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Abstract—In recent years, the rapid growth of mobile data
demands has introduced many stringent requirements on latency
and convergence performance in wireless network optimization.
To address these challenges, several momentum-based algorithms
have been proposed to improve the classical queue-length-
based algorithmic framework (QLA). By combining queue-
length updates and one-slot weight changes (known as the first-
order momentum), it has been shown that these algorithms
dramatically improve delay and convergence compared to QLA,
while maintaining the same throughput-optimality and low-
complexity. These exciting attempts have sparked a lot of
conjectures about whether it is useful to further exploit high-
order momentum information to improve delay and convergence
speed. In this paper, we show that the answer is yes. Specifically,
we first propose a new weight updating scheme that enables
the incorporation of high-order momentum. We then prove the
throughput-optimality and queue-stability of the proposed high-
order momentum-based approach and characterize its delay
and convergence performances. Through these analytical results,
we finally show that delay and convergence would continue to
improve as more high-order momentum information is utilized.

I. INTRODUCTION

With the proliferation of smart mobile devices (e.g., smart
phones, robotic swarms, autonomous vehicles, etc.), today’s
wireless network infrastructures are being stretched to their
limits by the massive amount of mobile data. Not only does
the explosive growth of new mobile data call for an ever-
increasing network capacity, but they also introduce strin-
gent latency and convergence speed requirements in real-time
network control and optimization. To design highly efficient
optimization algorithms to cope with the emerging “big mobile
data,” a key aspect is to efficiently deal with the cross-
interactions between congestion control at upper layers and
link scheduling at lower layers, both within stack and across
users. As a result, recent years have witnessed a compelling
need for low-latency and fast-converging joint congestion
control and scheduling algorithms.

To date, while there exists a rich literature on joint conges-
tion control and scheduling optimization (see, e.g., [1]–[3];
and see [4] for a survey), most of these schemes are based
on the queue-length-based algorithmic framework proposed
by Tassiulas and Ephremides more than two decades ago [5].
The enduring popularity of the QLA framework is primarily
due to its: i) low-complexity, ii) elegant cross-layer inter-
pretation, and iii) provable throughput-optimality. However,
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the QLA optimization framework is increasingly unsuitable
for the emerging mobile data applications. Specifically, un-
der the standard QLA framework, it is well known that an
O(ε) throughput-optimality gap incurs a rapidly increasing
O(1/ε) penalty in queueing delay (see, e.g., [3], [6]). To fix
this unsatisfactory delay performance, several virtual-queue-
based techniques (see, e.g., [2], [7]–[11]). However, these
works sacrifice extra throughput for delay reduction, which
is reflected either in reduced service rates [2], [7]–[9] or
packet dropping [10], [11]. Also, from optimization theory
perspective, the QLA framework can be viewed as a first-
order stochastic gradient descent algorithm in the Lagrangian
dual domain (with queue-lengths serving as dual variables).
This gradient descent nature leads to a slow convergence [12].
To address the convergence problem, several second-order
approaches (see, e.g., [13], [14]) have been proposed, where
the Hessian information is leveraged to increase convergence
speed. However, the per-iteration Hessian matrix inversion in
these second-order approaches necessitates global information
exchange, which does not work well in large-scale networks.

The limitations of first- and second-order approaches have
recently motivated researchers to consider a new class of
momentum-based approaches, most notably the Heavy-Ball
method [15], [16]. The basic idea of the momentum-based
approaches is to compute the search direction by appropriately
combining the current gradient and the previous search direc-
tion (known as “momentum”) in algorithmic design. Com-
pared to QLA, the momentum-based approaches dramatically
reduce the queueing delay from O(1/ε) to O(1/

√
ε) and

converge two orders of magnitude faster, while maintaining
the same O(ε) utility-optimality gap [15]. Moreover, unlike
the spatial domain information exchanges required by the
second-order approaches [13], [14], these momentum-based
approaches only need to “backtrack” historical information in
the temporal domain at each node locally, thus preserving the
low-complexity of the standard QLA framework.

Thanks to these exciting initial attempts on momentum-
based network optimization, there have been rapidly growing
interests in the networking research community for a deeper
understanding on the roles of momentum information. In par-
ticular, since existing works [15], [16] only exploit first-order
momentum (i.e., only the weight change from the previous
time-slot), the following fundamental question naturally arises:
• Will delay and convergence speed continue to improve as
more high-order momentum information being utilized?



We note that answering the above question is highly non-
trivial due to several major technical challenges: i) Since the
weights and high-order momentum all reside in the Lagrangian
dual domain [15], it is unclear whether some strong convexity
properties of the dual objective function will continue to hold
when more high-order momentum information is utilized;
ii) The incorporation of high-order momentum from past
iterations implies multi-step dependence in the system, which
significantly complicates its performance analysis; iii) As will
be seen later, at the heart of the queue-stability and conver-
gence analysis of high-order momentum-based algorithms is a
high-degree time-varying linear system, for which the eigen-
value characteristic polynomial is notoriously hard to analyze.
Indeed, the fundamental Abel-Ruffini theorem says that there
is no algebraic solution to general polynomial equations of
degree higher than four [17]. Hence, it is unclear how to
analyze a momentum-based network optimization algorithm
with fifth-order momentum and above.

The main contribution of this paper is that, for the first
time, we develop a high-order momentum-based wireless net-
work optimization framework to overcome the aforementioned
challenges. Our work unveils the roles and characterizes the
impacts of high-order momentum in delay and convergence
improvements. The main technical results are as follows:

• We propose a new weight updating scheme to incorporate
high-order momentum information for joint congestion con-
trol and scheduling optimization. We establish a connec-
tion between high-order momentum information and the
observable queue-lengths and channel states, which enables
low-complexity implementations in practice. Further, our
algorithm generalizes the existing first-order momentum-
based approaches [15], [16] to the high-order momentum
regime, advancing the state-of-the-art of the momentum-
based methods for wireless network optimization.

• By leveraging the Roché theorem [18], we show that our
proposed algorithm with K-order momentum achieves a
queueing delay that is (1 −

∑K
i=1 βi)–fraction of that of

the QLA approach, where βi ≥ 0, i = 1, . . . ,K are
momentum coefficients satisfying

∑K
i=1 βi < 1. Moreover,

our theoretical analysis reveals that a throughput-optimality
gap ε can be achieved with an O((1 −

∑K
i=1 βi)/ε) +

O((1 +
∑K
i=1 βi)/

√
ε) cost in queueing-delay. Further, if

the total momentum
∑
n βn ↑ 1 with a speed at or faster

than 1−O(
√
ε), our algorithm achieves an [O(ε), O(1/

√
ε)]

throughput-delay trade-off, which is significantly better than
the [O(ε), O(1/ε)] trade-off scaling of the QLA methods.

• With throughput-optimality gap ε and a K-order momentum
coefficient vector β(K) =

[
β

(K)
1 , . . . , β

(K)
K

]>
, we show that

one can always construct a (K + 1)-order momentum
scheme with parameters (ε,β(K+1)) such that this (K+1)-
order scheme converges no slower than the given K-order
scheme. This result combined with the previous bullet
imply a key insight: Delay and convergence will continue
to improve as more high-order momentum information is
utilized. We note that this knowledge has not yet been
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Fig. 1. A wireless cellular downlink network.

discovered in the network optimization literature.
Our results in this paper collectively contribute to a com-

prehensive and fundamental understanding of the roles of
momentum information in wireless network optimization. The
remainder of this paper is organized as follows. Section II
introduces the network model and problem formulation. Sec-
tion III presents our proposed high-order momentum-based op-
timization algorithm and its performance analysis. Section IV
presents numerical results and Section V concludes this paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this paper, we use boldface to denote matrices/vectors.
We let A> denote the transpose of A. We let I and O denote
the identity and all-zero matrices, respectively, where their
dimensions are conformal to the context. Also, we let 1 and
0 denote the all-one and all-zero vectors, respectively, where
their dimensions are conformal to the context. We use ‖ · ‖
and ‖ · ‖1 to denote L2- and L1-norms, respectively.

Network model: Consider an N -user time-slotted wireless
cellular network as shown in Fig. 1, where time is indexed by
t ∈ {0, 1, 2, . . .}. To model channel fading, we use a matrix
Π = [π1, . . . ,πM ] ∈ RN×M to represent the channel state in-
formation (CSI) between the base station and the users, where
M is the total number of channel states. Each column vector
πm ∈ RN represent channel qualities of the N users under
state m ∈ {1, . . . ,M}. Each channel state πm corresponds
to an achievable rate region Cm , Conv{x(m)

1 , . . . , x
(m)
N },

where Conv{·} represents the convex hull operation and
x

(m)
n denotes a feasible service rate under state m that can

be scheduled for user n. We assume that there exists a
constant smax > 0 such that x(m)

n ≤ smax, ∀n,m. For
convenience, we use x(m) = [x

(m)
1 , . . . , x

(m)
N ]> ∈ RN to

group the service rates. We assume that the CSI process is
i.i.d. across users and time-slots1. We let π[t] denote the CSI
vector in time-slot t and let pm , Pr{π[t] = πm} denote
the probability that the CSI process is in state m. We let
C̄ ,

{
x
∣∣x =

∑M
m=1 pmx(m), ∀x(m) ∈ Cm

}
represent the

mean achievable rate region. In this paper, we assume that the
CSI statistics and C̄ are unknown to the base station.

Queueing dynamics: In each time-slot t, based on the cur-
rent CSI observation π[t] ∈ Π, the scheduler chooses a service

1It is not difficult to generalize our results to Markovian CSI processes
following similar arguments in [10], [19].



rate vector s[t] , [s1[t], . . . , sN [t]]> ∈ Cπ[t] and a congestion
controlled rate vector a[t] , [a1[t], . . . , aN [t]]> ∈ RN+ . We
assume that each user n is associated with a queue, whose
queue-length in time-slot t is denoted as qn[t]. Then, the
queue-length of each user evolves as:

qn[t+ 1] = (qn[t]− sn[t] + an[t])+, ∀n, (1)

where (·)+ , max{0, ·}. Let q[t] , [q1[t], . . . , qN [t]]> be
the queue-length vector in time-slot t. In this paper, we adopt
the following notion of queue-stability (same as in [3], [6]):
a network is said to be stable if the steady-state total queue-
length is finite, i.e., lim supt→∞ E {‖q[t]‖1} <∞.

Problem formulation: Let ān , limT→∞
1
T

∑T−1
t=0 an[t]

denote the average congestion control rate for user n. Each
user n is endowed with a utility function Un(ān), which
represents the benefits achieved by user n when its data is
injected at rate ān. Each Un(·), ∀n, is assumed to be strictly
concave, increasing, and twice continuously differentiable.
Also, each Un(·) is assumed to be strongly concave, i.e., there
exist two constants 0 < φ ≤ Φ <∞ such that

φ ≤ −U ′′n (an) ≤ Φ, ∀n, ∀an ∈ [0, amax], (2)

where amax is the upper bound of arrival rates for burst
control. For example, the well-known proportional fairness
function log(δ+an) with some arbitrarily small constant δ > 0
satisfies (2). Our goal is to maximize

∑N
n=1 Un(ān), subject

to the achievable rate region Cπ[t] in each time-slot and the
queue-stability requirements. Putting together the models pre-
sented above, we have the following joint congestion control
and scheduling (CCS) optimization problem:

CCS: Max
N∑
n=1

Un(ān)

s.t. Queue-stabiltity, sn[t] ∈ Cπ[t], an[t] ∈ [0, amax], ∀n, t.

III. A NETWORK UTILITY OPTIMIZATION FRAMEWORK
UTILIZING HIGH-ORDER MOMENTUM

In this section, we will first present a network utility
optimization algorithmic framework utilizing high-order mo-
mentum information to solve Problem CCS in Section III-A.
Then, we will summarize the main theoretical results in
Section III-B, which is followed by further discussions in
Section III-C on the key insights and intuition of the main
theorems. Lastly, we will provide detailed performance anal-
ysis and proofs for the main theorems in Section III-D.

A. The High-Order Momentum Algorithmic Framework

Our proposed network utility optimization framework with
high-order momentum is described in Algorithm 1:

Algorithm 1: A Network Utility Optimization Algorithmic
Framework with High-Order Momentum Information.

Initialization:
1. Choose a throughput-optimality gap parameter ε > 0 and

a momentum coefficient vector β = [β1, . . . , βK ]> ∈ RK
with βk > 0, ∀k, satisfying

∑K
k=1 βk < 1. Set t = 0.

2. Let all queues be empty at the initial state: qn[0] = 0, ∀n.
3. Associate each link n with a non-negative weight wn and

set wn[0] = wn[−1] = · · ·wn[−K] = 0, ∀n.
Main Loop:
4. MaxWeight Scheduler: In time-slot t ≥ 0, given the current

weight vector w[t] , [w1[t], . . . , wN [t]]> and the current
channel state π[t], the scheduler determines the service rate
vector s[t] as follows (breaking ties arbitrarily):

s[t] = argmax
x∈Cπ[t]

(w[t])>x. (3)

5. Congestion Controller: For each user n, given its current
weight wn[t], the congestion controller determines an
integer-valued random data injection rate an[t] as follows:

E{an[t]|wn[t]} = min
{
U
′−1
n (εwn[t]) , amax

}
, (4)

E{a2
n[t]|wn[t]} ≤ A <∞, ∀wn[t], (5)

where U
′−1
n (·) represents the inverse function of the deriva-

tive of Un(·). In (4) and (5), amax and A are predefined
positive constants depending on the system requirements.

6. Weight and Queue-Length Updates: Update the queue-
lengths following (1). Let ∆qn[t] , qn[t + 1] − qn[t] be
the resultant queue-length change, ∀n. Next, update the
weights by combining ∆qn and the weight changes from
previous K time-slots (i.e., K-order momentum):
wn[t+ 1] = {wn[t] + ∆qn[t] + β1(wn[t]− wn[t− 1])+

· · ·+ βK(wn[t−K + 1]− wn[t−K])}+ , ∀n. (6)

Let t = t+ 1. Go to Step 4 and repeat the scheduling and
congestion control processes.

Some comments on Algorithm 1 are in order: First, although
the congestion controller in (3) and the scheduler in (4) share
the same forms as those in QLA (see, e.g., [3], [6], [19]), the
weights are not directly based on queue-lengths. We note that
this separation of weights and queue-lengths entails significant
delay reductions. Also, it can be seen that the weight update
in (6) generalizes the existing momentum-based approach in
[15]: It integrates a β-parameterized weight change directions
in the previous K time-slots (i.e., K-order momentum). By
contrast, the weight updates in [15] are based on first-order
momentum in the sense that the new weights only inherit the
current queue and the last time-slot weight information. As
will be seen later, the incorporation of high-order momentum
necessitates new proof techniques to establish the main results
in this paper. Lastly, note that when vector β∈RK+ degenerates
to a scalar β (i.e., the momentum order becomes K = 1), the
high-order momentum scheme reduces back to the heavy-ball
algorithm [15]. Thus, the heavy-ball algorithm can be viewed
as a special case of our high-order momentum approarch.

B. Main Theoretical Results

The first result in this paper is on the throughput-delay trade-
off of our proposed high-order momentum-based algorithm:

Theorem 1 (Delay reduction and queue-stability). Let ε >
0 be a desired throughput-optimality gap. Under momentum



coefficients βk ≥ 0, k = 1, . . . ,K, such that
∑K
k=1 βk < 1,

the steady-state total queue-length obtained by the K-order
momentum algorithm can be upper-bounded as follows:

lim sup
t→∞

E{‖q[t]‖1} =

O

([
1−

K∑
k=1

βk

]
1

ε

)
+O

([
1 +

K∑
k=1

βk

]
1√
ε

)
. (7)

Further, if
∑K
k=1 βk ↑1 at a speed no slower than 1−O( 1√

ε
)

as ε↓0, Eq. (7) implies that lim supt→∞ E{‖q[t]‖1}=O( 1√
ε
).

Several remarks on Theorem 1 are in order: i) The condi-
tion

∑K
k=1 βk < 1 entails a profound mathematical-physical

unification: First,
∑K
k=1 βk < 1 makes physical sense because

(1−
∑K
k=1 βk) > 0 in (7) implies non-negative queue-lengths,

i.e., the bound in (7) is always valid. Second, as will be seen
in the proof of Theorem 1,

∑K
k=1 βk < 1 is a mathematical

consequence of the Rouché theorem [18] to guarantee that
the dynamic system in (6) is convergent; ii) If we fix β and
let ε ↓ 0, the second term on the right-hand-side of (7) is
negligible, implying a delay that is (1 −

∑K
k=1 βk)–fraction

of that of QLA. Also, if
∑K
k=1 βk ↑ 1 fast enough as ε↓ 0,

the total queue-length scales as O( 1√
ε
), which grows much

slower compared to the O( 1
ε ) scaling of the QLA approach.

Note that these significant delay gains are obtained without
losing any extra throughput (unlike those in [10], [11]); iii)
The inclusion of K high-order momentum terms in (6) can be
interpreted as memorizing the weight information over the past
K iterations. Thus, Theorem 1 suggests that “more memory
from distant past” can further reduce latency in the future.

We now define U(a) ,
∑N
n=1 Un(an) as the total utility

function of Problem CCS and let a∗ be its optimal solution.
We let a∞n , E{min{U ′−1

n (εw∞n ), amax}}, ∀n, be the average
steady-state congestion control rates achieved by our K-order
momentum algorithm (we will show the existence of steady-
state in Section III-D). Further, we let a∞ , [a∞1 , . . . , a

∞
N ]>.

Then, our second result states that the K-order momentum
algorithm is throughput-optimal and the throughput optimality
is not affected by choice of coefficients (β1, . . . , βK):

Theorem 2 (Throughput-optimality). Under Algorithm 1 and
for some given ε, the mean of the stationary rate vector
a∞ satisfies ‖a∞ − a∗‖ = O(

√
ε). Also, the optimal utility

objective value can be bounded as |U
(
a∞
)
−U(a∗)| = O(ε).

Hence, a∞ converges to a∗ asymptotically as ε ↓ 0.

In this paper, we define the notion of convergence in terms
of the fewest number of time-slots such that {E{a[t]|w[t]}}∞t=0

reaches the O(
√
ε)-neighborhood of a∗ indicated in Theo-

rem 2. Let β(K) = [β
(K)
1 , . . . , β

(K)
K ]> denote a K-dimensional

momentum vector. Our third result characterizes the conver-
gence performance with respect to K in an induction fashion:

Theorem 3 (Convergence speed performance). Given a K-
order momentum scheme with parameters (ε,β(K)) that satisfy∑K
k=1 β

(K)
k < 1. Consider a new (K+ 1)-order momentum

scheme with parameters (ε,β(K+1)) satisfying either one of

the following two conditions: i)
∑K+1
k=1 β

(K+1)
k =

∑K
k=1 β

(K)
k ;

or ii) β(K+1)
k =β

(K)
k , k = 1,. . . ,K, and

∑K+1
k=1 β

(K+1)
k < 1.

Then, the linear system (cf. the proof of Theorem 1) corre-
sponding to the (K + 1)-order scheme has a smaller spectral
radius than that of the K-order scheme.

In plain language, Theorem 3 says that: i) Under the same
amount of delay reduction (a consequence of Theorem 1
when

∑K+1
k=1 β

(K+1)
k =

∑K
k=1 β

(K)
k ), the scheme with higher

order momentum can be made to converge faster; ii) Given
a K-order scheme, one can improve both delay (due to
Theorem 1) and convergence by further adding one more
momentum term. The proofs of Theorems 1–3 will be provided
in Section III-D. Before venturing into the proof details, we
would further discuss several key insights and interpretations
of the theoretical results in Theorems 1–3.

C. Insights of the Theoretical Results

1) A “deep” structure in temporal domain: Combining
the results in Theorems 1–3 reveals the following important
insight: As more higher-order momentum information being
utilized, the delay and convergence performance of Algo-
rithm 1 continue to improve, while throughput-optimality is
not affected. This insight bears some interesting similarity to
the popular deep-learning architecture in the fields of artificial
intelligence: One can interpret the momentum backtracking in
temporal domain in Algorithm 1 as exploiting “deeper” layers
to optimize wireless networks. More specifically, for each
additional piece of momentum information, its momentum
coefficient βk, k = 1, . . . ,K, can be viewed as providing one
more “degree of freedom” that allows us to tweak delay and
convergence in wireless network optimization. This interesting
observation shows that the use of “deep structures” is powerful
and beneficial in wireless network optimization.

2) The intuition behind delay reduction: Before rigor-
ously proving Theorem 1, we provide some high-level intuition
as to why the high-order momentum approach could induce
a large delay reduction. As mentioned in Section I, the QLA
approach can be interpreted as using queue-lengths as dual
variables to solve Problem CCS in the Lagrangian dual domain
(see, e.g., [2], [3], [6]). As a result, a large number of packets
have to be accumulated in each queue to maintain a “pressure”
equalling to w∗n

ε , where w∗n denotes the optimal dual variable.
This is the reason that a large O(1/ε) queueing delay is
incurred as ε decreases to approach throughput-optimality.
However, this queue-based “dual mimicking” is unnecessary
since one has the freedom to construct any desirable quantity
to mimic the dual variables. Now, consider the high-order
momentum weight updating in (6). A closer look reveals that
the momentum terms β1(wn[t]−wn[t−1])+ · · ·+βK(wn[t−
K + 1] − wn[t −K]) play a similar role as the place-holder
bits in [10] in the sense that they lower the required sizes of
∆qn[t], ∀n, to to reach w∗n

ε . As a result, a relatively small
change in ∆qn[t] would result in a large weight variation,
which allows the system to react aggressively in congestion
control and scheduling even with small queues.



3) The intuition of convergence speedup: The convergence
speed-up phenomenon with high-order momentum informa-
tion can also be understood from an optimization theory
perspective: As can be seen from (6), the dual update of
weights wn[t], ∀n, t is a linear combination of current queue-
length updates and K weight change directions from the past.
Roughly speaking, having more memory of the trajectory of
the past iterations allows us to keep track of the curvature of
the objective function more closely. As a result, we are better
informed about the objective function with more momentum
information when making decisions on search directions, thus
providing a larger potential for faster convergence.

D. Proofs of the Main Theorems

Due to space limitation, in this subsection, we outline the
key steps of the proofs in this paper and relegate further proof
details to our online technical report [20].

Sketch of the proof of Theorem 1. For better readability, we
organize the lengthy proof of Theorem 1 into three key steps:

Step 1): A ε-Scaled Deterministic Problem: To prove The-
orem 1, it is useful to first consider an ε-scaled deterministic
version of Problem CCS. In the deterministic problem, the
CSI process is fixed at its mean level, i.e., the achievable rate
region is C̄. The congestion control and scheduling variables
are time-invariant and are denoted respectively as an and sn,
n = 1, . . . , N . The ε-parameterized deterministic congestion
control and scheduling problem (ε-DCCS) can be written as:

ε-DCCS: max
an,sn,∀n

{
1

ε

N∑
n=1

Un(an)

∣∣∣∣ an−sn≤0, sn∈C̄,∀n,
an ∈ [0, amax], ∀n.

}
.

Due to the strict concavity of Un(·) and linear constraints,
Problem ε-DCCS is a convex optimization problem and it is
not difficult to check that the Slater condition [12] is satisfied.
Hence, strong duality holds and an optimal solution to Problem
ε-DCCS exists and is unique [12]. Next, we associate dual
variables wn ≥ 0, ∀n with the constraints an − sn ≤ 0, ∀n,
to obtain the corresponding Lagrangian as follows:

Θε(w) , max
an,sn,∀n

{
1

ε

N∑
n=1

Un(an) +

N∑
n=1

wn(sn − an)

}
, (8)

where w , [w1,. . . ,wN ]>∈ RN+ contains all dual variables.
The Lagrangian dual problem of ε-DCCS can be written as:

ε-DCCS-LD: min
w

{
Θε(w)

∣∣w ∈ RN+
}
. (9)

Thanks to the strong duality, the optimal objective value
of the Lagrangian dual problem is the same as that of
Problem ε-DCCS. Recall that, due to the strict convexity of
the Lagrangian dual problem, its optimal solution is unique.
Therefore, let w∗ be the optimal dual solution to Problem ε-
DCCS-LD. The following result regarding w∗ will be used in
our subsequent performance analysis:

Lemma 4 (Inverse proportional scaling of optimal dual so-
lution). For a given ε, the optimal dual solution satisfies

w∗ = (1/ε)w∗(1), where w∗(1) denotes the optimal solution
to Problem ε-DCCS-LD with ε = 1. That is, w∗ = O(1/ε).

Proof. Multiplying ε on both sides of (8) yields:

εΘε(w) = max
an,sn,∀n

{
N∑
n=1

Un(an) +

N∑
n=1

ŵn(sn − an)

}
, (10)

where ŵn = εwn. Note that the right hand side (RHS) of (10)
is precisely Θ1(w), for which the maximizer is ŵ = w∗(1). As
a result, we have Θε(w) is maximized at (1/ε)w∗(1).

Further, we note that the optimal primal solutions a∗ and
s∗ are independent of ε because ε is merely a scaling factor
in the objective function of Problem ε-DCCS.

Step 2): Weight Deviation Bound: Our second step to prove
Theorem 1 is to show the following weight deviation bound:

Theorem 5 (Mean weight deviation bound). Given an ε in
Algorithm 1, there exists a constant C that depends on N ,
smax, and amax, such that E{‖w∞ −w∗‖} ≤ C/

√
ε, where

w∞ denotes the weights in steady-state.

Proof. We start by defining several notation as follows. We
let ān[t] , U

′−1
n (εwn[t]) and s̄n[t] , E{sn[t]}. Also, let

∆q̄n[t] , ān[t] − s̄n[t]. For convenience, we let ā[t] =
[ā1[t], . . . , āN [t]]>, s̄[t] , [s̄1[t], . . . , s̄N [t]]>, and ∆q̄[t] ,
[∆q1[t], . . . ,∆qN [t]]>. Moreover, we let a∗ and s∗ denote
the optimal solution to Problem ε-DCCS. It is easy to see
that a∗ = s∗ because, if otherwise, we can keep increasing
the objective value by increasing a∗ without violating the
constraints, contradicting to the fact that a∗ is optimal.

Next, we rewrite the high-order momentum weight update
equation (6) in the following vector form: w[t+ 1] = {w[t] +
∆q[t] +

∑K
k=1 βk(w[t − k + 1] − w[t − k])}+. Subtracting

w∗ on both sides and using a∗ = s∗, we can rearrange and
rewrite the weight update dynamics as:

w[t+ 1]−w∗=(1 + β1)(w[t]−w∗)+
∑K−1

k=1
(βk+1 − βk)

× (w[t− k]−w∗) + (−βK)(w[t−K]−w∗)

+ [∆q̄[t]− (a∗ − s∗)] + (∆q[t]−∆q̄[t]) + u[t], (11)

where u[t] represents the non-negative projection term. Note
that since the weight updating in (11) depends on K + 1
consecutive time-slots of memory w[t], . . . ,w[t−K] from the
past, traditional Markovian techniques used in [2], [10] cannot
be directly applied. Our way to overcome this challenge is to
define a vector z[t] ∈ R(K+1)N as follows:

z[t] ,
[
(w[t]−w∗)>, · · · , (w[t−K]−w∗)>

]>
. (12)

Then, it can be verified that the high-order momentum weight
update can be rewritten as a time-varying linear system:

z[t+ 1] = Γ(w[t])z[t] + ∆q̃[t] + ũ[t], (13)

where ∆q̃[t] , [(∆q[t]−∆q̄[t])>,0>, . . . ,0>]> ∈ R(K+1)N ,
ũ[t] , [u>[t],0>, . . . ,0>]> ∈ R(K+1)N , and the time-
varying coefficient matrix Γ(w[t]) is dependent on w[t] and



Γ(w[t]) ,


(1 + β1)I− εΨ(w[t]) (β2 − β1)I · · · (βK − βK−1)I −βKI

I O · · · O O
O I · · · O O
...

...
. . .

...
...

O O · · · I O

 ∈ R(K+1)N×(K+1)N . (14)

defined in (14) at the top of this page. In (14), the matrix
Ψ(w[t]) , Diag {ψ1(w[t]), . . . , ψN (w[t])} ∈ RN is diagonal
and each diagonal entry is defined as:

ψn(w[t]) , ε

[
gΘ,n(ŵn[t])− gΘ,n(ŵ∗n)

ŵn[t]− ŵ∗n

]
, (15)

where gΘ,n(·) represents the n-th entry of the gradient of the
dual function Θε(·) and ŵn[t] , εwn[t].

Then, the following result establishes the upper and lower
bounds of the quantity gΘ,n(ŵn[t])−gΘ,n(ŵ∗n)

ŵn[t]−ŵ∗n
, which represents

the curvature of the dual function Θε(w)(we relegate the proof
details to [20, Appendix A] due to space limitation):

Lemma 6 (Curvature of the dual). There exist constants
ψ(ε,β),Ψ > 0 such that ψ(ε,β) ≤

gΘ,n(ŵn[t])−gΘ,n(ŵ∗n)
ŵn[t]−ŵ∗n

≤ Ψ,
∀wn[t] ≥ 0, ∀n, where the constant ψ(ε,β) depends on ε and
β. Moreover, ψ(ε,β) increases as ε decreases.

Let ρ(Γ(w[t])) denote the eign-spectral radius of Γ(w[t]).
With Lemma 6, we are in a position to show the following
key result of ρ(Γ(w[t])) (see the proof in Appendix A):

Lemma 7 (Eign-spectral radius of Γ(·)). If
∑K
k=1 βk < 1 and

ε is sufficiently small, then ρ(Γ(w[t])) < 1, ∀t.

Now, define a non-negative Lyapunov function V (·) as
follows: V (z[t]) , 1

2‖P
1
2 (z[t])z[t]‖2, where P(z[t]) is a

symmetric and positive semidefinite matrix dependent on z[t]
and defined as follows:

P(z[t]) ,
1

Z

∞∑
j=0

(
Γ>(w[t− 1])

)j(
Γ(w[t− 1])

)j
, (16)

where Z ≥ ‖
∑∞
j=0(Γ>(w[t− 1]))j(Γ(w[t− 1]))j‖, ∀t, is a

normalization factor that will be specified shortly. Note that
the infinite sum in (16) is well-defined thanks to Lemma 7.
Next, we define a matrix Γ̄(ε,β) such that ‖Γ̄(ε,β)‖ =
maxw[t],∀t ‖Γ(w[t])‖. Following Lemma 7, we can choose a
small ε and

∑K
k=1 βk < 1 so that ρ(Γ̄(ε,β)) < 1. Then, it fol-

lows from [21, pp. 38, Lemma 1] that there exists a constant c
such that ‖Γ̄(ε,β)‖j ≤ c(ρ(Γ̄(ε,β)) + ε)j ≈ c(ρ(Γ̄(ε,β)))

j . As a
result, we can set the normalization factor Z = c2

1−(ρ(Γ̄(ε,β)))2 .

Next, we evaluate the one-step mean Lyapunov drift
E
{

∆V (z[t])
∣∣z[t]

}
, E

{
V (z[t + 1]) − V (z[t])

∣∣z[t]
}

. After
some algebraic derivations and upper-bounding (see [20, Ap-
pendix C] for proof details), we arrive at the following result:

Lemma 8. Let B , N
2 [A + (smax)2]. There exist constants

δ, δ̄, η > 0 such that the one-step Lyapunov drift satisfies:

E{∆V (z[t])|z[t] = z} ≤ −δ̄
√
ε
∥∥z∥∥1Bc

(ε)
(z) + η1B(ε)

(z), (17)

where B(ε) , {z :
∥∥z∥∥ <√B/εδ} and Bc(ε) is its complement.

Now, consider the T -step conditional mean Lyapunov drift.
To this end, we define a set Ω,{z :‖z‖∈Bε}. By telescoping
(17) from t = 0 to T and using Lemma 8, we can show that
(see [20, Section 3.4] for detailed derivations):

E{V (z[T ])|z[0]}−V (z[0])=

T−1∑
t=0

E{∆V (z[t])|z[0]} ≤ −δ̄
√
ε

×
∫

Ωc

(
‖z[t]‖

T−1∑
t=0

pz[t]|z[0]

)
dz+η

∫
Ω

( T−1∑
t=0

pz[t]|z[0]

)
dz. (18)

Note that limT→∞
1
T

∑T−1
t=0 pz[t]|z[0] = p∞z for all z[0], where

p∞z denotes the stationary distribution of the continuous state
Markov chain z[t]. Moving V (z[0]) to the right hand side of
(18), dividing both sides by T , and letting T → ∞ yields
0 ≤ −δ̄

√
ε
∫

Ωc
p∞z ‖z∞‖dz + η

∫
Ω
p∞z dz. Rearranging terms

and adding δ̄
√
ε
∫

Ω
p∞z ‖z∞‖ to both sides yields:

δ̄
√
ε

∫
R(K+1)N

p∞z ‖z∞‖dz ≤
∫

Ω

(
η + δ̄

√
ε‖z∞‖

)
p∞z dz

(a)

≤ (η + δ̄
√
B/δ)

∫
Ω

p∞z dz ≤ η + δ̄
√
B/δ, (19)

where (a) follows from the definitions of Ω and Bε. Note
that the left-hand-side (LHS) of (19) is exactly δ̄

√
εE
{
‖z∞‖

}
.

Therefore, dividing both sides of (19) by δ̄
√
ε yields:

E
{
‖w∞ −w∗‖

}
≤ E

{
‖z∞‖

}
≤
(
η

δ̄
+
√
B/δ

)
1√
ε
. (20)

This completes the proof of Theorem 5.

3) Closing Steps of the Proof: Coming back to the high-
order momentum weight update (in vector form): w[t+ 1] =
w[t] + ∆q[t] +

∑K
k=1 βk(w[t − k + 1] − w[t − k]) + u[t].

Rearranging and noting the fact that the non-negative orthant
projection term u[t] satisfies u[t] ≥ 0, we have:

∆q[t]≤
(
w[t+1]−w[t]

)
−
K∑
k=1

βk
(
w[t−k+1]−w[t−k]

)
.(21)

Telescoping the inequality in (21) from t = 0 to T − 1 yields:∑T−1

t=0
∆q[t] ≤

(
w[T ]−w[0]

)
−
∑K

k=1
βk
(
w[T − k + 1]

−w[−k]
) (a)

= w[T ]−
∑K

k=1
βkw[T − k + 1], (22)

where (a) holds because w[0] = w[−1] = · · · = w[−K] = 0
according to our assumption. Also, since q[0] = 0, we have

‖q[T ]‖1 =

∥∥∥∥q[0]+

T−1∑
t=0

∆q[t]

∥∥∥∥
1

≤
∥∥∥∥w[T ]−

K∑
k=1

βkw[T−k+1]

∥∥∥∥
1

.



Taking expectation and “limsup” operations as T →∞ yields:

lim sup
T→∞

E
{
‖q[T ]‖1

}
≤E
{

w∞−
K∑
k=1

βkw
∞
}

(a)

≤ w∗+O

(
1√
ε

)

−
K∑
k=1

βk

[
w∗−O

(
1√
ε

)]
=

[
1−

K∑
k=1

βk

]
w∗+

[
1+

K∑
k=1

βk

]
O

(
1√
ε

)
,

where (a) follows from Theorem 5 and ‖·‖1 ≤
√
N‖·‖. Also,

as
∑K
k=1 βk ↑1 at a speed equal to or faster than 1−O(

√
ε),

it then follows that lim supT→∞ E
{
‖q[t]‖1

}
=O(1/

√
ε).

Sketch of the proof of Theorem 2. We first characterize the
optimality gap for a∞n , E{min{U ′−1

n (εw∞n ), amax}}. Note
that a∗n = U

′−1
n (εw∗n), ∀n. Applying these definitions in∥∥a∞ − a∗

∥∥2
and using Jensen’s inequality and mean value

theorem, we obtain (see derivations in [20, Eq. (25)]): ‖a∞ −
a∗‖2 ≤ ε2

φ2E{‖w∞−w∗‖2}. Next, consider E{‖w∞−w∗‖2}.
From the proof of Lemma 8, we have the following one-slot
mean Lyapunov drift bound (see [20, Appendix C] for details):

E{∆V (z[t])|z[t]} ≤ − ε
Φ

∥∥w[t]−w∗
∥∥2

+B. (23)

Following the same arguments in the proof of Theorem 5 to
telescope (23) from t = 0 to T −1 yields: E{V (z[T ])|z[0]}−
V (z[0]) ≤ − ε

Φ

∑T−1
t=0

∫
R2N pz[t]|z[0](z)

∥∥w − w∗
∥∥2
dz + TB.

Dividing both sides by εT
Φ , rearranging terms, and letting T →

∞, we have lim supT→∞
1
T

∑T−1
t=0

∫
R(K+1)N pz[t]|z[0](z)

∥∥w−
w∗
∥∥2
dz ≤ BΦ/ε. Note that the left-hand-side is exactly

E
{
‖w∞ −w∗‖2

}
. Hence, we have

‖a∞−a∗‖2≤ ε2

φ2
E
{
‖w∞−w∗‖2

} (a)

≤ BΦ

φ2
ε, (24)

where (a) utilizes Theorem 5. Taking square root on (24)
yields ‖a∞−a∗‖=O(

√
ε), i.e., the first half of Theorem 2.

To show that |U
(
a∞
)
− U(a∗)| = O(ε), we follow

similar steps in the proof of Theorem 5 to define a vector
y[t] , [w>[t], . . . ,w>[t − K]]> and a quadratic Lyapunov
function L(y[t]) = 1

2‖P
1
2 (y[t])y[t]‖2. Following the same

arguments in the proof of Theorem 5, we can show that
y[t+ 1] = Γ(w[t])y[t] + ∆q̃[t] + ũ[t]. Then, using the same
techniques as in the proof of Lemma 8, we can establish that
the one-slot expected Lyapunov drift can be upper-bounded as
E
{

∆L(y[t])
∣∣y[t]

}
≤−w>[t]E{a[t]− s[t]

∣∣y[t]}+B. Next, we
note that the right-hand-side has the same structure as in [3,
Eq. (24)]. Therefore, the remaining steps of the proof follow
from those in [3] and the proof is complete.

Sketch of the proof of Theorem 3. Thanks to the one-to-one
mapping between E{a[t]|w[t]} and w[t], the convergence of
{E{a[t]|w[t]}} can be equivalently analyzed by examining the
sequence {w[t]}∞t=0. Also, from the proof of Theorem 5, we
know that the distance ‖w[t]−w∗‖ can be reformulated as a
time-varying linear system z[t+1] = Γ(w[t])z[t]+∆q̃[t]+ũ[t]
(cf. Eq. (13)), where z[t] is defined in (12). As a result, the
convergence speed of w[t] can be analyzed through Γ(w[t])’s
eigen-spectral radius. Further, from the proof of Lemma 7 in

Appendix A (cf. Eq. (29)), we know that the characteristic
polynomial equation of Γ(w[t]) can be written as follows
(omitting index “n” for brevity):

λK+1 −
(

1 + β
(K)
1 − εψ(w[t])

)
λK −

(
β

(K)
2 − β(K)

1

)
λK−1

− · · · −
(
β

(K)
K − β(K)

K−1

)
λ+ β

(K)
K = 0. (25)

Let |λ̄(K)| denote the maximum root magnitude of (25). For
(25), the Fujiwara theorem [22] says that:∣∣λ̄(K)

∣∣ ≤ 2 max
{∣∣1 + β

(K)
1 − εψ(w[t])

∣∣, ∣∣β(K)
2 − β(K)

1

∣∣ 1
2 ,

. . . ,
∣∣β(K)
K − β(K)

K−1

∣∣ 1
K ,

1

2

∣∣β(K)
K

∣∣ 1
K+1

}
. (26)

Therefore, applying the Fujiwara theorem to a (K + 1)-order
momentum scheme, we have that:∣∣λ̄(K+1)

∣∣≤2 max
{∣∣1+β

(K+1)
1 −εψ(w[t])

∣∣, ∣∣β(K+1)
2 −β(K+1)

1

∣∣ 1
2,

. . . ,
∣∣β(K+1)
K+1 − β(K+1)

K

∣∣ 1
K+1 ,

1

2

∣∣β(K+1)
K+1

∣∣ 1
K+2

}
. (27)

Now, consider the following choice of β(K+1): β(K+1)
k =

β
(K)
k , k = 1, . . . ,K − 1, β(K+1)

K = β
(K)
K − (β

(K)
K )

K+2
K+1 + δ,

and β
(K+1)
K+1 = (β

(K)
K )

K+2
K+1 − δ, where δ > 0 is chosen such

that β(K+1)
k > 0, ∀k. Clearly,

∑K+1
k=1 β

(K+1)
k =

∑K
k=1 β

(K)
k .

It can be verified that if the maximizer is from the first K
terms, we have |λ̄(K+1)| = |λ̄(K)|. Otherwise, it is easy to see
that |λ̄(K+1)|< |λ̄(K)|. This completes first half of the proof.

Next, if β
(K+1)
k = β

(K)
k , k = 1,. . . ,K, we can choose

β
(K+1)
K+1 =min{(β(K)

K )
K+2
K+1 , (1−2−(K+1))β

(K)
K }. It can be seen

that if the maximizer is from the first K terms, we have
|λ̄(K+1)|= |λ̄(K)|. Otherwise, we have |λ̄(K+1)|< |λ̄(K)|. This
completes the second half of the proof.

IV. NUMERICAL RESULTS

In this section, we perform numerical experiments to vali-
date our theoretical results in Section III. For clearer illustra-
tions and avoid being obscured by channel fading randomness,
we first study a three-link deterministic cellular network,
where each link has one unit capacity and only one user can be
activated in each time-slot. We adopt the proportional fairness
metric log(0.0001 + a) as the utility function for all users
[4]. From the symmetry of the system, it is clear that the
optimal congestion control rates are ā∗n = 1

3 , n = 1, 2, 3. In
all experiments, we set ε = 0.04. We first consider a 2-order
momentum scheme with β1 + β2 increasing from 0 to 0.3,
0.6, and 0.9 (note that “0” corresponds to the QLA approach).
In each case, we let β2 = 1

4β1 and the results are shown in
Fig. 2. We can see that as β1+β2 increases, the average queue-
lengths are 74.5, 52.5, 30.1, and 7.5, respectively, confirming
the (1−

∑
n βn)–fraction reduction result in Theorem 1. The

throughput convergence results are shown in Fig. 3. We can
see that, regardless of the value of

∑
n βn, the congestion

control rates converge to the same optimal point, confirming
the throughput-optimality result of Theorem 2. Further, Fig. 3
shows that throughput converges faster as

∑
n βn increases.
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mentum scheme with various (β1,β2).
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mentum scheme under channel fading.
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Fig. 6. The throughput convergence of
1-order momentum schemes (heavy-
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Fig. 7. The throughput convergence of
2-order momentum schemes with the
same total momentum as in Fig. 6.
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Next, we test the 2-order momentum scheme in a 15-link
cellular downlink with stochastic channel fading and ε = 0.01.
The variations of (β1, β2) are the same as in the deterministic
cases. The queue-length evolution and throughput convergence
are illustrated in Figs. 4 and 5, respectively. Under channel
fading, we can observe the same trends in queue evolutions
and throughput convergence, again confirming Theorems 1–2.

Next, we study the impacts of the degree of momentum
on convergence performances. In Figs. 6 and 7, we compare
1-order (heavy-ball [15]) and 2-order momentum schemes
with β = β1 + β2. Comparing Figs. 6 and 7, we can see
that, as the total amount of momentum increases (implying
better delay), the 2-order momentum scheme converges faster.
Notably, when β = 0.9, the 1-order momentum scheme fluc-
tuates more dramatically around the optimal, while the 2-order
momentum scheme enjoys a much smoother convergence. This
confirms the first half of Theorem 3. Lastly, we studied the
effects of increasing the order of momentum in the way that
β

(K+1)
k = β

(K)
k , k = 1, . . . ,K, and the results are shown in

Figs. 8 and 9. We can see that as the order K increases from
0 to 3, both delay and throughput convergence speed improve,
which verifies Theorem 1 and the second half of Theorem 3.

V. CONCLUSION

In this paper, we have developed a new cross-layer algorith-
mic framework that enables the use of high-order momentum
information to improve delay and convergence in wireless
network optimization. Compared to the well-known queue-
length-based approaches, our proposed high-order momentum-
based algorithmic framework offers not only throughput-
optimality, but also fast-convergence and low-delay. The main
contributions of this paper are three-fold: i) we have proposed

a new low-complexity weight updating scheme to incorpo-
rate high-order momentum information, which can be easily
implemented in practice; ii) we rigorously established the
throughput-optimality of the proposed algorithmic framework
and characterized its queue-stability and convergence speed
with respect to the order/degree of momentum information;
and iii) based on these analytical results, we are able to reveal
a fundamental insight that delay and convergence speed will
keep on improving as more high-order momentum information
is utilized. Collectively, the findings in this paper contribute
to a new and exciting research paradigm that leverages high-
order momentum information in wireless network optimiza-
tion. Future research topics may include to generalize the
proposed high-order momentum algorithmic framework to
handle potentially non-stationary wireless network settings.

APPENDIX A
PROOF OF LEMMA 7

For notational convenience, we let Λ , (1 + β1)I −
εΨ(w[t]), α1 , β2 − β1, . . ., αK−1 , βK − βK−1, and
αK , −βK . Then, the matrix in (14) can be written as:

Γ(w[t]) =


Λ α1I · · · αK−1I αKI
I O · · · O O
O I · · · O O
...

...
. . .

...
...

O O · · · I O

. (28)

We first show by contradiction that the eigenvalues λi 6= 0,
∀i = {1, . . . , (K + 1)N}. Suppose otherwise that λi = 0 for
some i ∈ {1, . . . , (K + 1)N}. In this case, it follows from
(28) that det(Γ(w[t])− 0I)=det(αK) det(I) = αKNK 6= 0, a



contradiction. Next, consider the determinant:

det
(
Γ(w[t])−λI

)
= det


Λ−λI α1I · · · αK−1I αKI

I −λI · · · O O
O I · · · O O
...

...
. . .

...
...

O O · · · I −λI



(a)
= det(−λI) det


Λ−λI α1I · · · αK−1I αK−1 + αK

λ
I −λI · · · O O
O I · · · O O
...

...
. . .

...
...

O O · · · I −λI

,

where (a) follows from det

[
A B
C D

]
= det(D) det(A −

BD−1C) when D is invertible (since λ 6= 0). Repeating the
above steps K − 1 more times, we eventually arrive at the
following characteristic polynomial equation for Γ(w[t]):

det
(
Γ(w[t])−λI

)
=
(

det(−λI)
)K×

det
[
Λ− λI−

(
α1 +

α2

λ
+ · · ·+ αK

λK

)
I
]

=(−λ)NKdet
[(

(1+β1)+
α1

λ
+· · ·+αK

λK
−λ
)
I−εΨ(w[t])

]
=(−1)NK

N∏
n=1

(
λK+1 −

(
α0 − εψn(w[t])

)
λK − · · · − αK

)
=(−1)NK

N∏
n=1

[
λK+1 −

(
1 + β1 − εψn(w[t])

)
λK−

(β2 − β1)λK−1 − · · · − (βK − βK−1)λ+ βK

]
= 0. (29)

For (29) to hold, it suffices to consider each polynomial
equation λK+1−

(
1+β1−εψn(w[t])

)
λK− (β2−β1)λK−1−

· · ·− (βK −βK−1)λ+βK = 0. It is easy to check that λ = 1
is not one of the roots of this polynomial equation. Also, as
ε ↓ 0, its roots converge to those of the polynomial equation
λK+1−

(
1+β1

)
λK−(β2−β1)λK−1−· · ·−(βK−βK−1)λ+

βK = 0, which can be factored as:(
λ− 1

)(
λK − β1λ

K−1 − β2λ
K−2 − · · · − βK

)
= 0.

Note that if
∑K
k=1 βk < 1 and βk > 0, ∀k = 1, . . . ,K, then by

the Roché theorem [18], we have |λ| < max{1,
∑K
k=1 βk} =

1. Therefore, there exists a small enough value of ε such that
the magnitude of the roots of (29) is upper bounded by 1.
Further, note that εψn(w[t])(β1λ

K−1+· · ·+βK)→ 0 as ε ↓ 0.
This is because (β1λ

K−1 + · · · + βK) is upper bounded and
independent of ε and ψn(w[t]) is upper bounded by Lemma 6.
Therefore, adding −εψn(w[t])(β1λ

K−1 + · · · + βK) → 0 to
both sides of (29) and after some algebraic manipulations, we
have that, as ε ↓ 0,[

λ−
(
1− εψn(w[t])

)](
λK − β1λ

K−1 − · · · − βK
)
≈ 0.

Therefore, when ε is small, we can conclude that the roots of
(29) are such that λ1,n ≈ 1−εψn(w[t]), and λ2,n, . . . , λK+1,n

are close to those of λK − β1λ
K−1 − · · · − βK = 0. From

the above analysis, we can conclude that |λk,n| < 1, ∀k =
1, . . . ,K + 1. Also, λk,n, ∀k, are asymptotically independent
of ε. Note that λ1,n ↑ 1 as ε ↓ 0. Therefore, for small enough
ε, we have that maxk |λk,n| = |λ1,n| = 1−εψn(w[t]). Finally,
we have ρ(Γ(w[t])) ≈ maxn |λ1,n| = 1− εminn ψn(w[t]) <
1 when ε is small enough. This completes the proof.
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