10)

c). Track the global gradient estimator:

yi,t =
∑

j∈Ni

[W]ijyi,t−1 + vi,t − vi,t−1; (11)

3. Stop if t > T ; otherwise, let t← t+ 1 and go to Step 2.

B. Main Theoretical Results

In this section, we will establish the convergence properties
of the proposed TH-DSGD algorithm. We first state several
needed assumptions as follows:

Assumption 1. The objective function f(x) = 1
m

∑m
i=1 fi(x)

with fi(x) = Eζ∼Di
fi(x; ζ) satisfies the following conditions:

(a) (Boundedness from Below) There exists a finite lower
bound f∗ = infx f(x) > −∞;

(b) (L-Average Smoothness) The function fi(·; ζi) is L-
average smooth on Rp, i.e. there exists a constant L > 0,
such that Eζ∼Di

[‖∇fi(x; ζ)−∇fi(y; ζ)‖2] ≤ L2‖x−y‖2,
∀x,y ∈ Rp,∀i ∈ [m];1

(c) (Bounded Variance) There exists a constant σ > 0 such
that Eζ∼Di [‖∇fi(x; ζ)−∇fi(x)‖2]≤σ2, ∀x∈Rp, i ∈ [m].

1For any positive integer m, we define [m] := {1, . . . ,m}.

In Assumption 1, (a) and (c) are standard in convergence
analysis of stochastic gradient-type algorithms in non-convex
optimization; (b) is an expected Lipschitz smoothness condition
over the data distribution, which implies the conventional global
Lipschitz smoothness [21] by the Jensen’s inequality. Note that
(b) is weaker than the individual Lipschitz smoothness in [28],
[30], [20]: ‖∇fi(x; ζ)−∇fi(y; ζ)‖ ≤ L‖x−y‖, ∀x,y ∈ Rp,
∀i ∈ [m], ∀ζ ∼ Di. To see this, note that if there exists
an outlier sample ζ, then the individual objective could have
a large Lipschitz smoothness parameter, while the average
Lipschitz smoothness constant could still be small.

For notational convenience in our subsequent convergence
analysis, we can compactly rewrite the updates (9)–(11) in
Algorithm 1 in a vector form. Towards this end, we define
W̃ = W⊗Im, gi,t = ∇fi(xi,t), ui,t = ∇fi(xi,t; ζi,t), wi,t =
∇fi(xi,t; ζi,t) −∇fi(xi,t−1; ζi,t) and at = [a>1,t, · · · ,a>m,t]>
and āt = 1

m

∑m
i=1 ai,t, for a ∈ {x,u,w,v,g}. Then, the

updates in (9)–(11) can be re-written in the following matrix
and vector form for t ∈ [T ]:

xt = W̃xt−1 − ηyt−1, (12)
vt = βvt−1 + βwt + (1− β)ut, (13)

yt = W̃yt−1 + vt − vt−1, . (14)

Further, since 1>W = 1>, we can simplify the above as:

x̄t = x̄t−1 − ηȳt−1, (15)
v̄t = βv̄t−1 + βw̄t + (1− β)ūt, (16)
ȳt = ȳt−1 + v̄t − v̄t−1. (17)

It then follows from (17) that ȳt = v̄t since ȳ0 = v̄0.
With the above compact form, we are now in a position to

present the main convergence result for Algorithm 1 as follows:

Theorem 1 (Convergence). Under Assumption 1, for any
constant c0 satisfying c0 > 1/(1 − λ2), if the parameters
η and β in Algorithm 1 and c1 satisfy:

η ≤ min

{
2L

2L2 + 1
,

1

9L
, k1

}
,

β = 1− 80L2η2, c1 =
c0 − 1

c0λ2
− 1,

where k1 is a constant defined as:

k1 :=
(
1− (1 + c1)λ2

)
/
( 1

2c0
+

(c0 − 1)

c0 − 1− c0λ2
)
, (18)

then we have the following convergence result for Algorithm 1:

min
t∈[T ]

{
E[‖∇f(x̄t)‖2] +

1

m
‖xt − 1⊗ x̄t‖2

}
≤ 2(f(x̄0)− E[f(x̄T+1)])

η(T + 1)
+

2c0E[‖v0 − 1⊗ v̄0‖2]

mη(T + 1)

+
ε20

20L2mη2(T + 1)
+ 800L2η2σ2, (19)

where ε20 := E[‖v̄0 − ḡ0‖2] is the average square error of the
initial gradient estimator v̄0.



Several important remarks for Theorem 1 are in order. First,
in Theorem 1, c0 and c1 are two constants depending on the
network topology, which in turn will affect the step-size η and
convergence: In a sparse network (i.e., λ is close to 1), then
c0 is large and c1 is near zero, which leads to a small k1 and
in turn implies a smaller step-size η and slower convergence.
Second, for the convergence error in the RHS of (19), the first
term is dependent on the initialization; the second term is the
consensus error of v0, which is from our potential function
defined in (27); the third term is the error of the initial gradient
estimation, which will decrease as more samples are adopted
in the initial step; and the last term is from the noise of the
stochastic gradient after the initial step.

Based on the convergence result in Theorem 1, we im-
mediately have the following key results on the sample and
communication complexities for Algorithm 1.

Corollary 2 (Sample & Communication Complexities). Under
the conditions in Theorem 1, if η = O(1/ 3

√
T + 1), then

min
t∈[T ]

{
E[‖∇f(x̄t)‖2] +

1

m
‖xt − 1⊗ x̄t‖2

}
= O

( 1

(T + 1)2/3
+

ε20
m(T + 1)1/3

)
. (20)

Therefore, if the initial batch size |Si,0| = O(ε−1), ∀i, and
the maximum number of iterations T = O(ε−3), then the TH-
DSGD algorithm achieves an ε2-stationary solution. Hence,
the TH-DSGD algorithm achieves O(ε−3) communication com-
plexity and O(mε−1 +mε−3) = O(mε−3) sample complexity.

It is worth pointing out that, in Corollary 2, the step-size η is
on the order of O(T−1/3), which is larger than the O(T−1/2)
step-size for the classical SGD algorithms. With this larger
step-size and the stated initial batch size, the convergence rate
is O(T−2/3), which is faster than the O(T−1/2) for SGD.

C. Proof of the Main Theorem

For better readability, in this section, we organize the proof
of Theorem 1 into several key lemmas. Due to the space
limitation, we could only provide proof sketches for these
lemmas and omit the detailed proofs in this paper.

Our first step to prove Theorem 1 is to bound the error of
the gradient estimator

∑T
t=0 E[‖vt − gt‖2], which is stated in

the following lemma:

Lemma 1 (Error of Gradient Estimator). Under Assumption 1
and with vt being defined as in (13), we have the following
upper bound on E[‖vt − gt‖2] :

T∑
t=0

E[‖vt − gt‖2] ≤ ε20
1− β2

+
2L2

1− β2
×

T∑
t=0

E[‖xt+1 − xt‖2] +
2mσ2(1− β)T

1 + β
, (21)

where ε20 = E[‖v0 − g0‖2] is the average square error of the
initial gradient estimator v0.

Proof Sketch. Since vt = βvt−1 +βwt + (1−β)ut, we have:

‖vt − gt‖2 = β2‖vt−1 − gt−1‖2+

‖β(wt − gt + gt−1) + (1− β)(ut − gt)‖2

+ 2〈vt−1 − gt−1, β(wt − gt + gt−1) + (1− β)(ut − gt)〉.

Note that Eζt [wt] = gt−gt−1 and Eζt [ut] = gt. Upon taking
expectations, we can obtain:

E[‖vt − gt‖2] ≤ β2E[‖vt−1 − gt−1‖2]+

2β2L2E[‖xt − xt−1‖2] + 2m(1− β)2σ2.

Similar to [16, Lemma 2.2], by induction, we have:

E[‖vt − gt‖2] ≤ β2tE[‖v0 − g0‖2]

+ 2L2
t−1∑
i=0

β2(t−i)E[‖xi+1 − xi‖2] +
2mσ2(1− β)

1 + β
.

Telescoping this inequality from t = 0 to T and after some
rearrangements, we arrive at the result stated in Lemma 1.

We can see from (21) that the gradient estimator upper bound
depends on the initial gradient estimation. Next, according
to the algorithm updates in (12)–(14), we show the descent
property of our TH-DSGD algorithm in the following lemma:

Lemma 2 (Descent Property). Under Assumption 1, we have
the following relation for any given T > 0:

E[f(x̄T+1)]− f(x̄0) ≤ −η
2

T∑
t=0

E[‖∇f(x̄t)‖2]

− (
η

2
− Lη2

2
)

T∑
t=0

E[‖v̄t‖2] +
η

m

T∑
t=0

E[‖vt − gt‖2]

+
L2η

m

T∑
t=0

E[‖xt − 1⊗ x̄t‖2]. (22)

Proof Sketech. From the L-smoothness of f and x̄t = x̄t−1−
ηȳt−1 = x̄t−1 − ηv̄t−1, we can show that:

f(x̄t+1) ≤ f(x̄t)−
η

2
‖∇f(x̄t)‖2 − (

η

2
− Lη2

2
)‖v̄t‖2

+
η

m
‖vt − gt‖2 +

L2η

m
‖xt − 1⊗ x̄t‖2.

Taking the full expectation on the above inequality and
telescoping from t = 0 to T yields the result stated in Lemma 2
and the proof is complete.

Note that the right-hand-size (RHS) of the inequality
in (22) contains the consensus error of local parameters∑T
t=0 E[‖xt−1⊗x̄t‖2]. This additional consensus error makes

the algorithm harder to converge compared to centralized
algorithms, and is the additional price one needs to pay for
performing decentralized optimization over a network.

Next, we establish the contractions of the iterates in the
following lemma, which is important in analyzing the perfor-
mance of the decentralized gradient tracking component in our
proposed TH-DSGD algorithm.



Lemma 3 (Iterates Contraction). The following contraction
properties of the iterates hold for Algorithm 1:

‖xt − 1⊗ x̄t‖2 ≤ (1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2

+

(
1 +

1

c1

)
η2‖yt−1 − 1⊗ ȳt−1‖2, (23)

‖yt − 1⊗ ȳt‖2 ≤ (1 + c1)λ2‖yt−1 − 1⊗ ȳt−1‖2

+

(
1 +

1

c1

)
‖vt − vt−1‖2, (24)

where c1 is a positive constant. Additionally, we have

‖xt − xt−1‖2 ≤ 8‖(xt−1 − 1⊗ x̄t−1)‖2

+ 4η2‖yt−1 − 1⊗ ȳt−1‖2 + 4η2m‖v̄t−1‖2, (25)

‖vt−vt−1‖2≤2‖wt‖2+2(1−β)2‖∇f(xt−1; ζt)−vt−1‖2, (26)

where the vector ∇f(xt−1; ζt) is defined as: ∇f(xt−1; ζt) =
[∇f1(x1,t−1; ζ1,t)

>, · · · ,∇fm(xm,t−1; ζm,t)
>]>.

Proof Sketch. First, for variable xt, we note the following
contraction ‖W̃xt − 1 ⊗ x̄t‖2 = ‖W̃(xt − 1 ⊗ x̄t)‖2 ≤
λ2‖xt − 1 ⊗ x̄t‖2, Starting from x̄t = x̄t−1 − ηȳt−1, we
can show Eq. (23) (Eq. (24) can also be proved similarly).
For ‖vt − vt−1‖2, after derivations, we can show that
‖vt − vt−1‖2 ≤ 2‖wt‖2 + 2(1 − β)2‖ũt − vt−1‖2, where
ũt = [ũ>1,t, · · · , ũ>m,t]> and ũi,t = ∇fi(xi,t−1; ζi,t). Lastly,
according to the updating equation (12), we have that

‖xt − xt−1‖2 = ‖W̃xt−1 − ηyt−1 − xt−1‖2

= 2‖(W̃ − I)(xt−1 − 1⊗ x̄t−1)‖2 + 2η2‖yt−1‖2.

Following similar procedure, we have a similar expression for
‖vt−vt−1‖2. Then, Eqs. (25)–(26) in Lemma 3 follow from
noting that ‖W̃ − I‖≤2 and the proof is complete.

Lastly, we define a potential function in Eq. (27) and prove
the convergence bound based on the potential function.

Lemma 4. (Convergence on Potential Function) Define the
following potential function:

Ht=E
[
f(x̄t)+

c0
mη
‖xt−1⊗ x̄t‖2+

c0
m
‖vt−1⊗ v̄t‖2

]
, (27)

where c0 ≥ 1 is a constant. If we set 4(1− β)(1 + 1
c1

)c0 ≤ η
and β ∈ [0, 1), then under Assumption 1, it holds that:

η

2

T∑
t=0

E[‖∇f(x̄t)‖2] ≤ H0 −HT+1+

2ηε20
m(1− β2)

+ 5ησ2(1− β)T − c0C1

mη

T∑
t=0

E[‖xt − 1x̄t‖2]

− c0C2

m

T∑
t=0

E[‖yt − 1⊗ ȳt‖2]− C3η

2

T∑
t=0

E[‖v̄t‖2], (28)

where ε20 = E[‖v̄0 − ḡ0‖2] is the error bound on the initial
estimator v̄0, and constants C1, C2, and C3 are defined as:

C1 := 1− (1 + c1)λ2 − L2η2

c0
− 40L2η2

c0(1− β)
,

C2 := 1− (1 + c1)λ2 − (1 +
1

c1
)η − 20η3L2

c0(1− β)
,

C3 := 1− Lη − 40η2L2

(1− β)
.

Proof Sketch. From Lemma 3, we have that ‖xt−1⊗ x̄t‖2−
‖xt−1−1⊗ x̄t−1‖2 ≤ −(1−(1+c1)λ2)‖xt−1−1⊗ x̄t−1‖2 +
(1+ 1

c1
)η2‖yt−1−1⊗ȳt−1‖2 and ‖yt−1⊗ȳt‖2−‖yt−1−1⊗

ȳt−1‖2 ≤ −(1−(1+c1)λ2)‖yt−1−1⊗ȳt−1‖2+(1+ 1
c1

)‖vt−
vt−1‖2. Letting Pi = E[‖xi−1⊗ x̄i‖2] + ηE[‖vi−1⊗ v̄i‖2],
combining the above two inequalities, and telescoping from
t = 1 to T + 1 yield:

PT+1 − P0 ≤ −
(
1− (1 + c1)λ2

) T∑
t=0

E[‖xt − 1⊗ x̄t‖2]

−
(
1− (1 + c1)λ2 − (1 +

1

c1
)η
)
η

T∑
t=0

E[‖yt − 1⊗ ȳt‖2]

+ (1 +
1

c1
)η

T∑
t=1

E[‖vt − vt−1‖2].

Combining this inequality with Lemma 2 and after algebraic
manipulations, we arrive at the stated result in Lemma 4.

Note that by properly selecting the parameters as stated in
Theorem 1, the constants C1, C2 and C3 can be made non-
negative and their associated terms in the RHS of (28) can
be dropped. Finally, by combining Lemmas 3 and 4 and after
some algebraic simplifications, we arrive at the desired result
as stated in Theorem 1.

IV. NUMERICAL RESULTS

In this section, we present experimental results to evaluate
the performance of our proposed TH-DSGD algorithm using
several non-convex machine learning problems. In particular,
we compare TH-DSGD with three state-of-the-art algorithms:
• Decentralized Stochastic Gradient Descent (DSGD)[4], [31],
[17]: Each node performs the following update: xi,t+1 =∑
j∈Ni

[W]ijxj,t − η∇fi(xi,t; ζi,t), where the stochastic
gradient∇fi(xi,t; ζi,t) depends on random sample ζi,t. Upon
finishing the update, each node exchanges the local variable
xi,t with its neighbors.
• Gradient-Tracking-Based Non-Convex Stochastic Decentral-

ized (GNSD) Algorithm [18]: Each node keeps two variables
xi,t and yi,t. The local variable xi,t is updated as xi,t+1 =∑

j∈Ni
[W]ijxj,t− ηyi,t and the tracked gradient yi,t is

updated as yi,t+1 =
∑
j∈Ni

[W]ijyj,t+∇fi(xi,t+1; ζi,t+1)−
∇fi(xi,t; ζi,t).
• Decentralized Gradient Estimation and Tracking (D-GET)
[20]: Each node keeps three variables xi,t, yi,t and vi,t.
The local variable xi,t and the tracked gradient yi,t are
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Fig. 1: Results of combined loss with models trained by three different algorithms. The curves are averaged over 10 trials.
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Fig. 2: Results of two different costs vs combined loss. The curves are averaged over 10 trials.

updated as in GNSD, and vi,t is the local SpiderBoost
estimator: vi,t = vi,t−1 + ∇f(xi,t|ζi,t) − ∇f(xi,t−1|ζi,t),
if mod(t, q) 6= 0; otherwise, we use the local full gradient.

Network Model: The graph G of the communication
network is generated by the Erdös-Rènyi graph with different
edge connection probability pc and node number m. The
consensus matrix is chosen as W = I − 2

3λmax(L)L, where
L is the Laplacian matrix of G and λmax(L) denotes the largest
eigenvalue of L.

Learning Model: We consider the binary logistic regression
with the following non-convex regularizer, which is a widely
used learning model for non-convex empirical risk minimization
problems in the literature (see, e.g., [44], [30], [16]):

min
x∈Rd

− 1

mn

m∑
i=1

n∑
j=1

[yij log
( 1

1 + e−x
>ζij

)
+ (1− yij) log

( e−x
>ζij

1 + e−x
>ζij

)
] + ρ

d∑
i=1

x2
i

1 + x2
i

, (29)

where the label yij ∈ {0, 1}, the feature ζij ∈ Rd and we set
ρ = 0.1 in our experiments.

Datasets: We consider three commonly used binary classifi-
cation datasets from LibSVM [19]: a9a dataset, rcv1.binary
dataset and ijcnn1 dataset. More specifically, a9a dataset
has 32561 samples and 123 features, rcv1.binary dataset has
20242 samples and 47236 features, and ijcnn1 dataset has
49990 samples and 22 features. For each dataset, we evenly
divide the the samples into m sub-datasets corresponding to
the m nodes in the network.

Parameters: We set the total number of iterations to 2000
and run 10 trials for each algorithm. The mini-batch size in
each iteration is one for DSGD, GNSD and our proposed TH-
DSGD. In addition, the initial mini-batch size for TH-DSGD is
12 ≈ 3

√
2000. For D-GET, following the suggestions in [20], we

choose the inner loop iteration and the mini-batch size as b
√
nc,

and all samples are used in the outer loop iterations to compute
full gradients. For all four algorithms, the step-size η is tuned
by searching over the grid {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}
and picking the best one. We set β = 0.99 for TH-DSGD.



Results: We first compare the convergence rates among
three single-loop algorithms:2 DSGD, GNSD and TH-DSGD
(recall that the mini-batch sizes for all algorithms are set to
one for fair comparisons). The network has 10 nodes and the
edge connectivity probability pc is 0.5. We adopt the combined
loss defined in left-hand-side (LHS) of Eq. (3) as the criterion.
The results are shown in Figure 1. We can see that TH-DSGD
convergences faster and achieve a smaller combined loss than
the other two methods. For example, for the a9a dataset, TH-
DSGD converges in approximately 500 iterations and reaches
the error neighborhood of size 10−3, while the DSGD and
GNSD algorithms took almost 1000 iterations and their loss
values remain approximately at the level of 10−2.5.

For convenience in evaluating and comparing both sample
and communication complexities of the algorithms, we define
the following total weighted cost:

cost = cs × sample complexity
+ cc × communication complexity, (30)

where cs and cc represent the costs of per-unit sample complex-
ity and per-unit communication complexity, respectively. In our
comparisons, we consider two cases: Case 1: cs = 1, cc = 20;
and Case 2: cs = 20, cc = 1. Case 1 represents the networks
have high communication cost, while Case 2 represents the
each node has high computation cost. All four algorithms are
compared and the results are shown in Figure 2. In Case 1
where communication is more costly compared to computation,
our TH-DSGD algorithm have a better performance for the
most part, while D-GET reaches a better learning loss result
as the cost increases. This is because D-GET has O(ε−2)
communication complexity, which is better than the O(ε−3)
communication complexity of TH-DSGD. Thus, D-GET tends
to outperform in scenarios with high communication costs.
Note also that, in this case, D-GET can reach a more accurate
learning result: for example, the error is smaller than 10−7 for
rcv1 dataset. This is not surprising because D-GET periodically
obtains a full gradient, which is affordable in Case 1. However,
for Case 2 where computation is more expensive, our TH-
DSGD outperforms all other three algorithms. We can see that
both DSGD and GNSD have similar performances but cannot
reach the same learning accuracy as the proposed TH-DSGD
algorithm. Note that, in Case 2, the cost for computing the full
gradient for D-GET is so expensive that it cannot even finish
the first step within the given cost constraint. To summarize,
our TH-DSGD outperforms the other algorithms especially in
the cases with the large datasets and low computational speed.

Lastly, we examine the impacts of the network topology.
We first set the number of nodes in the network to m = 10
and vary the edge connectivity probability pc by choosing
from the discrete set {0.35, 0.5, 0.7, 0.9}. Note a smaller pc
implies a sparser network. Theoretically, it should be harder for
TH-DSGD to converge (recall the discussions on Theorem 1
in Section III-B). We fix the step-size as 0.1. The results are

2Note that the D-GET algorithm has a double-loop structure and its
convergence rate is not directly comparable.
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Fig. 3: Results of TH-DSGD convergence under different
network topology on a9a dataset.

shown in Figure 3 (a). Under different pc values, TH-DSGD
has very similar performance in terms of the convergence speed
and accuracy. With a larger pc (a denser network), the speed
is slightly faster (see the zoom-in view in Figure 3 (a)), which
confirms our theoretical analysis and shows that TH-DSGD is
stable with respect to network sparsity. Next, we fix pc = 0.5
and vary the network size m from 10 to 20, and to 50. We
illustrate the results in Figure 3 (b). We can see that with more
nodes in the network, the TH-DSGD algorithm converges faster
and reaches a better accuracy, which suggests that our proposed
algorithm tends to perform better in the large network regime.

V. CONCLUSION

In this paper, we proposed a triple hybrid decentralized
stochastic gradient descent (TH-DSGD) algorithm for network
consensus optimization. Compared with existing methods, the
proposed method improves both the sample and communication
complexities by adopting variance reduction and gradient
tracking techniques. In particular, to attain an ε2-stationary
solution, the total sample complexity of our algorithm is
O(mε−3) and the communication complexity is O(ε−3),
which is better than O(ε−4) of the traditional decentralized
stochastic gradient algorithms [5], [18]. We conducted extensive
experiments on a variety of real world datasets to verify our
theoretical findings. It is shown that our algorithm outperforms
the existing methods when training on the large-scale datasets.
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