
NET-FLEET: Achieving Linear Convergence Speedup for Fully
Decentralized Federated Learning with Heterogeneous Data

Xin Zhang
∗
, Minghong Fang

+
, Zhuqing Liu

+
, Haibo Yang

+
, Jia Liu

+
, and Zhengyuan Zhu

∗
∗
Department of Statistics, Iowa State University

+
Department of Electrical and Computer Engineering, The Ohio State University

ABSTRACT
Federated learning (FL) has received a surge of interest in recent

years thanks to its benefits in data privacy protection, efficient com-

munication, and parallel data processing. Also, with appropriate

FL algorithmic designs, one could achieve a highly desirable effect

called linear speedup for convergence, i.e., the required number of

steps for convergence shrinks at an 𝑂 (1

𝑚) rate as the number of

workers𝑚 increases. However, most of the existing works in FL

are limited to systems with i.i.d. datasets and centralized parame-

ter servers. So far, results on distributed non-i.i.d. FL remains very

limited and the existing works in this area all suffer from high imple-

mentation complexity. Moreover, whether or not the linear speedup

for convergence is achievable for fully decentralized FL with data

heterogeneity remains an open question. In this paper, we address

these challenges by proposing a new algorithm, called NET-FLEET,

for fully decentralized FL systems with data heterogeneity. The key

idea of our algorithm is to enhance the local update scheme in FL

(originally intended for communication efficiency) by incorporating

a recursive gradient correction technique to handle heterogeneous

datasets. We show that under appropriate parameter settings, the

proposed algorithm achieves a linear speedup for convergence in

the form of 𝑂 (1/
√
𝑚𝐾𝑆) convergence rate, where 𝑆 and 𝐾 are the

global communication and local update rounds, respectively. We

further conduct extensive numerical experiments to evaluate the

performance of the proposed algorithm and verify our theoretical

findings.

ACM Reference Format:
Xin Zhang

∗
, Minghong Fang

+
, Zhuqing Liu

+
, Haibo Yang

+
, Jia Liu

+
, and

Zhengyuan Zhu
∗
. 2018. NET-FLEET: Achieving Linear Convergence Speedup

for Fully Decentralized Federated Learning with Heterogeneous Data. In

Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,

14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Federated learning (FL) is a powerful distributed training paradigm

for modern large-scale machine learning [1, 2, 10, 11, 15, 21, 32, 34].

FL leverages a large number of workers to collaboratively learn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

a global model. Mathematically, FL aims to solve an optimization

problem in the form of:

min

x∈R𝑝
𝑓 (x) ≜ 1

𝑚

𝑚∑
𝑖=1

𝑓𝑖 (x), (1)

where 𝑓𝑖 (x) ≜ E𝜻∼D𝑖
[𝑓𝑖 (x; 𝜻𝑖)] is the loss function of the data dis-

tributionD𝑖 at worker 𝑖 , and𝑚 is the number of workers. Different

from traditional learning algorithms where data are collected and

stored in a centralized server, FL allows the training data distributed

at the workers, which could be smart phones, robots, network sen-

sors, or other local information sources. A global model can be

trained without the need to share the workers’ data over the net-

work, thus helping preserve data privacy. However, FL also faces

several major technical challenges:

(C1). Data Heterogeneity: In conventional distributed learning,

the data are either globally available or randomly shuffled and

assigned to each worker. Thus, it is safe to assume that the data

distributions at the workers are identical, i.e. D𝑖 = D𝑗 , ∀𝑖 ∈ [𝑚].
Unfortunately, in FL systems, data are generated locally at each

worker based on their own circumstances. As a result, data hetero-

geneity among the workers is unavoidable. Such data heterogeneity

imposes significant challenges in designing FL algorithms and their

training performance analysis.

(C2). Unreliable Centralized Server: Most current distributed

learning systems are based on the server-worker architecture,

where workers are coordinated by a centralized server. However,

the centralized server may suffer several limitations, e.g., vulner-

ability to cyber-attacks and being a significant communication

bottleneck. Additionally, in the context of FL, it is sometimes hard

or even infeasible to find a trustworthy centralized server with

whom all workers are willing to share information.

The above key challenges motivate us to consider fully decentral-
ized FL systems (i.e., without any centralized server) deployed over

peer-to-peer networks. Toward this end, in this paper, we focus

on the fundamental “linear speedup for convergence” problem for

decentralized FL under data heterogeneity. In the literature, it is

well-known that the centralized-server-aided FL enjoys the “linear

speedup for convergence” property. Specifically, the work in [27, 36]

showed that the celebrated FedAvg algorithm and its variants un-

der the homogeneous data setting can achieve a convergence rate

of 𝑂 (1/
√
𝑚𝐾𝑆) with a sufficiently large communication rounds 𝑆 ,

where𝑚 is the number of workers and 𝐾 is the number of local

update rounds. Notably, the 𝑂 (1/
√
𝑚𝐾𝑆) convergence rate implies

a “linear speedup” with respect to the number of workers𝑚. This

is because, to attain an 𝜖-accuracy in convergence, an algorithm

with a convergence rate O(1/
√
𝑆) takes O(1/𝜖2) steps. In contrast,

an algorithm with a convergence rate O(1/
√
𝑚𝑆) needs O(1/𝑚𝜖2)

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

steps (the hidden constant in Big-O is the same). In this sense, the

convergence rate O(1/
√
𝑚𝑆) implies a linear speedup with respect

to the number of workers. Such a linear speedup is highly desirable

because it implies that one can efficiently leverage the massive

parallelism in large-scale FL systems. However, under the data het-

erogeneity and unreliable centralized server challenges outline in

(C1-C2), a fundamental open question arises: Can we still achieve
the state-of-the art linear speedup for convergence, i.e., 𝑂 (1/

√
𝑚𝐾𝑆),

under a fully decentralized FL system with data heterogeneity?
In this paper, we give an affirmative answer to this question and

propose a new recursive gradient correction based fully decentralized
FL algorithm. Our main contributions are summarized as follows:

• To circumvent the unreliable centralized server challenge, we

propose a fully decentralized network FL algorithm called De-
centralized Networked Federated Learning with Recursive Gradient
Correction (NET-FLEET). In NET-FLEET, there is no centralized

server and workers only need to share information with their

neighboring nodes in each communication round. Similar to

FedAvg-type algorithms, our proposed NET-FLEET algorithm

allows the workers to run multiple local updates between two

consecutive communication rounds with their neighbors, so as

to reduce the communication load. By eliminating the central-

ized server, our NET-FLEET algorithm achieves gains in both

robustness and flexibility.

• By proposing a new recursively corrected stochastic gradient esti-
mator technique, our NET-FLEET algorithm works with decen-

tralized network systems where workers hold heterogeneous

datasets. It is worth noting that, although the conventional gra-

dient tracking method [24, 25, 31] shares some similarity with

our technique, the conventional gradient tracking method cannot
be directly adopted under in decentralized FL since the gradient

estimators for local updates are not clearly defined in conven-

tional gradient tracking. In contrast, our new corrected gradient

estimator efficiently approximates the global stochastic gradient,

so that it can handle data heterogeneity in decentralized FL.

• We establish theoretical guarantees for the convergence perfor-

mance of NET-FLEET. The key challenge in the analysis is to

examine the local model consensus error caused by multiple lo-
cal updates contained in one round of fully decentralized model

averaging. So far, most theoretical results in the FL literature

rely on the assumption of homogenous datasets or gradient dis-

similarity conditions. In this work, we relax these conditions

and show that our proposed algorithm enjoys an 𝑂 (1/
√
𝑚𝑆𝐾)

convergence rate with arbitrary heterogeneous datasets. Our

result implies a linear speedup for convergence with respect to

the worker number. Notably, our analysis and convergence re-

sults do not require the bounded gradient and homogeneous data

assumptions, which could be of independent interest to general

non-convex FL problems.

Collectively, our results in this paper contribute to the state of the

art of decentralized FL with data heterogeneity. The rest of the

paper is organized as follows. In Section 2, we review the literature

to put our work in comparative perspectives. In Section 3, we for-

mally state decentralized FL problem and propose our NET-FLEET

algorithm. The convergence rate and complexity analysis of our

algorithms are provided in Section 4. We provide numerical results

in Section 5 to verify the theoretical results of our algorithms. In

Section 6, we provide concluding remarks and discussions.

2 RELATEDWORK
In this section, we provide a quick overview on recent related work

on FL algorithms with homogeneous and heterogeneous datasets,

as well as algorithms for fully decentralized FL in the literature.

1) FL with Homogenous Datasets: The federated averaging

(FedAvg) algorithm, also known as “Local SGD,” was first developed

by [22] as a heuristic approach to address FL. FedAvg lets workers

run 𝐾 successive SGD updates with local data before communicat-

ing with the central server, thus achieving better communication

efficiency than the traditional parallel SGD. Since then, FedAvg has

sparked a large number of follow-ups that focus on theoretical per-

formance of FL with homogeneous data (see, e.g., [19, 27–29, 36]).

Under the homogeneous data assumption, most of the works pro-

vide a linear speedup for convergence, i.e. an 𝑂 (1/
√
𝑚𝑆𝐾), for a

sufficiently large communication rounds 𝑆 , which matches the state-

of-the-art convergence rate of the parallel SGD [3, 6]. Furthermore,

it has also been shown in [19] that FedAvg enjoys a better general-

ization performance than parallel SGD.We refer readers to excellent

recent surveys [10, 15] for a comprehensive review.

2) FLwithHeterogeneousDatasets:More recently, researchers

have started to investigate the performance of FedAvg and its vari-

ants for FL with heterogeneous datasets. The work in [40] first

showed that the accuracy of FL degrades significantly for neural net-

works trained on highly skewed heterogeneous datasets. They ex-

plained such accuracy degradation by the weight divergence, which

can be quantified by the Wasserstein distance between the popula-

tion data distributions and the workers’ data distributions. To miti-

gate such worker-drift effects, they proposed a strategy to improve

training with heterogeneous data by sharing a small subset of data

between all the workers. So far, most of the existing theoretical work

in the literature (see, e.g., [7, 26, 30, 36]) analyzed FedAvg’s worker-

drift with a (𝐺, 𝐵)-bounded gradient dissimilarity assumption (GBD

assumption), i.e.,
1

𝑚

∑𝑚
𝑖=1

∥∇𝑓𝑖 (x) − ∇𝑓 (x)∥2 ≤ 𝐺2 + 𝐵2∥∇𝑓 (x)∥2
,

∀𝑖 ∈ [𝑚]. With the (𝐺, 𝐵)-GBD assumption. These works showed

that FedAvg could achieve a linear speedup for convergence with

the rounds of local updates 𝐾 being
3
√
𝑆/𝑚. To relax the extra as-

sumption on gradients, the work in [18] proposed a Variance Re-

duced Local SGD (VRL-SGD) algorithm for FL with heterogeneous

data. VRL-SGD introduces an auxiliary variable to track average

deviation between the local gradients and the corresponding global

gradient of the same model parameters, and uses it to approximate

the global gradients during the local SGD updates.

To further reduce the communication complexity, the work in

[33] recently developed a generalized FedAvg (G-FedAvg) algo-

rithm with two-sided learning rates and improved 𝐾 to be as large

as 𝑆/𝑚. In G-FedAvg, the workers first run local updates with a

local step-size, then upload the local parameter changes to the cen-

tralized server. Upon receiving workers’ information, the server

updates the global model parameter with the local changes and

a server-side step-size. Due to the two-sided learning rates, the

G-FedAvg achieved a linear speedup for convergence with a large

𝐾 . But their analysis and convergence results are still limited by

the dissimilarity of local gradients. The work in [12] proposed a

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Stochastic Controlled Averaging (SCAFFOLD) algorithm, which cor-

rects the worker-drift problem also by utilizing two-sided learning

rates and control variables. SCAFFOLD estimates the worker-drift

by the difference between the server-side and worker-side control

variables and uses it to correct the local update. After 𝐾 rounds

of local updates, the workers send the local parameter changes

to the centralized server for server-side update. By using the two-

sided step-sizes and control variables, SCAFFOLD achieves a linear

speedup for convergence without making assumptions on gradi-

ents. However, the aforementioned algorithms only work for the

systems with a centralized parameter server.

3) Decentralized FL Algorithms: Decentralized FL has also

received increasing attention recently, which is motivated by the

fact that in some FL scenarios, the centralized server is not trustable.

For example, the work in [16] proposed a Local Decentralized SGD

(LD-SGD) algorithm for decentralized FL. LD-SGD can be viewed

as a variant of the well-known Decentralized SGD (DSGD) algo-

rithm [17, 23, 37, 38]. In LD-SGD, the workers perform multiple

local updates and then communicate with their neighbors to per-

form one round of parameter aggregation. It is shown that LD-SGD

could achieve a linear speedup for convergence under the bounded

gradient assumption. Recently, the work in [5] developed a peri-

odic decentralized momentum SGD (PD-SGDM) algorithm, which

uses the gradient momentum term to improve the convergence

performance. With a bounded gradient assumption, PD-SGDM can

achieve a linear speedup for convergence as long as the rounds of

local updates is bounded by 𝐾 =
3
√
𝑆/𝑚, which matches the number

of local updates of the FedAvg algorithm. The work in [35] also

proposed a decentralized momentum SGD algorithm with local up-

dates. Unlike the PD-SGDM which assumes the bounded gradient,

[35] leverages the generalized GBD assumption to handle the data

heterogeneity and achieve the same linear speedup. In this work,

we aim to achieve a linear speedup for decentralized federated

learning without any assumption on gradient boundedness.

The most related work to our NET-FLEET is the decentralized

FL stochastic gradient tracking (DSGT) algorithm proposed by [21].

In DSGT, the workers first run 𝐾 rounds local SGD updates and

then perform one round of stochastic gradient tracking update.

However, the authors only provided a convergence analysis for the

case with𝐾 = 0, i.e., no local update. In comparison, our NET-FLEET

algorithm employs a local update scheme with a new recursive
gradient correction technique. We show that NET-FLEET achieves

a linear speedup for convergence with local updates rounds 𝐾 =
3
√
𝑆/𝑚 without any bounded gradient assumption.

3 PROBLEM STATEMENT AND ALGORITHM
DESIGN

In this section, we will first state the fully decentralized FL problem.

Then, we will present our NET-FLEET algorithm.

3.1 Decentralized Federated Learning
In the fully decentralized FL scenario, the workers form a peer-to-

peer network system, which can be represented by an undirected

connected graphG = (N ,L). Here,N andL are the sets of workers

and edges, respectively, with |N | = 𝑚. The workers are capable

of local computation and communicating with their neighboring

workers via the edges in L. The goal of fully decentralized FL is

to have the workers distributively and collaboratively solving the

global optimization problem in the following form:

min

x∈R𝑝
𝑓 (x) = min

x∈R𝑝
1

𝑚

𝑚∑
𝑖=1

𝑓𝑖 (x), (2)

where each local objective function 𝑓𝑖 (x) ≜ EZ∼D𝑖
𝑓𝑖 (x; Z) is only

observable to worker 𝑖 and not necessarily convex. Here, D𝑖 repre-

sents the distribution of the dataset at node 𝑖 , which is heterogeneous
across workers. To solve Problem (2) in a decentralized fashion, one

can reformulate Problem (2) in the following equivalent form by

introducing a local model copy at each worker:

Minimize

1

𝑚

𝑚∑
𝑖=1

𝑓𝑖 (x𝑖) (3)

subject to x𝑖 = x𝑗 , ∀(𝑖, 𝑗) ∈ L .

where x ≜ [x⊤
1
, · · · , x⊤𝑚]⊤, and x𝑖 is an introduced local copy at

worker 𝑖 . To solve Problem (3), we consider an 𝜖2
-stationary point

x defined as follows: 1

𝑚

𝑚∑
𝑖=1

∇𝑓𝑖 (x̄)
2

︸ ︷︷ ︸
Global gradient magnitude

+ 1

𝑚

𝑚∑
𝑖=1

∥x𝑖 − x̄∥2

︸ ︷︷ ︸
Consensus error

≤ 𝜖2, (4)

where x̄ ≜ 1

𝑚

∑𝑚
𝑖=1

x𝑖 represents the global average across all work-
ers. Unlike the 𝜖2

-stationary point for centralized FL, the above

criterion in Eq. (4) includes two components: the first term is the

gradient norm of the global loss function and the second term is

the average consensus error across all local copies. In this work,

we aim to develop an efficient algorithm to attain an 𝜖2
-stationary

point for fully decentralized FL with heterogeneous datasets and

study its speedup performance as the number of workers increases.

3.2 The NET-FLEET Algorithm
Now, we present our Decentralized Networked Federated Learning

with Recursive Gradient Correction (NET-FLEET) algorithm. To

solve Problem (1) in decentralized network systems where workers

reach a consensus on a global optimal solution, a common approach

in the literature is to let workers aggregate neighboring information

through a consensus matrix W ∈ R𝑚×𝑚
. Let [W]𝑖 𝑗 represent the

element in the 𝑖-th row and the 𝑗-th column inW. Then, a consensus

matrix W should satisfy the following properties:

(a) Doubly Stochastic:
∑𝑚
𝑖=1

[W]𝑖 𝑗 =
∑𝑚
𝑗=1

[W]𝑖 𝑗 = 1.

(b) Symmetric: [W]𝑖 𝑗 = [W] 𝑗𝑖 , ∀𝑖, 𝑗 ∈ N .

(c) Network-Defined Sparsity Pattern: [W]𝑖 𝑗 > 0 if (𝑖, 𝑗) ∈ L;

otherwise [W]𝑖 𝑗 = 0, ∀𝑖, 𝑗 ∈ N .

The above properties imply that the eigenvalues of W are real and

can be sorted as −1 < _𝑚 (W) ≤ · · · ≤ _2 (W) < _1 (W) = 1.

We define the second-largest eigenvalue in magnitude of W as

_ ≜ max{|_2 (W) |, |_𝑚 (W) |} for further notation convenience. It

can be seen later that _ plays an important role in the step-size

selection and characterizing the algorithm’s convergence rate.

Similar to the centralized-server-based FL, a key defining feature

in decentralized FL is that it allows workers to update the local

model parameters multiple rounds before workers’ communication

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

and model averaging. However, with heterogeneous data at differ-

ent workers, the update directions (i.e., the stochastic gradients) are

not identically distributed. Thus, after several local update rounds,

the local parameters will move towards their worker-side optimum

x∗(𝑖) , where x∗(𝑖) = arg min 𝑓𝑖 (x). This phenomenon may cause

divergence of the algorithm and is often referred to as the “worker-

drift problem.” Moreover, the lack of a centralized sever further

worsens the worker-drift problem. To address this challenge, in our

NET-FLEET algorithm, we introduce an auxiliary parameter y(𝑖)
at

each worker 𝑖 to approximate the global stochastic gradients. Our

NET-FLEET algorithm is illustrated in Algorithm 1.

Specifically, NET-FLEET has 𝐾 inner loops at each worker for

the local updates between two consecutive outer loop iterations

for inter-worker communications. Also, there are 𝑆 rounds of inter-

worker communications. At each outer loop iteration 𝑠 , workers

share the local model parameter x(𝑖)
𝑠,0

and the corrected gradient

parameter y(𝑖)
𝑠,0

with neighboring workers, and initialize the inner-

loop’s starting points as x(𝑖)
𝑠,1

and y(𝑖)
𝑠,1

based on the neighboring

average and local stochastic gradient update. Then, within the local

inner loops, the update of y(𝑖)
follows a recursive structure:

y(𝑖)
𝑠,𝑘+1

= y(𝑖)
𝑠,𝑘

+ g(𝑖)
𝑠,𝑘+1

− g(𝑖)
𝑠,𝑘
, ∀𝑘 ∈ 1, · · · , 𝐾 − 1, (5)

where 𝑠 and 𝑘 are the indices of outer and inner loops, respectively,

and g(𝑖)
𝑠,𝑘

= ∇𝑓𝑖 (x(𝑖)
𝑠,𝑘

; 𝜻 (𝑖)
𝑠,𝑘

) is the local stochastic gradient with ran-

dom sample 𝜻 (𝑖)
𝑠,𝑘

. In (5), it can be easily verified that the correction

term follows y(𝑖)
𝑠,𝑘

− g(𝑖)
𝑠,𝑘

= y(𝑖)
𝑠,1

− g(𝑖)
𝑠,1

=
∑
𝑗 ∈N𝑖

[W]𝑖 𝑗y(𝑖)
𝑠,0

− g(𝑖)
𝑠,0

,

which measures the difference between the local stochastic gradi-

ent and neighboring weighted-average update direction. By adding

such correction term to g(𝑖)
𝑠,𝑘+1

, y(𝑖)
𝑠,𝑘+1

will be close to the global

stochastic gradient as outer loop iteration 𝑠 gets large. Note that in

NET-FLEET, the model parameter x is updated 𝑆𝐾 times, but the

number of information communication rounds between workers is

only 𝑆 times. Thus, compared with traditional decentralized learn-

ing algorithms, NET-FLEET reduces the overall communication

cost by a 1/𝐾 factor.

Remark 1. Some important remarks regarding our recursive

gradient correction technique are in order. First, we note that the

idea of gradient correction has appeared in the literature, including

stochastic variance reduction (SVR) method in SVRG[9]/SPIDER[4],

gradient tracking (GT) method in GNSD[20]/GT-DSGD[31], etc.

However, the key differences between our method and these exist-

ing works are: 1) The SVR method requires a precise global gradient

estimation at each outer loop iteration, while in our method the

outer loops’ gradient estimator is based on an inexact neighboring
averaging and recursive correction; 2) The GT method is designed

with a single-loop structure and demands one round of communi-

cation after each local update, thus suffering high communication
costs. This limitation is due to the iterates’ contraction result in

the conventional convergence analysis for the GT method (cf. [20,

Lemma 3]), which does not hold for multiple local updates. In con-

trast, our new recursive gradient correction method works with

multiple local updates under decentralized FL. In this sense, the GT

method is a special case of our method when local updates 𝐾 = 1.

Algorithm 1 The NET-FLEET Algorithm.

.

1: Set x(𝑖)
0,0

= x0
and y(𝑖)

0,0
= g(𝑖)

0,0
= ∇𝑓𝑖 (x(𝑖)

0,0
; 𝜻 (𝑖)

0,0
) at worker 𝑖 , for

all 𝑖 ∈ [𝑚].
2: for 𝑠 = 0, · · · , 𝑆 − 1 do
3: for worker 𝑖 , 𝑖 ∈ [𝑚] do
4: Share (x(𝑖)

𝑠,0
, y(𝑖)
𝑠,0

) with neighboring nodes;

5: Update x(𝑖)
𝑠,1

=
∑
𝑗 ∈N𝑖

[W]𝑖 𝑗x(𝑗)
𝑠,0

− [y(𝑖)
𝑠,0

;

6: Calculate g(𝑖)
𝑠,1

= ∇𝑓𝑖 (x(𝑖)
𝑠,1

; 𝜻 (𝑖)
𝑠,1

);
7: Correct y(𝑖)

𝑠,1
=
∑
𝑗 ∈N𝑖

[W]𝑖 𝑗y(𝑗)
𝑠,0

+ g(𝑖)
𝑠,1

− g(𝑖)
𝑠,0

;

8: for 𝑘 = 1, · · · , 𝐾 − 1 do
9: Update x(𝑖)

𝑠,𝑘+1
= x(𝑖)

𝑠,𝑘
− [y(𝑖)

𝑠,𝑘
;

10: Calculate g(𝑖)
𝑠,𝑘+1

= ∇𝑓𝑖 (x(𝑖)
𝑠,𝑘+1

; 𝜻 (𝑖)
𝑠,𝑘+1

);
11: Correct y(𝑖)

𝑠,𝑘+1
= y(𝑖)

𝑠,𝑘
+ g(𝑖)

𝑠,𝑘+1
− g(𝑖)

𝑠,𝑘

12: end for
13: Set x(𝑖)

𝑠+1,0
=x(𝑖)

𝑠,𝐾
, y(𝑖)
𝑠+1,0

=y(𝑖)
𝑠,𝐾

, g(𝑖)
𝑠+1,0

=g(𝑖)
𝑠,𝐾

;

14: end for
15: end for

4 THEORETICAL PERFORMANCE ANALYSIS
In this section, we will establish the convergence properties of

our proposed NET-FLEET algorithm. Due to space limitation, we

outline the key steps of the proofs of Theorem 1. We relegate the

proof details to the supplementary material. We start with stating

the following assumptions:

Assumption 1. The objectives 𝑓 (·) and 𝑓𝑖 (·) satisfy:
(1) 𝑓 (x) is bounded from below, i.e., there exists an x∗ ∈ R𝑝 , such

that 𝑓 (x) ≥ 𝑓 (x∗), ∀x ∈ R𝑝 ;

(2) The function 𝑓𝑖 (x) is continuously differentiable and has𝐿-Lipschitz
continuous gradients, i.e., there exists a constant 𝐿 > 0 such that
|∇𝑓𝑖 (x1) − ∇𝑓𝑖 (x2) | ≤ 𝐿∥x1 − x2∥2, ∀x1, x2 ∈ R𝑝 ;

(3) The stochastic gradient is unbiased and has bounded variance with
respect to the local data distribution, i.e., E𝜻∼D𝑖

[∇𝑓𝑖 (x; 𝜻)] =

∇𝑓𝑖 (x) and Var𝜻∼D𝑖
[∇𝑓𝑖 (x; 𝜻)] ≤ 𝜎2 for some constant 𝜎 > 0.

It is worth noting that we do not need the conventional bounded

gradient variability assumption in most of the literature of FL with

non-i.i.d. datasets. To analyze the algorithm convergence, we define

a potential function as

𝔓𝑠,𝑘 ≜ 𝑓 (x̄𝑠,𝑘)+
1

𝑚2𝐾

𝑚∑
𝑖=1

(∥x(𝑖)
𝑠,𝑘

−x̄𝑠,𝑘 ∥2+𝐶1[
2∥y(𝑖)

𝑠,𝑘
−ȳ𝑠,𝑘 ∥2),

where 𝐶1 = 6(1 + _𝐾 − _)𝐾/(1 − _)2
and x̄𝑠,𝑘 = 1

𝑚

∑𝑚
𝑖=1

x(𝑖)
𝑠,𝑘

,

ȳ𝑠,𝑘 = 1

𝑚

∑𝑚
𝑖=1

y(𝑖)
𝑠,𝑘

. With the above assumptions and definitions,

we are now in a position to present the main convergence result

for our NET-FLEET algorithm as follows:

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Theorem 1 (Convergence of NET-FLEET). Under Assumption 1,
if the step-size [in Algorithm 1 satisfies:

[≤ min

{
1

3𝐿
,

1

𝑚𝐿2𝐾2
,

(1 − _)√
12(1 + _𝐾 − _)𝐾𝐿2

,

√
1−_

24𝐿2𝐾2
,

(1−_)3𝑚𝐾

144

,

√
𝑚(1−_)2

144𝐿𝐾2
,

(1−_)
3(1+_𝐾−_)𝑚𝐾𝐿2

,
(1−_)2 (1+_𝐾−_)𝑚

144𝐾

}
,

then Algorithm 1 has the following convergence result:

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E
[
∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿

2

𝑚

𝑚∑
𝑖=1

∥x(𝑖)
𝑠,𝑘

− x̄𝑠,𝑘 ∥2
]
≤

2E[𝔓0,0−𝔓𝑆,0]
𝑆𝐾[

+ 3𝐿𝜎2[

𝑚
+ 72[𝜎2

(1−_)2𝑚
+ 72(1+_𝐾−_)[𝜎2

(1−_)3𝐾𝑚
. (6)

Several important remarks for Theorem 1 are in order. First, the

convergence metric in Theorem 1 is ∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿2

𝑚

∑𝑚
𝑖=1

∥x(𝑖)
𝑠,𝑘

−
x̄𝑠,𝑘 ∥2

, where the first term is the global gradient magnitude for the

non-convex objectives and the second term is the average consensus

error across all local parameters in the network system. Although

depending on the Lipschitz constant 𝐿, this metric does not lose

generality because we can change themetric to be problem instance-

independent by removing 𝐿2
from the second term, which is due

to ∥∇𝑓 (x̄𝑠,𝑘)∥2+ 1

𝑚

∑𝑚
𝑖=1

∥x(𝑖)
𝑠,𝑘

− x̄𝑠,𝑘 ∥2 ≤ 1

min{1,𝐿2 } (∥∇𝑓 (x̄𝑠,𝑘)∥
2+

𝐿2

𝑚

∑𝑚
𝑖=1

∥x(𝑖)
𝑠,𝑘

− x̄𝑠,𝑘 ∥2). With the metric in Theorem 1 going to zero,

we have that all local parameters will asymptotically be equal and

reach a first-order stationary point of the global objective function

𝑓 (·). Moreover, Theorem 1 provides a finite-time convergence rate

guarantee for our NET-FLEET algorithm.

Second, for the convergence error on the right-hand-side (RHS)

of Eq. (6), with simple derivations, the first term can be bounded as:

2

𝑆𝐾[
E[𝔓0,0−𝔓𝑆,0] ≤

2

𝑆𝐾[

[
𝑓 (x0)+𝐶1[

2

𝑚2𝐾

𝑚∑
𝑖=1

∥y(𝑖)
0,0

−ȳ0,0∥2− 𝑓 (x∗)
]
,

which is dependent on the initialization. The third and fourth terms

are affected by the network topology: a sparser network (i.e., _ is

closer to 1) will have larger values in these two terms.

Third, the range of step-size [is also dependent on the network

topology. A sparse network leads to a smaller step-size. In the

following, we show that by properly selecting the parameters, our

proposed NET-FLEET can achieve a linear speedup for convergence:

Corollary 2 (Linear Speedup). Under Assumption 1, by setting
𝐾 = 𝑆1/3/𝑚 and [= 𝑂 (

√
𝑚/𝑆𝐾), if the numbers of global and local

communication rounds are sufficiently large such that 𝑆𝐾 ≥ 𝑚1/3,
then NET-FLEET has the following convergence rate:

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E
[
∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿

2

𝑚

𝑚∑
𝑖=1

∥x(𝑖)
𝑠,𝑘

− x̄𝑠,𝑘 ∥2
]

= 𝑂

(E[𝔓0,0−𝔓𝑆,0]√
𝑆𝐾𝑚

+ 𝜎2

√
𝑆𝐾𝑚

)
, (7)

which implies a linear speed up for convergence.

It is worth noting that our algorithm achieves the same 𝐾 =

𝑆1/3/𝑚 number of local updates as in [5] without any bounded

gradient assumption.

4.1 Proof Sketch of Theorem 1
Due to space limitation, we provide a proof sketch of Theorem 1

and relegate the proof details to our online technical report[39]. For

better readability, in this section, we organize the proof of Theo-

rem 1 into several key lemmas. Our first step to prove Theorem 1 is

to show the descent property of our NET-FLEET algorithm, which

is stated in the following lemma:

Lemma 1. Under Assumption 1, the following inequality holds for
any outloop 𝑠 in Algorithm 1:

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0)]

≤−[
2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2]− [
2

𝐾−1∑
𝑘=0

E

[
∥ 1

𝑚

𝑚∑
𝑖=1

∇𝑓𝑖 (x(𝑖)
𝑠,𝑘

)∥2

]
+ 𝐿[

2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2]+ 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

𝑚∑
𝑖=1

E

[
∥x(𝑖)
𝑠,𝑘

−x̄𝑠,𝑘 ∥2

]
. (8)

Although Lemma 3 appears to be similar to conventional analy-

sis, its proof is highly non-trivial. In (8), we focus on the descending

upper bound for each two outloop local model parameters, between

which have 𝐾 inner loop SGD updates, while the conventional anal-

ysis on gradient tracking method studies on two successive local

model parameters with only one round of SGD update. More Specif-

ically, we note that the RHS of (8) contains the consensus error of

local model parameters

∑𝐾−1

𝑘=0

∑𝑚
𝑖=1
E[∥x(𝑖)

𝑠,𝑘
− x̄𝑠,𝑘 ∥2], which sums

across not only the worker number𝑚 but also inner loop iterations

𝐾 . In decentralized FL, we hope that the algorithm works with large
𝑚 and large 𝐾 to support large-scale systems and reduce communi-

cation costs, respectively, which in turn leads to a large consensus

error. This large consensus error makes the algorithm harder to

converge compared to decentralized learning algorithms. Therefore,

in what follows, we will establish the error bound for the consen-

sus error in Lemma 4. Unlike the conventional gradient-tracking

analysis that simply focuses on one iteration (cf., e.g., Lemma 3 in

[20]), our analysis studies the consensus error across multiple inner
loop iterations, which thus is novel and more challenging.

Lemma 2. Under Assumption 1, we have the following bounds for
the consensus error in Algorithm 1:

𝐾−1∑
𝑘=0

𝑚∑
𝑖=1

∥x(𝑖)
𝑠,𝑘

−x̄𝑠,𝑘 ∥2 ≤ (1+_(𝐾−1))
𝑚∑
𝑖=1

∥x(𝑖)
𝑠,0
−x̄𝑠,0∥2

+ [
2𝐾2

1−_

𝐾−1∑
𝑘=0

𝑚∑
𝑖=1

∥y(𝑖)
𝑠,𝑘

−ȳ𝑠,𝑘 ∥2, (9)

𝐾−1∑
𝑘=0

𝑚∑
𝑖=1

∥y(𝑖)
𝑠,𝑘

−ȳ𝑠,𝑘 ∥2 ≤ (1+_(𝐾−1))
𝑚∑
𝑖=1

∥y(𝑖)
𝑠,0

−ȳ𝑠,0∥2

+ 24𝐾𝐿2

1−_

𝑚∑
𝑖=1

∥x(𝑖)
𝑠,0

−x̄𝑠,0∥2+ 6𝑚𝐾𝜎2

1−_ + 12[2𝐾2𝐿2

1−_

×
𝐾−1∑
𝑘=0

𝑚∑
𝑖=1

∥y(𝑖)
𝑠,𝑘

−ȳ𝑠,𝑘 ∥2+ 12𝑚[2𝐾2𝐿2

1−_

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2 . (10)

From (9)-(10), we can see that the consensus errors on x(𝑖)
and

y(𝑖)
are coupled. Moreover, the error bounds are accumulated as in-

ner loop rounds𝐾 and worker number𝑚 increase. This observation

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

suggests that we need to judiciously design a potential function

𝔓𝑠,𝑘 , so that the linear speedup for convergence remains achievable.

By combining Lemmas 3 and 4 and after some algebraic simplifi-

cations, we can conclude that:

[

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] ≤E[𝔓𝑠,0−𝔓𝑠,𝐾]−
[𝐶∇f

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]

− 𝐶x

𝑚2𝐾
E[

𝑚∑
𝑖=1

∥x(𝑖)
𝑠,0

−x̄𝑠,0∥2]−
𝐶y𝐶1[

2

𝑚2𝐾
E[

𝑚∑
𝑖=1

∥y(𝑖)
𝑠,0

−ȳ𝑠,0∥2]

+(1

2

+ 12𝐶1𝐿𝐾[
2

(1−_)𝑚 + 72𝐿𝐾2[2

(1−_)2𝑚
) 𝐿𝐾[

2𝜎2

𝑚

+ 36𝐾[2𝜎2

(1−_)2𝑚
+ 6𝐶1[

2𝜎2

(1−_)𝑚𝐾 ,

where 𝐶∇f , 𝐶x and 𝐶y are three constants dependent on the step-

size [(see detailed definitions in the supplementary material). Then,

by properly choosing the step-size, we can ensure that𝐶∇f ,𝐶x and

𝐶y are positive, and so terms associated with them can be dropped.

Finally, by telescoping the above inequality, we arrive at the desired

result as stated in Theorem 1 and the proof is complete.

5 EXPERIMENTAL EVALUATION
In this section, we evaluate our NET-FLEET algorithm onMNIST [14]

and CIFAR-10 [13] datasets. Our experiments are conducted with

four NVIDIA Tesla V100 GPUs.

1) Datasets and Learning Models: 1-a) MNIST with Convo-
lutional Neural Networks (CNN): We train a CNN classifier on the

MNIST [14] dataset. The adopted CNNmodel has two convolutional

layers (size 3 × 3 × 16), each of which is followed by a max-pooling

layer with size 2 × 2 and then a fully connected layer. The ReLU

activation is used for the two convolutional layers and the “softmax”

activation is used at the output layer. 1-b) CIFAR-10 with Residual
Neural Networks (ResNet): We experiment with classification prob-

lems over the CIFAR-10 [13] dataset with the ResNet18 [8] model.

1-c) Dataset Partition: For independent and identically distributed

(i.i.d.) data partition, all workers can access the same global dataset;

in the case of non-i.i.d. heterogeneous data partition, we use the

same data partition strategy as in [33] that each worker can access

data with at most two labels. Specifally, for the non-i.i.d. setting,

we first sort the training data by label, then divide all the training

data into 250 shards with 200 data samples, and randomly assign

two shards to each client.

2) Network System Model: We consider a decentralized net-

work systemwith 50 workers. The network topology G is generated

by the Erd¥os-Rènyi random graph. Without specification, we set the

edge connectivity probability 𝑝𝑐 = 0.5 for the random graph gen-

eration. The consensus matrix is chosen as W= I− 2L
3_max (L) , where

L is the Laplacian matrix of G and _max (L) denotes the largest

eigenvalue of L.
3) Baselines and Parameter Settings:We compare our NET-

FLEET algorithm with the state-of-the-art LD-SGD [16], GT-SGD

[31] and DSGD [17] on decentralized network systems. The number

of local update rounds 𝐾 is set to 10 for NET-FLEET and LD-SGD.

For MNIST on CNN, we choose the initial step-size as 0.01 and

reduce the step-size to by half for every 1000 iterations. The local

0 200 400
Communication rounds

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

0 2000 4000
Training samples

0.5

1.0

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

0 2000 4000
Training samples

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

(b) The non-i.i.d. case.

Figure 1: Test accuracy of CNN onMNIST by different decen-
tralized learning algorithms.

batch size is fixed at 32. For CIFAR-10 on ResNet, we choose the

step-size as 0.001. The local batch size is fixed at 128 for CIFAR-10

training.

4) Performance Comparisons: We compare the test accuracy

with respect to the numbers of communication rounds and train-

ing samples. To better visualize the results, the test accuracies are

smoothed by averaging the values in a window of size 10. Fig. 1

illustrates the results of decentralized algorithms of CNN onMNIST.

In Fig. 1 (a), we can see that NET-FLEET and LD-SGD have similar

performances under i.i.d. data partition and significantly outper-

form DSGD and GT-SGD with the same communication rounds.

Fig. 1 (b) shows that under heterogeneous data, NET-FLEET outper-

forms the other algorithms: with 1000 communication rounds, the

testing accuracy of NET-FLEET is 5% higher than that of LD-SGD

and 8% higher than those of DSGD and GT-SGD.

Fig. 2 illustrates the results of NET-FLEET for ResNet model

on CIFAR-10 dataset. In Fig. 2(a), we can see that NET-FLEET and

LD-SGD have similar performances under i.i.d. data partition and

significantly outperform DSGD and GT-SGD with the same number

of communication rounds. Fig. 2(b) shows that under heterogeneous

data partition, NET-FLEET outperforms the other algorithms: with

450 communication rounds, the test accuracy of NET-FLEET is

15% higher than that of LD-SGD, and 40% higher than those of

DSGD and GT-SGD. With 5000 training samples, the test accuracy

of NET-FLEET is 15% higher than those of the other algorithms.

5) Impact of the Local Update Rounds: A key feature in FL

algorithms is that the workers are allowed to perform multiple

local parameter updates. In this experiment, we examine the im-

pact of different number of local update rounds on the training

performance. In the first experiment, we run NET-FLEET to solve

classification problems with the CNN model over the MNIST [14]

dataset. We fix the step-size at 0.01, edge connectivity 𝑝𝑐 at 0.5, local

batch size at 32, and worker number at 50. We choose the number

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

0 500 1000 1500
Communication rounds

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

0 5000 10000
Training samples

0.1

0.2

0.3

0.4

0.5

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

(a) The i.i.d. case.

0 200 400
Communication rounds

0.1

0.2

0.3

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

0 2000 4000
Training samples

0.1

0.2

0.3

Te
st

 a
cc

ur
ac

y

NET-FLEET
LD-SGD
GT-SGD
DSGD

(b) The non-i.i.d. case.

Figure 2: Test accuracy of ResNet onCIFAR-10 decentralized
learning algorithms.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

K=1
K=8
K=10
K=20

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.5

1.0

Te
st

 a
cc

ur
ac

y

K=1
K=8
K=10
K=20

(b) The non-i.i.d. case.

Figure 3: Test accuracy of CNN on MNIST with different lo-
cal update rounds.

of local update rounds 𝐾 from the discrete set {1, 8, 10, 20}. Fig. 3
shows the performance of NET-FLEET with different number of lo-

cal update rounds 𝐾 . As shown in Fig. 3, the test accuracy increases

as 𝐾 increases under both the i.i.d. and heterogeneous data settings:

with communication rounds being fixed at 1000, NET-FLEET with

𝐾 = 1 has accuracy less than 80%. In contrast, with 𝐾 = 8, 𝐾 = 10

and 𝐾 = 20, NET-FLEET achieves more than 95% testing accuracy.

In the second experiment, we run NET-FLEET to colve classification

problems with the ResNet model over the CIFAR-10 dataset [13].

We fix the step-size at 0.001, edge connectivity 𝑝𝑐 at 0.5, local batch

size at 128, and worker number at 50. The number of local update

rounds 𝐾 is from the discrete set {1, 8, 10}. Similarly, as shown in

Fig. 4, the test accuracy increases as 𝐾 increases under both the

i.i.d. and non i.i.d data settings over the CIFAR-10 dataset.

6) Impact of the Number of Workers: We conduct the fol-

lowing experiments with different number of workers. In this ex-

periment, we choose the number of workers from the discrete set

{10, 30, 50, 70} and fix the step-size at 0.01, local update rounds at

10, edge connectivity 𝑝𝑐 at 0.5, and local batch size at 32. As shown

in Fig. 5, convergence results with different number of workers

0 1000
Communication rounds

0.2

0.4

Te
st

 a
cc

ur
ac

y

K=1
K=8
K=10

(a) The i.i.d. case.

0 500
Communication rounds

0.1

0.2

0.3

Te
st

 a
cc

ur
ac

y

K=1
K=8
K=10

(b) The non-i.i.d. case.

Figure 4: Test accuracy of Resnet onCIFAR-10with different
local update rounds.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

800 10000.950

0.975

Workers=10
Workers=30
Workers=50
Workers=70

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

800 1000
0.925
0.950
0.975

Workers=10
Workers=30
Workers=50
Workers=70

(b) The non-i.i.d. case.

Figure 5: Test accuracy of CNN on MNIST with different
number of workers.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

900 9500.96

0.98

pc=0.1
pc=0.3
pc=0.5
pc=0.9

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.5

1.0

Te
st

 a
cc

ur
ac

y

800 850 9000.95

0.96

0.97

pc=0.1
pc=0.3
pc=0.5
pc=0.9

(b) The non-i.i.d. case.

Figure 6: Test accuracy ofCNNonMNISTwith different edge
connection probability 𝑝𝑐 .

have similar performances in i.i.d case. NET-FLEET achieves 95%

accuracy in the i.i.d case. In the non-i.i.d heterogeneous case, we

can see that as the number of workers decreases, the convergence

rate decreases. NET-FLEET obtains an accuracy around 96% with

10 workers and achieves more than 97.5% test accuracy with 70

workers in i.i.d case. In heterogeneous data case, NET-FLEET’s ac-

curacy is approximately 92.5% with 10 workers and achieves a test

accuracy more than 97.5% with 70 workers.

7) Impact of the Edge Connectivity Probability:
For the decentralized network system, the network graph G is

generated by the Erd¥os-Rènyi random graph with edge connec-

tion probability 𝑝𝑐 . In the first experiment, we examine the impact

of different 𝑝𝑐 -values on the training performance with the CNN

model over the NBIST dataset. We choose the 𝑝𝑐 -value from the

discrete set {0.1, 0.3, 0.5, 0.9} and fix the number of workers at 50,

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

0 500 1000
Communication rounds

2

4

6

Te
st

 a
cc

ur
ac

y

1e 1

900 9500.55

0.60

0.65

pc=0.1
pc=0.3
pc=0.5

(a) The i.i.d. case.

0 500 1000
Communication rounds

1

2

3

Te
st

 a
cc

ur
ac

y

1e 1

800 850 9000.25

0.30

0.35

pc=0.1
pc=0.3
pc=0.5

(b) The non-i.i.d. case.

Figure 7: Test accuracy of Resnet onCIFAR-10with different
edge connectivity 𝑝𝑐 .

local update rounds at 10, step-size at 0.01, and local batch size at

32. Fig. 6 shows that the convergence result with different edge

connectivity 𝑝𝑐 -values have similar performances in the i.i.d case.

The experiments achieve a 96% accuracy in the i.i.d case. In the

heterogeneous data case, we can see that as 𝑝𝑐 increases, the test

accuracy increases slightly, which shows that the learning perfor-

mance of NET-FLEET is insensitive to the 𝑝𝑐 -value. In the second

experiment, we run NET-FLEET to colve classification problems

with the ResNet model over the CIFAR-10 dataset. We choose the

𝑝𝑐 -value from the discrete set {0.1, 0.3, 0.5} and fix the step-size at

0.001, local batch size at 128, and worker number at 50, local update

rounds at 10, . As shown in Fig. 7, the convergence result with

different edge connectivity 𝑝𝑐 -values have similar performances in

the i.i.d case and non.i.i.d case.

8) Impact of the Local Updates:

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

200 250 3000.8

0.9 K=2
K=5
K=10
K=20
K=30

0 2000 4000
Sample complexity

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

4000 4500 5000
0.90
0.95

K=2
K=5
K=10
K=20
K=30

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

200 250 3000.8

0.9 K=2
K=5
K=10
K=20
K=30

0 2000 4000
Sample complexity

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

4000 4500 5000
0.90
0.95

K=2
K=5
K=10
K=20
K=30

(b) The non-i.i.d. case.

Figure 8: Test accuracy of CNN on MNIST with different lo-
cal update rounds.

In this section, we run additional experiments to examine the

impact of different numbers of local updates on the training perfor-

mance. We run NET-FLEET over the MNIST [14] dataset with the

CNN model. We fix the step-size at 0.001, edge connectivity 𝑝𝑐 at

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

Learning rate=0.0005
Learning rate=0.001
Learning rate=0.005
Learning rate=0.01

(a) The i.i.d. case.

0 500 1000
Communication rounds

0.25

0.50

0.75

1.00

Te
st

 a
cc

ur
ac

y

Learning rate=0.0005
Learning rate=0.001
Learning rate=0.005
Learning rate=0.01

(b) The non-i.i.d. case.

Figure 9: Test accuracy of CNN on MNIST with different lo-
cal step-size.

0.5, local batch size at 64, worker number at 50, and choose the num-

ber of local update rounds 𝐾 from the discrete set {2, 5, 10, 20, 30}.
It can be seen that the convergence results with different 𝐾-values

have similar performances in both i.i.d case and heterogeneous

non-i.i.d case. As shown in Fig. 8, the test accuracy increases as

𝐾 increases under both the i.i.d. and non-i.i.d. settings: fixed 300

communication rounds, NET-FLEET with 𝐾 = 2 have accuracy less

than 80%, while with 𝐾 = 10, 𝐾 = 20 and 𝐾 = 30, NET-FLEET

achieves more than 90% testing accuracy.

9) Impact of the Step-size: In this experiment, we choose the

step-size from the discrete set {0.0005, 0.001, 0.005, 0.01} and fix

worker number at 50, local update rounds at 10, edge connectivity

𝑝𝑐 at 0.5, and local batch size at 32, global batch size at 512. As

shown in Fig. 9, larger local step-sizes lead to faster convergence

rates in both i.i.d and non-i.i.d cases. NET-FLEET achieves accuracy

less than 75% with a step-size 0.0005, and obtains more than 95%

test accuracy with a step-size 0.01.

6 CONCLUSION
In this paper, we studied fully decentralized federated learning with

data heterogeneity. A novel federated learning algorithm named

NET-FLEET was proposed for fully decentralized network systems.

Our NET-FLEET algorithm allows the workers to keep the local

data and run multiple local update steps during the training, thus

maintaining local data privacy and reducing the communication

costs. We showed that with properly selected parameters, our algo-

rithm achieves the state-of-the-art linear speedup for convergence,

i.e., an 𝑂 (1/
√
𝑚𝐾𝑆) convergence rate, where𝑚 is the number of

workers, and 𝑆 and 𝐾 are the numbers of communication and local

update rounds, respectively. Extensive numerical studies verified

the theoretical performance results of our proposed algorithm.

REFERENCES
[1] Brisimi, T. S., Chen, R., Mela, T., Olshevsky, A., Paschalidis, I. C., and Shi, W.

Federated learning of predictive models from federated electronic health records.

International Journal of Medical Informatics 112 (2018), 59–67.
[2] Cao, X., Fang, M., Liu, J., and Gong, N. Z. Fltrust: Byzantine-robust federated

learning via trust bootstrapping. ISOC Network and Distributed System Security
Symposium (NDSS) (2021).

[3] Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. Optimal distributed

online prediction using mini-batches. The Journal of Machine Learning Research
13 (2012), 165–202.

[4] Fang, C., Li, C. J., Lin, Z., and Zhang, T. Spider: near-optimal non-convex

optimization via stochastic path integrated differential estimator. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems
(2018), pp. 687–697.

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[5] Gao, H., and Huang, H. Periodic stochastic gradient descent with momentum

for decentralized training. arXiv preprint arXiv:2008.10435 (2020).
[6] Ghadimi, S., and Lan, G. Stochastic first-and zeroth-order methods for non-

convex stochastic programming. SIAM Journal on Optimization 23, 4 (2013),

2341–2368.

[7] Haddadpour, F., andMahdavi, M. On the convergence of local descent methods

in federated learning. arXiv preprint arXiv:1910.14425 (2019).
[8] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[9] Johnson, R., and Zhang, T. Accelerating stochastic gradient descent using

predictive variance reduction. Advances in neural information processing systems
26 (2013), 315–323.

[10] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,

Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. Advances and

open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

[11] Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., and Guizani, M. Reliable

federated learning for mobile networks. IEEE Wireless Communications 27, 2
(2020), 72–80.

[12] Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T.

Scaffold: Stochastic controlled averaging for federated learning. In International
Conference on Machine Learning (2020), PMLR, pp. 5132–5143.

[13] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from

tiny images.

[14] LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database. Avail-
able: http://yann. lecun. com/exdb/mnist (1998).

[15] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Federated learning: Challenges,

methods, and future directions. IEEE Signal Processing Magazine 37, 3 (2020),

50–60.

[16] Li, X., Yang, W., Wang, S., and Zhang, Z. Communication efficient decentralized

training with multiple local updates. arXiv preprint arXiv:1910.09126 (2019).
[17] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. Can

decentralized algorithms outperform centralized algorithms? a case study for de-

centralized parallel stochastic gradient descent. InAdvances in Neural Information
Processing Systems (2017), vol. 30.

[18] Liang, X., Shen, S., Liu, J., Pan, Z., Chen, E., and Cheng, Y. Variance reduced

local SGD with lower communication complexity. arXiv preprint arXiv:1912.12844
(2019).

[19] Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t use large mini-batches,

use local sgd. arXiv preprint arXiv:1808.07217 (2018).

[20] Lu, S., Zhang, X., Sun, H., and Hong, M. Gnsd: A gradient-tracking based

nonconvex stochastic algorithm for decentralized optimization. In 2019 IEEE
Data Science Workshop (DSW) (2019), IEEE, pp. 315–321.

[21] Lu, S., Zhang, Y., and Wang, Y. Decentralized federated learning for electronic

health records. In 2020 54th Annual Conference on Information Sciences and
Systems (CISS) (2020), IEEE, pp. 1–5.

[22] McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A.

Communication-efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics (2017), PMLR, pp. 1273–1282.

[23] Nedic, A., and Ozdaglar, A. Distributed subgradient methods for multi-agent

optimization. IEEE Transactions on Automatic Control 54, 1 (2009), 48–61.
[24] Pu, S., and Nedić, A. Distributed stochastic gradient tracking methods. Mathe-

matical Programming (2020), 1–49.

[25] Qu, G., and Li, N. Harnessing smoothness to accelerate distributed optimization.

IEEE Transactions on Control of Network Systems 5, 3 (2017), 1245–1260.
[26] Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., and Smith, V. On

the convergence of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127 3 (2018).

[27] Stich, S. U. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767 (2018).

[28] Stich, S. U., and Karimireddy, S. P. The error-feedback framework: Better rates

for sgd with delayed gradients and compressed updates. Journal of Machine
Learning Research 21 (2020), 1–36.

[29] Wang, J., and Joshi, G. Cooperative sgd: A unified framework for the de-

sign and analysis of communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576 (2018).

[30] Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., and Chan,

K. Adaptive federated learning in resource constrained edge computing systems.

IEEE Journal on Selected Areas in Communications 37, 6 (2019), 1205–1221.
[31] Xin, R., Khan, U. A., and Kar, S. An improved convergence analysis for decentral-

ized online stochastic non-convex optimization. arXiv preprint arXiv:2008.04195
(2020).

[32] Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., and Wang, F. Federated

learning for healthcare informatics. Journal of Healthcare Informatics Research
(2020), 1–19.

[33] Yang, H., Fang, M., and Liu, J. Achieving linear speedup with partial worker

participation in non-i.i.d. federated learning. In International Conference on
Learning Representations (2021).

[34] Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept

and applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10, 2 (2019), 1–19.

[35] Yu, H., Jin, R., and Yang, S. On the linear speedup analysis of communication

efficient momentum sgd for distributed non-convex optimization. In International
Conference on Machine Learning (2019), PMLR, pp. 7184–7193.

[36] Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with faster convergence

and less communication: Demystifying why model averaging works for deep

learning. In Proceedings of the AAAI Conference on Artificial Intelligence (2019),
vol. 33, pp. 5693–5700.

[37] Yuan, K., Ling, Q., and Yin, W. On the convergence of decentralized gradient

descent. SIAM Journal on Optimization 26, 3 (2016), 1835–1854.
[38] Zeng, J., and Yin, W. On nonconvex decentralized gradient descent. IEEE

Transactions on Signal Processing 66, 11 (2018), 2834–2848.
[39] Zhang, X., Fang, M., Liu, Z., Yang, H., Liu, J., and Zhu, Z. Net-fleet: Achiev-

ing linear convergence speedup for fully decentralized federated learning with

heterogeneous data. https://kevinliu-osu.github.io/publications/FLEET_TR.pdf.

[40] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. Federated learning

with non-iid data. arXiv preprint arXiv:1806.00582 (2018).

A PROOF OF MAIN RESULTS
We define W̃ = W ⊗ I𝑚 , g(𝑖)

𝑠,𝑘
= ∇𝑓𝑖 (x(𝑖)

𝑠,𝑘
; 𝜻 (𝑖)
𝑠,𝑘

), ∇f (𝑖)
𝑠,𝑘

= ∇𝑓𝑖 (x(𝑖)
𝑠,𝑘

),
and a𝑠,𝑘 = [a(𝑖)⊤

𝑠,𝑘
, · · · , a(𝑖)⊤

𝑠,𝑘
]⊤ and ā𝑠,𝑘 = 1

𝑚

∑𝑚
𝑖=1

a(𝑖)
𝑠,𝑘
, for a ∈

{x, y, g,∇f}. Here ȳ𝑠,𝑘 = ḡ𝑠,𝑘 because of ȳ𝑠,0 = ḡ𝑠,0 . Also, we define
matrix Q ≜ I − (1

𝑚 11⊤) ⊗ I, so it holds that Qa𝑠,𝑘 = a𝑠,𝑘 − 1 ⊗ ā𝑠,𝑘 .

A.1 Proof of Theorem 1
Proof. By combining the results from Lemma 3 and Lemma 4,

we have

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0)] ≤−[
2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2]− [
2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]

− 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2]+ 𝐿
2[

𝑚
(1 + _(𝐾 − 1))

× E∥Qx𝑠,0∥2+ [3𝐿2𝐾2

𝑚(1 − _)

𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2 . (11)

Also, from Lemma 4, for some constant 𝐶1 (to be determined

later), it follows that

(∥Qx𝑠,𝐾 ∥2 +𝐶1[
2∥Qy𝑠,𝐾 ∥2) − (∥Qx𝑠,0∥2 +𝐶1[

2∥Qy𝑠,0∥2)

≤ − (1 − _ − 24𝐶1𝐿
2[2

1 − _)∥Qx𝑠,0∥2 − (1 − _)𝐶1[
2∥Qy𝑠,0∥2

+ [
2𝐾+12𝐶1𝐾𝐿

2[4

1−_

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2+ 12𝑚𝐶1𝐿
2𝐾2[4

1−_

×
𝐾−1∑
𝑘=0

∥ȳ𝑠,𝑘 ∥2+ 6𝑚𝐶1[
2𝜎2

1−_ . (12)

https://kevinliu-osu.github.io/publications/FLEET_TR.pdf

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Thus, combining (35) and (36), we have

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0)+
1

𝑚2𝐾
(∥Qx𝑠,𝐾 ∥2+𝐶1[

2∥Qx𝑠,𝐾 ∥2)

− 1

𝑚2𝐾
(∥Qx𝑠,0∥2+𝐶1[

2∥Qx𝑠,0∥2)]

≤− [
2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2]− [
2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]− 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

+ 6𝐶1[
2𝜎2

(1−_)𝑚𝐾 +(𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_)𝑚)
𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2]+ 3[2

(1−_)𝑚2

×
𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2−(1−_− 24𝐶1𝐿
2[2

1−_ −(1+_(𝐾 − 1))𝑚𝐾𝐿2[)

× 1

𝑚2𝐾
E[∥Qx𝑠,0∥2] − (1 − _)𝐶1[

2

𝑚2𝐾
E[∥Qy𝑠,0∥2], (13)

by setting [≤ min{1/𝑚𝐿2𝐾2, 1/
√

12𝐶1𝐿
2}.

From Lemma 4, with [≤
√

1−_
24𝐿2𝐾2

, it holds that

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 ≤ 2(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 12𝑚𝐾𝜎2

1 − _

+ 48𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2 + 24𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2 . (14)

By plugging (39) into (37), we have

E[𝑓 (x̄𝑠,𝐾)−𝑓 (x̄𝑠,0)+
1

𝑚𝐾
(∥Qx𝑠,𝐾 ∥2+𝐶1[

2∥Qx𝑠,𝐾 ∥2)− 1

𝑚𝐾
(∥Qx𝑠,0∥2

+𝐶1[
2∥Qx𝑠,0∥2)] ≤−[

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2]− 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

− [𝐶∇f
2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]− 𝐶x

𝑚2𝐾
E[∥Qx𝑠,0∥2]−

𝐶y𝐶1[
2

𝑚2𝐾
E[∥Qy𝑠,0∥2]

+(𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_)𝑚 + 72𝐿2𝐾2[4

(1 − _)2𝑚
)𝐾𝜎

2

𝑚
+ 36𝐾[2𝜎2

(1−_)2𝑚
+ 6𝐶1[

2𝜎2

(1−_)𝑚𝐾 .
(15)

where𝐶∇f ≜ 1−𝐿[− 24𝐶1𝐿
2𝐾[3

(1−_)𝑚 − 144𝐿2𝐾2[3

(1−_)2𝑚
,𝐶x ≜ 1−_− 24𝐶1𝐿

2[2

1−_ −

(1 + _(𝐾 − 1))𝑚𝐾𝐿2[− 144𝐿2[2𝐾2

(1−_)2
, 𝐶y ≜ 1 − _ − 6(1+_𝐾−_)𝐾

𝐶1 (1−_) .

By setting 𝐶1 =
6(1+_𝐾−_)𝐾

(1−_)2
, we have 𝐶y = 0. By letting [≤

min{
√

𝑚 (1−_)3

144(1+_𝐾−_)𝐿𝐾2
,

√
𝑚 (1−_)2

144𝐿𝐾2
, 1/3𝐿}, we have 𝐶∇f ≥ 0. Also,

letting [≤ min{ (1−_)
3(1+_𝐾−_)𝑚𝐾𝐿2

,
(1−_)3𝑚𝐾

144
,
(1−_)2 (1+_𝐾−_)𝑚

144𝐾
}, we

have 𝐶x ≥ 0.

With the above parameter setting and the proposed potential

function, we have

[

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2 + 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2] ≤ E[𝔓𝑠,0−𝔓𝑠,𝐾]

+ 3𝐿𝐾𝜎2[2

2𝑚
+ 36𝐾[2𝜎2

(1−_)2𝑚
+ 36(1 + _𝐾−_)[2𝜎2

(1−_)3𝑚
, (16)

by further setting [≤ min{
√

𝑚 (1−_)3

144(1+_𝐾−_)𝐿𝐾2
,

√
𝑚 (1−_)2

144𝐿𝐾2
}.

Telescoping (16) for 𝑠 from 0 to 𝑆 − 1 and multiplying the factor

2𝑆𝐾/[on both sides, we have

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2] ≤

2E[𝔓0,0−𝔓𝑆,0]
𝑆𝐾[

+ 3𝐿𝜎2[

𝑚
+ 72[𝜎2

(1−_)2𝑚
+ 72(1 + _𝐾 − _)[𝜎2

(1−_)3𝐾𝑚
(17)

This completes the proof of Theorem 1. □

A.2 Proof of Corollary 2
Proof. Recall from Theorem 1 that the condition on the step-

size is

[≤min{ 1

3𝐿
,

1

𝑚𝐿2𝐾2︸ ︷︷ ︸
≜𝑟1

,
(1 − _)√

12(1 + _𝐾 − _)𝐾𝐿2︸ ︷︷ ︸
≜𝑟2

,

√
1 − _

24𝐿2𝐾2︸ ︷︷ ︸
≜𝑟3

,

√
𝑚(1 − _)2

144𝐿𝐾2︸ ︷︷ ︸
≜𝑟5

,
(1 − _)

3(1 + _𝐾 − _)𝑚𝐾𝐿2︸ ︷︷ ︸
≜𝑟6

,

(1 − _)3𝑚𝐾

144︸ ︷︷ ︸
≜𝑟7

,
(1 − _)2 (1 + _𝐾 − _)𝑚

144𝐾︸ ︷︷ ︸
≜𝑟8

}. (18)

where (a) follows from plugging𝐶1 = 6(1+ _𝐾 − _)𝐾/(1− _)2
, and

(b) is due to 𝑟4 ≤ 𝑟5.
Setting 𝐾 =

4

√
𝑆𝐾/𝑚3

(i.e. 𝐾 = 𝑆1/3/𝑚), we have

𝑟1 =
1

𝑚𝐿2𝐾2
=

√
𝑚

𝐿2

√
𝑆𝐾

= 𝑂 (
√
𝑚

√
𝑆𝐾

),

𝑟2 =
(1−_)√

12(1+_𝐾−_)𝐾𝐿2

(𝑎)
≥ (1−_)

√
12𝐾𝐿

=
(1−_)𝑚3/4

√
12𝐿(𝑆𝐾)1/4

>𝑂 (
√
𝑚

√
𝑆𝐾

),

𝑟3 =

√
1 − _

24𝐿2𝐾2
=

√
1 − _
24𝐿2

𝑚3/4

(𝑆𝐾)1/4

> 𝑂 (
√
𝑚

√
𝑆𝐾

)

𝑟5 =

√
𝑚(1 − _)2

144𝐿𝐾2
=

√
(1 − _)2

144𝐿

𝑚7/4

(𝑆𝐾)1/4

> 𝑂 (
√
𝑚

√
𝑆𝐾

)

𝑟6 =
(1 − _)

3(1 + _𝐾 − _)𝑚𝐾𝐿2
≥ (1 − _)

3𝑚𝐾2𝐿2
=

(1 − _)
√
𝑚

3𝐿2

√
𝑆𝐾

= 𝑂 (
√
𝑚

√
𝑆𝐾

)

𝑟7 = 𝑂 ((𝑆𝐾𝑚)1/4)
(𝑏)
> 𝑂 (

√
𝑚

√
𝑆𝐾

)

𝑟8 =
(1 − _)2 (1 + _𝐾 − _)𝑚

144𝐾
≥ (1 − _)2_𝑚

144

= 𝑂 (𝑚) > 𝑂 (
√
𝑚

√
𝑆𝐾

),

where (a) follows from 𝐾 ≥ 1 + _𝐾 − _ and (b) follows from 𝑆𝐾 ≥
𝑚1/3

. Then we can set [= 𝑂 (
√
𝑚/

√
𝑆𝐾) and have the following

convergence bound:

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2]

≤𝑂
(

2E[𝔓0,0−𝔓𝑆,0]√
𝑆𝐾𝑚

+ 3𝐿𝜎2

√
𝑆𝐾𝑚

+ 72𝜎2

(1−_)2

√
𝑆𝐾𝑚

+ 72𝜎2

(1−_)3

√
𝑆𝐾𝑚

)
.

This completes the proof. □

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

B PROOF OF MAIN RESULTS
First, we give the gloal view of our algorithm with matrix-vector formulation in Algorithm 2.

For notational convenience, we define W̃ = W ⊗ I𝑚, g(𝑖)
𝑠,𝑘

= ∇𝑓𝑖 (x(𝑖)
𝑠,𝑘

; 𝜻 (𝑖)
𝑠,𝑘

),, ∇f (𝑖)
𝑠,𝑘

= ∇𝑓 (x(𝑖)
𝑠,𝑘

), and a𝑠,𝑘 = [a(𝑖)⊤
𝑠,𝑘

, · · · , a(𝑖)⊤
𝑠,𝑘

]⊤ and

ā𝑠,𝑘 = 1

𝑚

∑𝑚
𝑖=1

a(𝑖)
𝑠,𝑘
, for a ∈ {x, y, g,∇f}. Here ȳ𝑠,𝑘 = ḡ𝑠,𝑘 because of ȳ𝑠,0 = ḡ𝑠,0 .

Algorithm 2 Federated Network Learning with Gradient Tracking: Global View.

.

1: Set x0,0 = x0
and y0,0 = g0,0.

2: for 𝑠 = 0, · · · , 𝑆 − 1 do
3: x𝑠,1=W̃x𝑠,0 − [y𝑠,0
4: y𝑠,1=W̃y𝑠,0 + g𝑠,1 − g𝑠,0
5: for 𝑘 = 1, · · · , 𝐾 − 1 do
6: x𝑠,𝑘+1

=x𝑠,𝑘 − [y𝑠,𝑘
7: y𝑠,𝑘+1

=y𝑠,𝑘 + g𝑠,𝑘+1
− g𝑠,𝑘

8: end for
9: Set x𝑠+1,0 = x𝑠,𝐾 and y𝑠+1,0 = y𝑠,𝐾 .
10: end for

Lemma 3 (Descend Lemma). Under Assumption, by applying Algorithm, we have the following inequality for any 𝑠 :

E[𝑓 (x̄𝑠,𝐾) − 𝑓 (x̄𝑠,0)] ≤ − [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]

+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2] (19)

Proof. From the 𝐿-smoothness of 𝑓 and x̄𝑠,𝑘+1
= x̄𝑠,𝑘 − [ȳ𝑠,𝑘 = x̄𝑘 − [ḡ𝑠,𝑘 , we have

𝑓 (x̄𝑠,𝑘+1
) ≤ 𝑓 (x̄𝑠,𝑘) − ⟨∇𝑓 (x̄𝑠,𝑘), x̄𝑠,𝑘+1

− x̄𝑠,𝑘 ⟩ +
𝐿

2

∥x̄𝑠,𝑘+1
− x̄𝑠,𝑘 ∥2

= 𝑓 (x̄𝑠,𝑘) − [⟨∇𝑓 (x̄𝑠,𝑘), ȳ𝑠,𝑘 ⟩ +
𝐿[2

2

∥ȳ𝑠,𝑘 ∥2

= 𝑓 (x̄𝑠,𝑘) − [⟨∇𝑓 (x̄𝑠,𝑘), ḡ𝑠,𝑘 ⟩ +
𝐿[2

2

∥ḡ𝑠,𝑘 ∥2
(20)

Due to E[g(𝑖)
𝑠,𝑘

|F𝑠,𝑘] = ∇𝑓 (𝑖)
𝑠,𝑘

, we have

E[𝑓 (x̄𝑠,𝑘+1
) |F𝑠,𝑘] ≤ 𝑓 (x̄𝑠,𝑘) − [E[⟨∇𝑓 (x̄𝑠,𝑘), ḡ𝑠,𝑘 ⟩|F𝑠,𝑘] +

𝐿[2

2

E[∥ḡ𝑠,𝑘 ∥2 |F𝑠,𝑘]

≤ 𝑓 (x̄𝑠,𝑘) − [⟨∇𝑓 (x̄𝑠,𝑘),∇f𝑠,𝑘 ⟩ +
𝐿[2

2

E[∥ḡ𝑠,𝑘 ∥2 |F𝑠,𝑘]

= 𝑓 (x̄𝑠,𝑘) −
[

2

∥∇𝑓 (x̄𝑠,𝑘)∥2 − [

2

∥∇f𝑠,𝑘 ∥2 + [
2

∥∇𝑓 (x̄𝑠,𝑘) − ∇f𝑠,𝑘 ∥2 + 𝐿[
2

2

E[∥ḡ𝑠,𝑘 ∥2 |F𝑠,𝑘]

≤ 𝑓 (x̄𝑠,𝑘) −
[

2

∥∇𝑓 (x̄𝑠,𝑘)∥2 − [

2

∥∇f𝑠,𝑘 ∥2 + 𝐿
2[

2𝑚
∥Qx𝑠,𝑘 ∥2 + 𝐿[

2

2

E[∥ḡ𝑠,𝑘 ∥2 |F𝑠,𝑘] (21)

Taking the full expectation on the above inequality and telescoping from 𝑘 = 0 to 𝐾 − 1 yields:

E[𝑓 (x̄𝑠,𝐾) − 𝑓 (x̄𝑠,0)] ≤ − [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]

+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 𝐿
2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2] (22)

□

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Lemma 4 (Iterates Contraction). Under Assumption, we have the following contraction property of the iterates from Algorithm:

∥Qx𝑠,𝑘 ∥2 ≤_∥Qx𝑠,0∥2 + [2𝑘

1 − _

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2, (23)

∥Qy𝑠,𝑘 ∥2 ≤_∥Qy𝑠,0∥2 + 6𝑚𝜎2

1 − _ + 24𝐿2

1 − _ ∥Qx𝑠,0∥2

+ 12𝑘[2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2 + 12𝑚𝑘[2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2 . (24)

Furthermore, it holds that

𝐾−1∑
𝑘=0

∥Qx𝑠,𝑘 ∥2 ≤(1 + _(𝐾 − 1))∥Qx𝑠,0∥2 + [
2𝐾2

1 − _

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2, (25)

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 ≤(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 6𝑚𝐾𝜎2

1 − _ + 24𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2

+ 12[2𝐾2𝐿2

1 − _

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 + 12𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2 . (26)

Proof. First, for vector x𝑡 , we have the following contraction:

∥W̃x𝑡 − 1 ⊗ x̄𝑡 ∥2 = ∥W̃(x𝑡 − 1 ⊗ x̄𝑡)∥2 ≤ _2∥x𝑡 − 1 ⊗ x̄𝑡 ∥2, (27)

This is because x𝑡 −1⊗ x̄𝑡 is orthogonal to 1, which is the eigenvector corresponding to the largest eigenvalue of W̃, and _ = max{|_2 |, |_𝑚 |}.
Note that x𝑠,𝑘 = W̃x𝑠,0 − [

∑𝑘−1

𝑡=0
y𝑠,𝑡 and x̄𝑠,𝑘 = x̄𝑠,0 − [

∑𝑘−1

𝑡=0
ȳ𝑠,𝑡 . Thus, we have

∥Qx𝑠,𝑘 ∥2 = ∥x𝑠,𝑘 − 1 ⊗ x̄𝑠,𝑘 ∥2 = ∥W̃x𝑠,0 − [
𝑘−1∑
𝑡=0

y𝑠,𝑡 − 1 ⊗ (x̄𝑠,0 − [
𝑘−1∑
𝑡=0

ȳ𝑠,𝑡)∥2

≤ (1 + 𝑐1)∥W̃x𝑠,0 − 1 ⊗ x̄𝑠,0∥2 + (1 + 1

𝑐1

)[2∥
𝑘−1∑
𝑡=0

y𝑠,𝑡 − 1 ⊗ ȳ𝑠,𝑡 ∥2

≤ _∥x𝑠,0 − 1 ⊗ x̄𝑠,0∥2 + [2

1 − _ ∥
𝑘−1∑
𝑡=0

y𝑠,𝑡 − 1 ⊗ ȳ𝑠,𝑡 ∥2

≤ _∥Qx𝑠,0∥2 + [2𝑘

1 − _

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2 . (28)

For y𝑠,𝑘 , because y𝑠,𝑘 =y𝑠,𝑘−1
+g𝑠,𝑘−g𝑠,𝑘−1

=W̃y𝑠,0+g𝑠,𝑘−g𝑠,0 and ȳ𝑠,𝑘 = ȳ𝑠,0+ḡ𝑠,𝑘−ḡ𝑠,0, thus it holds that

∥Qy𝑠,𝑘 ∥2 = ∥y𝑠,𝑘 − 1 ⊗ ȳ𝑠,𝑘 ∥2 = ∥W̃y𝑠,0 + g𝑠,𝑘 − g𝑠,0 − 1 ⊗ (ȳ𝑠,0 + ḡ𝑠,𝑘 − ḡ𝑠,0)∥2

≤ (1 + 𝑐1)∥W̃y𝑠,0 − 1 ⊗ ȳ𝑠,0∥2 + (1 + 1

𝑐1

)∥g𝑠,𝑘 − g𝑠,0 − 1 ⊗ (ḡ𝑠,𝑘 − ḡ𝑠,0)∥2

≤ _∥y𝑠,0 − 1 ⊗ ȳ𝑠,0∥2 + 1

1 − _ ∥(I −
1

𝑛
11⊤) (g𝑠,𝑘 − g𝑠,0)∥2

≤ _∥Qy𝑠,0∥2 + 1

1 − _ ∥g𝑠,𝑘 − g𝑠,0∥2

≤ _∥Qy𝑠,0∥2 + 3

1 − _ (∥g𝑠,𝑘 − ∇f𝑠,𝑘 ∥2 + ∥∇f𝑠,𝑘 − ∇f𝑠,0∥2 + ∥g𝑠,0 − ∇f𝑠,0∥2)

≤ _∥Qy𝑠,0∥2 + 3

1 − _ (2𝑚𝜎
2 + 𝐿2∥x𝑠,𝑘 − x𝑠,0∥2) (29)

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Note that for the term ∥x𝑠,𝑘 − x𝑠,0∥2
, it can be bounded as

∥x𝑠,𝑘 − x𝑠,0∥2 = ∥W̃x𝑠,0 − [
𝑘−1∑
𝑡=0

y𝑠,𝑡 − x𝑠,0∥2

=∥(W̃ − I)x𝑠,0 − [
𝑘−1∑
𝑡=0

y𝑠,𝑡 ∥2 ≤ 2∥(W̃ − I)x𝑠,0∥2 + 2[2∥
𝑘−1∑
𝑡=0

y𝑠,𝑡 ∥2

=2∥(W̃ − I) (x𝑠,0 − 1 ⊗ x̄𝑠,0)∥2 + 2[2∥
𝑘−1∑
𝑡=0

y𝑠,𝑡 ∥2

≤2∥(W̃ − I) (x𝑠,0 − 1 ⊗ x̄𝑠,0)∥2 + 2[2𝑘

𝑘−1∑
𝑡=0

∥y𝑠,𝑡 ∥2

≤8∥x𝑠,0 − 1 ⊗ x̄𝑠,0∥2 + 2[2𝑘

𝑘−1∑
𝑡=0

∥y𝑠,𝑡 ∥2

(𝑎)
≤ 8∥x𝑠,0 − 1 ⊗ x̄𝑠,0∥2 + 2[2𝑘

𝑘−1∑
𝑡=0

(2∥y𝑠,𝑡 − 1 ⊗ ȳ𝑠,𝑡 ∥2 + 2∥1 ⊗ ȳ𝑠,𝑡 ∥2)

≤8∥Qx𝑠,0∥2 + 4[2𝑘

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2 + 4[2𝑚𝑘

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2
(30)

where (a) is due to ∥W̃ − I∥ ≤ 2.

Thus, by plugging (30) into (29), we have

∥Qy𝑠,𝑘 ∥2 ≤_∥Qy𝑠,0∥2 + 6𝑚𝜎2

1 − _ + 24𝐿2

1 − _ ∥Qx𝑠,0∥2

+ 12𝑘[2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2 + 12𝑚𝑘[2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2
(31)

Furthermore, by telescoping (28) from 𝑘 = 0 to 𝐾 − 1, we have

𝐾−1∑
𝑘=0

∥Qx𝑠,𝑘 ∥2 ≤ (1 + _(𝐾 − 1))∥Qx𝑠,0∥2 + [2𝐾

1 − _

𝐾−1∑
𝑘=0

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2

≤ (1 + _(𝐾 − 1))∥Qx𝑠,0∥2 + [
2𝐾2

1 − _

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 . (32)

Similarly, it holds that

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 ≤(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 6𝑚𝐾𝜎2

1 − _ + 24𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2

+ 12[2𝐿2

1 − _

𝐾−1∑
𝑘=0

𝑘

𝑘−1∑
𝑡=0

∥Qy𝑠,𝑡 ∥2 + 12𝑚[2𝐿2

1 − _

𝐾−1∑
𝑘=0

𝑘

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2

≤(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 6𝑚𝐾𝜎2

1 − _ + 24𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2

+ 12[2𝐾2𝐿2

1 − _

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 + 12𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2
(33)

□

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Proof. From Lemma 3, we have

E[𝑓 (x̄𝑠,𝐾) − 𝑓 (x̄𝑠,0)] ≤ − [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 𝐿
2[

𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2] . (34)

Plugging (25) from Lemma 4, we have

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0)] ≤−[
2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 𝐿
2[

𝑚
(1 + _(𝐾 − 1))E∥Qx𝑠,0∥2 + [3𝐿2𝐾2

𝑚(1 − _)

𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2 . (35)

Also, from Lemma 4, for some constant 𝐶1, it holds that

(∥Qx𝑠,𝐾 ∥2 +𝐶1[
2∥Qx𝑠,𝐾 ∥2) − (∥Qx𝑠,0∥2 +𝐶1[

2∥Qx𝑠,0∥2)

≤ − (1 − _ − 24𝐶1𝐿
2[2

1 − _)∥Qx𝑠,0∥2 − (1 − _)𝐶1[
2∥Qy𝑠,0∥2

+ [
2𝐾+12𝐶1𝐾𝐿

2[4

1−_

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2+ 12𝑚𝐶1𝐿
2𝐾2[4

1−_

𝐾−1∑
𝑘=0

∥ȳ𝑠,𝑘 ∥2+ 6𝑚𝐶1[
2𝜎2

1−_ (36)

Thus, combining (35) and (36), we have

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0)+
1

𝑚𝐾
(∥Qx𝑠,𝐾 ∥2+𝐶1[

2∥Qx𝑠,𝐾 ∥2)− 1

𝑚𝐾
(∥Qx𝑠,0∥2+𝐶1[

2∥Qx𝑠,0∥2)]

≤− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

+ 𝐿[
2

2

𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 𝐿
2[

𝑚
(1 + _(𝐾 − 1))E∥Qx𝑠,0∥2 + [3𝐿2𝐾2

𝑚(1 − _)

𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2

− (1 − _ − 24𝐶1𝐿
2[2

1 − _) 1

𝑚𝐾
∥Qx𝑠,0∥2 − (1 − _)𝐶1[

2

𝑚𝐾
∥Qy𝑠,0∥2

+ [
2+12𝐶1𝐿

2[4

(1−_)𝑚

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2+ 12𝐶1𝐿
2𝐾[4

(1−_)

𝐾−1∑
𝑘=0

∥ȳ𝑠,𝑘 ∥2+ 6𝐶1[
2𝜎2

(1−_)𝐾

=− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]+ 6𝐶1[
2𝜎2

(1−_)𝐾

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_))
𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + ([
3𝐿2𝐾2

𝑚(1 − _) +
[2+12𝐶1𝐿

2[4

(1−_)𝑚)
𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2

− (1 − _ − 24𝐶1𝐿
2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[) 1

𝑚𝐾
E[∥Qx𝑠,0∥2] − (1 − _)𝐶1[

2

𝑚𝐾
E[∥Qy𝑠,0∥2]

≤− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]+ 6𝐶1[
2𝜎2

(1−_)𝐾

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_))
𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 3[2

(1−_)𝑚

𝐾−1∑
𝑘=0

E∥Qy𝑠,𝑘 ∥2

− (1 − _ − 24𝐶1𝐿
2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[) 1

𝑚𝐾
E[∥Qx𝑠,0∥2] − (1 − _)𝐶1[

2

𝑚𝐾
E[∥Qy𝑠,0∥2] (37)

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

From(26) in Lemma 4, we have

(1 − 12[2𝐾2𝐿2

1 − _)
𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 ≤(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 6𝑚𝐾𝜎2

1 − _

+ 24𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2 + 12𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2, (38)

which implies that

𝐾−1∑
𝑘=0

∥Qy𝑠,𝑘 ∥2 ≤2(1 + _(𝐾 − 1))∥Qy𝑠,0∥2 + 12𝑚𝐾𝜎2

1 − _

+ 48𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2 + 24𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2 . (39)

By plugging (39) into (37), we have

E[𝑓 (x̄𝑠,𝐾)− 𝑓 (x̄𝑠,0) +
1

𝑚𝐾
(∥Qx𝑠,𝐾 ∥2 +𝐶1[

2∥Qx𝑠,𝐾 ∥2) − 1

𝑚𝐾
(∥Qx𝑠,0∥2 +𝐶1[

2∥Qx𝑠,0∥2)]

≤− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]+ 6𝐶1[
2𝜎2

(1−_)𝐾

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_))
𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 3[2

(1−_)𝑚

(
2(1 + _(𝐾 − 1))∥Qy𝑠,0∥2

+ 12𝑚𝐾𝜎2

1 − _ + 48𝐾𝐿2

1 − _ ∥Qx𝑠,0∥2 + 24𝑚[2𝐾2𝐿2

1 − _

𝑘−1∑
𝑡=0

∥ȳ𝑠,𝑡 ∥2

)
− (1 − _ − 24𝐶1𝐿

2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[) 1

𝑚𝐾
E[∥Qx𝑠,0∥2] − (1 − _)𝐶1[

2

𝑚𝐾
E[∥Qy𝑠,0∥2]

=− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − [

2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_) + 72𝐿2𝐾2[4

(1 − _)2
)
𝐾−1∑
𝑘=0

E[∥ḡ𝑠,𝑘 ∥2] + 36𝐾[2𝜎2

(1−_)2
+ 6𝐶1[

2𝜎2

(1−_)𝐾

− (1 − _ − 24𝐶1𝐿
2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[− 144𝐿2[2

(1 − _)2
) 1

𝑚𝐾
E[∥Qx𝑠,0∥2]

− (1 − _ − 6(1 + _𝐾 − _)
𝐶1 (1 − _)

)𝐶1[
2

𝑚𝐾
E[∥Qy𝑠,0∥2]

≤− [

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2] − 𝐿2[

2𝑚

𝐾−1∑
𝑘=0

E[∥Qx𝑠,𝑘 ∥2]

−
(
1 − 𝐿[− 24𝐶1𝐿

2𝐾[3

(1−_) − 144𝐿2𝐾2[3

(1 − _)2

) [
2

𝐾−1∑
𝑘=0

E[∥∇f𝑠,𝑘 ∥2]

− (1 − _ − 24𝐶1𝐿
2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[− 144𝐿2[2

(1 − _)2
) 1

𝑚𝐾
E[∥Qx𝑠,0∥2]

− (1 − _ − 6(1 + _𝐾 − _)
𝐶1 (1 − _)

)𝐶1[
2

𝑚𝐾
E[∥Qy𝑠,0∥2]

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_) + 72𝐿2𝐾2[4

(1 − _)2
)𝐾𝜎

2

𝑚
+ 36𝐾[2𝜎2

(1−_)2
+ 6𝐶1[

2𝜎2

(1−_)𝐾 (40)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhang et al.

Define the constants

𝐶∇f ≜ 1 − 𝐿[− 24𝐶1𝐿
2𝐾[3

(1−_) − 144𝐿2𝐾2[3

(1 − _)2
, (41)

𝐶x ≜ 1 − _ − 24𝐶1𝐿
2[2

1 − _ − (1 + _(𝐾 − 1))𝐾𝐿2[− 144𝐿2[2

(1 − _)2
, (42)

𝐶y ≜ 1 − _ − 6(1 + _𝐾 − _)
𝐶1 (1 − _)

. (43)

By setting 𝐶1 = 6(1 + _𝐾 − _)/(1 − _)2
, we have 𝐶y = 0. Then, the other constants are

𝐶∇f = 1 − 𝐿[− 144(1 + _𝐾 − _)𝐿2𝐾[3

(1−_)3
− 144𝐿2𝐾2[3

(1 − _)2
, (44)

𝐶x = 1 − _ − 144(1 + _𝐾 − _)𝐿2[2

(1 − _)3
− (1 + _(𝐾 − 1))𝐾𝐿2[− 144𝐿2[2

(1 − _)2
. (45)

By letting [≤ min{
√
(1 − _)3/144(1 + _𝐾 − _)𝐿𝐾,

√
(1 − _)2/144𝐿𝐾2, 1/3𝐿}, we have 𝐶∇f ≥ 1 − 3𝐿[≥ 0. Also, letting [≤ min{(1 −

_)/3(1 + _𝐾 − _)𝐿2𝐾, (1 − _)3𝐾/144, (1 − _)2 (1 + _𝐾 − _)𝐾/144}, we have 𝐶x ≥ 3(1 + _(𝐾 − 1))𝐾𝐿2[≥ 0.

With the above parameter setting and the potential function𝔓𝑠,𝑘 ≜ 𝑓 (x̄𝑠,𝑘) + 1

𝑚𝐾
(∥Qx𝑠,𝑘 ∥2 +𝐶1[

2∥Qx𝑠,𝑘 ∥2), we have

[

2

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2 + 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2]

≤E[𝔓𝑠,0 −𝔓𝑠,𝐾] + (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_) + 72𝐿2𝐾2[4

(1 − _)2
)𝐾𝜎

2

𝑚
+ 36𝐾[2𝜎2

(1−_)2
+ 6𝐶1[

2𝜎2

(1−_)𝐾 (46)

Telescope 𝑠 from 0 to 𝑆 − 1, we have

[

2

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2 + 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2]

≤E[𝔓0,0 −𝔓0,𝐾] + E[𝔓1,0 −𝔓1,𝐾] + · · · + E[𝔓𝑆−1,0 −𝔓𝑆−1,𝐾]

+ (𝐿[
2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_) + 72𝐿2𝐾2[4

(1 − _)2
) 𝑆𝐾𝜎

2

𝑚
+ 36𝑆𝐾[2𝜎2

(1−_)2
+ 6𝐶1[

2𝜎2𝑆

(1−_)𝐾

=E[𝔓0,0−𝔓𝑆,0]+(
𝐿[2

2

+ 12𝐶1𝐿
2𝐾[4

(1−_) + 72𝐿2𝐾2[4

(1 − _)2
) 𝑆𝐾𝜎

2

𝑚
+ 36𝑆𝐾[2𝜎2

(1−_)2
+ 6𝐶1[

2𝜎2𝑆

(1−_)𝐾 (47)

Multiplying the factor 2𝑆𝐾/[at both sides, we have

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2]

≤
2E[𝔓0,0−𝔓𝑆,0]

𝑆𝐾[
+(𝐿[

2

+ 72(1+_𝐾−_)𝐿2𝐾[3

(1−_)3
+ 72𝐿2𝐾2[3

(1−_)2
) 2𝜎2

𝑚
+ 72[𝜎2

(1−_)2
+ 72(1+_𝐾−_)[𝜎2

(1−_)3𝐾2

(𝑎)
≤

2E[𝔓0,0−𝔓𝑆,0]
𝑆𝐾[

+ (𝐿[
2

+ 72[2

(1−_)2
+ 72𝐿2𝐾2[3

(1−_)2
) 2𝜎2

𝑚
+ 72[𝜎2

(1−_)2
+ 72[𝜎2

(1−_)3𝐾
(48)

where (a) is by [≤ (1 − _)/3(1 + _𝐾 − _)𝐾𝐿2
and 1 + 𝐾_ − _ ≤ 𝐾 . □

Proof. Setting [= 𝑂 (
√
𝑆𝐾) and 𝐾 =

4
√
𝑆𝐾 (i.e. 𝐾 = 𝑆1/3

), we have

1

𝑆𝐾

𝑆−1∑
𝑠=0

𝐾−1∑
𝑘=0

E[∥∇𝑓 (x̄𝑠,𝑘)∥2+ 𝐿
2

𝑚
∥Qx𝑠,𝑘 ∥2]

≤𝑂
(

2E[𝔓0,0−𝔓𝑆,0]√
𝑆𝐾

+ (𝐿

2

√
𝑆𝐾

+ 72

(1−_)2𝑆𝐾
+ 72𝐿2

(1−_)2𝑆𝐾
) 2𝜎2

𝑚
+ 72𝜎2

(1−_)2

√
𝑆𝐾

+ 72𝜎2

(1−_)3 (𝑆𝐾)3/4

)
=𝑂

(
2E[𝔓0,0−𝔓𝑆,0]√

𝑆𝐾
+ (1

√
𝑆𝐾

+ 1

(1−_)2𝑆𝐾
) 𝜎

2

𝑚
+ 𝜎2

(1−_)2

√
𝑆𝐾

+ 𝜎2

(1−_)3 (𝑆𝐾)3/4

)
(49)

NET-FLEET: Decentralized Federated Learning with Heterogeneous Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

If we ignore the factor caused by the network topolgy and worker number, then the convergence rate is

𝑂

(
2E[𝔓0,0−𝔓𝑆,0]√

𝑆𝐾
+ 𝜎2

√
𝑆𝐾

)
, (50)

which matches the results for vanilla SGD.

Furthermore, we check the above paramter settings are valid. Recall that the condition on [is

[≤ min{

√
(1 − _)3

144(1 + _𝐾 − _)𝐿𝐾︸ ︷︷ ︸
𝑟1

,

√
(1 − _)2

144𝐿𝐾2︸ ︷︷ ︸
𝑟2

,
1

3𝐿
,

(1 − _)
3(1 + _𝐾 − _)𝐿2𝐾︸ ︷︷ ︸

𝑟3

,
(1 − _)3𝐾

144︸ ︷︷ ︸
𝑟4

,
(1 − _)2 (1 + _𝐾 − _)𝐾

144︸ ︷︷ ︸
𝑟5

}. (51)

Plugging 𝐾 =
4
√
𝑆𝐾 , we have 𝑟1 and 𝑟2 are the order of 𝑂 (1

𝐾
) = 𝑂 (1

4
√
𝑆𝐾

), which is larger than 𝑂 (1√
𝑆𝐾

); 𝑟3 is the order of 𝑂 (1

𝐾2
) = 𝑂 (1√

𝑆𝐾
);

𝑟4 and 𝑟5 are the order of Ω(1). Thus, [= 𝑂 (1√
𝑆𝐾

) and 𝐾 =
4
√
𝑆𝐾 are valid.

□

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement and Algorithm Design
	3.1 Decentralized Federated Learning
	3.2 The NET-FLEET Algorithm

	4 Theoretical Performance Analysis
	4.1 Proof Sketch of Theorem 1

	5 Experimental Evaluation
	6 Conclusion
	References
	A Proof of Main Results
	A.1 Proof of Theorem 1
	A.2 Proof of Corollary 2

	B Proof of main results

