
Distributed Cross-Layer Optimization in Wireless
Networks: A Second-Order Approach

Jia Liu∗ Cathy H. Xia† Ness B. Shroff∗ Hanif D. Sherali‡
∗ Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210

† Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH 43210
‡ Grado Department of Industrial Systems Engineering, Virginia Tech, Blacksburg, VA 24061

Abstract—Due to the rapidly growing scale and heterogeneity
of wireless networks, the design of distributed cross-layer op-
timization algorithms has received significant interest from the
networking research community. So far, the standard distributed
cross-layer approach in the literature is based on the first-order
Lagrangian dual decomposition and the subgradient method,
which suffers from a slow convergence rate. In this paper, we
make the first known attempt to develop a distributed Newton’s
method, which is second-order and enjoys a quadratic convergence
rate. However, due to the inherent interference in wireless
networks, the Hessian matrix of the cross-layer problem has
a non-separable structure. As a result, developing a distributed
second-order algorithm is far more difficult than its counterpart
for wireline networks. Our main contributions in this paper
are two-fold: i) For a special network setting where all links
mutually interfere, we derive closed-form expressions for the
Hessian inverse, which further yield a distributed Newton’s
method; ii) For general wireless networks where the interference
relationships are arbitrary, we propose a double matrix-splitting
scheme, which also leads to a distributed Newton’s method.
Collectively, these results create a new theoretical framework for
distributed cross-layer optimization in wireless networks. More
importantly, our work contributes to a potential second-order
paradigm shift in wireless networks optimization theory.

I. INTRODUCTION

The proliferation of mobile communication devices (e.g.,
smartphones, tablets, etc.) has been accompanied by a rapid
growth in scale and heterogeneity of wireless networks.
As a result, distributed cross-layer algorithms have received
significant interest from the wireless networking research
community in recent years. In the literature, the standard
approach for distributed optimization in wireless networks
is based on the Lagrangian dual decomposition framework
and the subgradient method (LD-SG), which is primarily due
to its elegant cross-layer implementations (see, e.g., [1] and
references therein). The LD-SG framework is also intimately
linked to the celebrated throughput-optimal “back-pressure”
algorithm [2], which has led to a large number of routing and
scheduling schemes for wireless networks (see, e.g., [3]–[6]).
However, despite its theoretical and engineering appeals, the
performance of LD-SG is not satisfactory in practice. Being a
first-order approach in nature (search directions are based on
the first-order supports of the dual function), the subgradient

This work has been supported in part by the Army Research Office MURI
Award W911NF-08-1-0238 and NSF grants CNS-1065136, CNS-1012700,
IIS-0916440, ECCS-1232118, and CMMI-0969169.

method suffers from a slow convergence rate and is sensitive to
step-size choices [7]. Due to these limitations, in this paper, we
consider designing a distributed Newton’s method for cross-
layer optimization in wireless networks. The fundamental phi-
losophy of this approach is that, being a second-order method,
a distributed Newton’s algorithm exploits both the gradient and
Hessian information in determining search directions. Hence,
an appropriately designed distributed Newton’s method would
also enjoy the powerful quadratic rate of convergence as in
classical Newton type methods [7], [8].

However, developing second-order distributed algorithms
for wireless networks is highly challenging and, to our knowl-
edge, results in this area remain elusive. Due to a very different
problem structure in wireless networks, techniques used for
developing distributed second-order algorithms in wireline
networks [9]–[11] cannot be directly applied (see Section II for
more detailed discussions). Generally speaking, in a distributed
second-order algorithm, computing the primal and dual search
directions typically requires decomposing the inverses of the
Hessian matrix and a weighted Laplacian matrix (weighted by
the Hessian inverse), and then distributing each piece to each
network entity (i.e., a node or a link). Unfortunately, unlike
wireline networks for which the Hessian is (block) diagonal
(see [11]), the Hessian’s structure is non-separable due to the
inherent interference in wireless networks. What is worse is
that, not only are both the Hessian and weighted Laplacian
inversions cumbersome in large-scale wireless networks, the
obtained inverses also have no sparsity structure in general.
Hence, distributed computations of the Hessian and weighted
Laplacian inversion problems in wireless networks are far
more difficult than their counterparts in wireline networks.

The key contribution of this paper is that we successfully
develop a series of new second-order techniques to overcome
all of the above difficulties in wireless networks. Hence,
our work can be viewed as the first building block towards
the development of an analytical foundation for cross-layer
design that provides second-order convergence speed. The
main technical contributions of this paper are as follows:
• We first consider a special network setting where every two

links mutually interfere and cannot transmit simultaneously
(e.g., CSMA networks, cellular uplink/downlink, etc.). In
this case, by exploiting the special “arrow-head” sparsity
structure in the Hessian (cf. Eq. (18)), we prove that the

inverse of the Hessian matrix is also an “arrow-head” matrix
and can be computed in closed-form, thus significantly re-
ducing the computational complexity. More importantly, the
derived closed-form expression of each entry in the Hessian
inverse naturally leads to a distributed implementation.

• We next consider general wireless networks where the inter-
ference relationships are arbitrary. In the general case, since
the Hessian inverse is non-sparse and deriving its closed-
form expressions is intractable, we propose to iteratively
compute the Hessian inverse and the weighted Laplacian
inverse by a new double matrix-splitting technique. This
double matrix-splitting scheme can be parameterized for
convergence speed tuning and, more importantly, imple-
mented in a distributed fashion.

• We offer interesting insights and networking interpretations
for our proposed distributed algorithms, as well as the con-
nections with and differences from first-order approaches.
This further advances our understanding of second-order
approaches in wireless network optimization theory.
To the best of our knowledge, this paper is the first work

that develops a distributed second-order method for cross-layer
optimization in wireless networks. Collectively, our results
serve as an important first step in providing a cross-layer
solution for wireless networks using second-order techniques.
The remainder of this paper is organized as follows. In
Section II, we review related work in the literature, putting
our work in a comparative perspective. Section III introduces
the network model and problem formulation. Section IV
develops the principal components of our distributed Newton’s
method. Section V presents some relevant numerical results,
and Section VI concludes this paper.

II. RELATED WORK

Since distributed second-order methods for wireless net-
works have not been investigated in the literature, the works
being surveyed herein are for wireline networks only. Histor-
ically, second-order methods for network optimization (both
centralized and distributed) date back to the 1980s, includ-
ing, e.g., a centralized projected Newton’s method for multi-
commodity flow problems [12] and a distributed conjugate
gradient direction method for solving pure minimum cost
flow routing problems [13]. These early attempts all employed
gradient projections to identify feasible search directions. In
contrast, most of the recent works in this area [9]–[11], [14]–
[16] are based on the interior-point approach [17] due to its
superior efficiency in both theory and practice. One of the first
applications of an interior-point based second-order method
was developed for the pure flow control problem (with fixed
routing) [14], where Zymnis et al. proposed a centralized
truncated-Newton’s primal-dual algorithm. Bickson et al. [15],
[16] also studied the same problem and designed a distributed
algorithm based on the Gaussian belief propagation technique
to avoid direct Hessian inversion [18]. Alternatively, Wei et al.
[10] approached the same distributed flow control problem and
computed the Hessian inverse based on an iterative matrix-
splitting scheme. A distributed Newton’s method was also

developed for the pure minimum cost routing problem (with
fixed source rates) by Jadbabaie et al. in [9], where they pro-
posed a consensus-based local averaging scheme to iteratively
compute the Hessian inverse and established its convergence
using spectral graph theory [19]. Finally, in our previous work
[11], we showed that, through a suitable reformulation that
exposes a block diagonal structure in the Hessian matrix, a
distributed Newton’s method can be developed for the more
complex joint multi-path routing and flow control problem
by generalizing the matrix-splitting idea in [11]. However,
we point out that none of the aforementioned techniques can
be directly applied to wireless networks due to a completely
different Hessian matrix structure (cf. Eq. (18)), and our
development of the distributed Newton’s method for wireless
networks cross-layer optimization is completely new.

III. NETWORK MODEL AND PROBLEM FORMULATION

We first introduce our notation used in this paper. We use
boldface to denote matrices and vectors. For a matrix A, AT

denotes the transpose of A. Diag {A1, . . . ,AN} represents
the block diagonal matrix with matrices A1, . . . ,AN on its
main diagonal. Also, diag {A} represents the vector contain-
ing the main diagonal entries of A. We let (A)ij represent
the entry in the i-th row and j-th column of matrix A and let
(v)m represent the m-th entry of vector v. We let IK denote
the K-dimensional identity matrix, and let 1K and 0K denote
the K-dimensional vectors whose elements are all ones and
zeros. We let e(k)K denote the k-th vector in the natural basis
of RK (i.e., the k-th entry is “1” and other entries are “0”).

Network layer model. In this paper, a wireless network
is represented by a directed graph, denoted by G = {N ,L},
where N and L are the sets of nodes and links, respectively.
We assume that G is connected. The cardinalities of the sets
N and L are |N | = N and |L| = L, respectively. We use
the so-called node-arc incidence matrix (NAIM) [20] A ∈
RN×L to represent the network topology of G. Let Tx(l) and
Rx(l) denote the transmitting and receiving nodes of link l,
respectively. The entries of A are thus defined as follows:

(A)nl =

1, if n = Tx(l),

−1, if n = Rx(l),

0, otherwise.
(1)

In the network, different source nodes send independent data to
their intended destination nodes, potentially through multi-path
and multi-hop routing. Suppose that there are F sessions in
the network, representing F different commodities. We denote
the source and destination nodes of session f , 1 ≤ f ≤ F ,
as Src(f) and Dst(f), respectively. The source flow rate of
session f is denoted by a scalar sf ∈ R+. For session
f , we use a source–destination vector vector bf ∈ RN to
represent the supply–demand relationship of session f . More
specifically, the entries in bf are defined as follows:

(bf)n =

1, if n = Src(f),

−1, if n = Dst(f),

0, otherwise.
(2)

For every link l, we let x(f)
l ≥ 0 represent the flow amount

of session f on link l. We assume that the network is a flow-
balanced system, i.e., the following flow-balanced constraints
hold at each node:∑

l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l = sf , if n = Src(f),

∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l = 0, if n ̸= Src(f),Dst(f),

∑
l∈O(n)

x
(f)
l −

∑
l∈I(n)

x
(f)
l = −sf , if n = Dst(f),

where O (n) and I (n) represent the sets of outgoing and
incoming links at node n, respectively. We let x(f) ,
[x

(f)
1 , . . . , x

(f)
L]T ∈ RL

+ denote the routing vector for session
f across all links. Using the notation A, bf , and x(f), the
above flow-balanced constraints can be compactly written as:

Ax(f) − sfbf = 0, ∀f = 1, 2, . . . , F. (3)

Note that in (3), A is not of full row rank (because all columns
sum up to zero). To eliminate the redundant rows in A, we let
A(f) ∈ R(N−1)×L be obtained by deleting from A the row
corresponding to the node Dst(f). It is easy to verify that
A(f) is of full row rank [20]. Also, we let b̃(f) ∈ RN−1 be
obtained by deleting from bf the entry corresponding to the
node Dst(f). Accordingly, we rewrite (3) as:

A(f)x(f) − sf b̃
(f) = 0, ∀f = 1, 2, . . . , F. (4)

Link layer model. In this paper, we adopt the follow-
ing collision-based interference model at the link layer: In
a given time instant, due to the shared nature of wireless
media, only a subset of links can be activated simultaneously
without interfering with each other. To model this, we let
C , {c(1), . . . , c(I)} denote the set of all possible interference-
free link rate vectors, where c(i) , [C

(i)
1 , . . . , C

(i)
L]T ∈ RL

+.
In c(i), if C

(i)
l1

> 0 and C
(i)
l2

> 0 for some l1, l2 ∈ L,
then it implies that links l1 and l2 do not interfere with each
other and are both activated. Under this model, selecting a
link rate vector from C in each time instant is equivalent to
activating a subset of interference-free links. For simplicity,
in this paper, we do not consider channel variations (i.e.,
C

(i)
l is time-varying due to fading and/or mobility of the

nodes) when selecting the subset of interference-free links.
Such “opportunism” of exploiting channel state information
(CSI) will be left for our future study.

Now, we let Λ , Co(C) ⊂ RL
+ denote the link capacity

region under the interference-free restriction, where Co(·) rep-
resents the convex-hull operation. Then, a necessary condition
for the network to be stable is that the flow routing vectors
satisfy

∑F
f=1 x

(f) ∈ Λ. Further, it is well-known that the
convex-hull operation in Λ can be achieved through a standard
time-sharing argument [1], [2]. Thus, we let ti represent the
fraction of time during which link rate vector c(i) is selected,
where ti satisfies 0 ≤ ti ≤ 1 and

∑I
i=1 ti = 1. With

time-sharing, the capacity of link l under the interference-free

restriction can be computed as Cl =
∑I

i=1 tiC
(i)
l . Then, the

aforementioned stability condition can be written explicitly as:

F∑
f=1

x
(f)
l ≤

I∑
i=1

tiC
(i)
l , ∀l = 1, . . . , L, (5)

where ti, ∀i, are decision variables. We remark that (5) is a
necessary condition on the feasibility of average flow rates, and
can be viewed as a relaxation of the instantaneous link capacity
constraint where time-sharing is not allowed (i.e., replacing ti
by φτ

i ∈{0, 1} in each time instant τ , where φτ
i =1 if c(i) is

selected in τ or 0 otherwise). Hence, the solutions obtained
via (5) may be infeasible under the instantaneous link capacity
constraint. But to enable the development of second-order
methods while drawing useful insights for future scheduling
schemes design, we choose to work with the constraints in (5)
in this paper. We note, however, that the solution obtained via
(5) is indeed achievable under time-sharing.

Problem formulation. We associate a utility function
Uf (sf) : R+ → R with each session f . The overall network
utility is given by

∑F
f=1 Uf (sf). We also assume that the

utility functions Uf are strictly concave, monotonically in-
creasing, twice continuously differentiable, and reversely self-
concordant (see [8] for the definition of self-concordance). Our
objective is to maximize the overall network utility. Putting
together the models described earlier, we can formulate the
cross-layer optimization (CLO) problem as follows:

CLO:

Maximize
F∑

f=1

Uf (sf)

subject to A(f)x(f) − sf b̃
(f) = 0, ∀f = 1, . . . , F,

F∑
f=1

x
(f)
l ≤

I∑
i=1

tiC
(i)
l , ∀l = 1, . . . , L,

I∑
i=1

ti = 1,

x
(f)
l ≥ 0, ∀f, l; sf ≥ 0, ∀f ; ti ≥ 0, ∀i.

Note that Problem CLO is a convex program and can be
solved in the Lagrangian dual domain with a zero duality gap
[7], [8]. Moreover, due to the separable structure of the dual
function, Problem CLO can be solved distributedly by the dual
decomposition and subgradient optimization (LD-SG) frame-
work (see [1] or [21, Appendix A] for an overview). However,
as mentioned earlier, the convergence performance of LD-SG
is unsatisfactory. In what follows, we will investigate a new
distributed second-order method to solve Problem CLO.

IV. A DISTRIBUTED NEWTON’S METHOD

In this section, we first reformulate Problem CLO to fa-
cilitate the second-order design of our distributed Newton’s
method in Section IV-A. Then, we investigate its Hessian
matrix structure in Section IV-B. The distributed computations

of the primal Newton directions and the dual variables are
presented in Sections IV-C and IV-D, respectively.

A. Problem Reformulation and Interior-Point Based Dis-
tributed Newton’s Method

We start by reformulating Problem CLO using the interior-
point framework. Following the standard interior-point ap-
proach [17], we apply a logarithmic barrier function to all
inequality constraints and then accommodate them in the ob-
jective function. As a result, the augmented objective function
(to be minimized) can be written as follows:

fµ(y) = −µ

F∑
f=1

Uf (sf)−
L∑

l=1

log

(I∑
i=1

tiC
(i)
l −

F∑
f=1

x
(f)
l

)

−
F∑

f=1

log(sf)−
L∑

l=1

F∑
f=1

log(x
(f)
l)−

I∑
i=1

log(ti), (6)

where y ,
[
s1 · · · sF

∣∣x(1)
1 · · ·x(F)

1

∣∣ · · · ∣∣x(1)
L · · ·x(F)

L

∣∣t1 · · · tI]T
groups all variables. In (6), µ > 0 is a parameter that is
used to track the central path in the interior-point method as
µ → ∞ [8]. Moreover, we let

M,
[

B A1 · · · AL

1T
I

]
∈ R[(N−1)F+1]×[(L+1)F+I],

where B and Al are defined as B , Diag{b̃(1), . . . , b̃(F)},
and Al , Diag{−a

(1)
l , . . . ,−a

(F)
l }, and where in the defini-

tion of Al, the vector a
(f)
l is the l-th column in the matrix

A(f) in Problem CLO (i.e., A(f) =
[
a
(f)
1 ,a

(f)
2 , . . . ,a

(f)
L

]
).

Then, we can reformulate Problem CLO as follows:

R-CLO: Minimize fµ(y)

subject to My = e
(n̄)
n̄ ,

(7)

where n̄ = (N − 1)F + 1. In fµ(y), note that as µ → ∞,
the original objective function of Problem CLO dominates
the barrier functions, and hence the solution of Problem R-
CLO approaches that of Problem CLO asymptotically. Further,
since µ can be increased exponentially (e.g., letting µk = 2k),
it suffices to focus on a second-order solution to the fµ(y)
problem in order to achieve a second-order convergence speed.

Now, we solve fµ(y) by applying the (centralized) New-
ton’s method, which is a second-order algorithm. Starting from
an initial feasible solution y0, the centralized Newton’s method
iteratively searches for an optimal solution as follows:

yk+1 = yk + πk∆yk, (8)

where πk > 0 is a positive step-size. In (8), ∆yk denotes the
primal Newton direction, which is the solution to the following
linear equation system obtained by deriving the Karush-Kuhn-
Tucker (KKT) system of the second-order approximation of
fµ(y) [7], [8]:[

Hk MT

M 0

][
∆yk

wk

]
= −

[
∇fµ(y

k)
0

]
, (9)

where Hk , ∇2fµ(y
k) ∈ R(L+1)F×(L+1)F is the Hessian

matrix of fµ(y) at yk, and the vector wk ∈ R(N−1)F+1

contains the dual variables for the constraint My = e
(n̄)
n̄ at

the k-th iteration. Here, the entries in wk are arranged as
[(w

(1)
k)T , . . . , (w

(F)
k)T , wk]

T , where wk is the dual variable
associated with the time-sharing constraint

∑I
i=1 ti = 1, and

w
(f)
k is in the form of

w
(f)
k ,

[
w

(f)
1 , . . . , w

(f)
Dst(f)−1, w

(f)
Dst(f)+1, . . . , w

(f)
N

]T
. (10)

Note that in (10), we have dropped the iteration index k within
[·] for notational simplicity. For the same reason, in the rest of
the paper, the iteration index k will be dropped whenever such
an omission does not cause confusion. Also, we let w(f)

Dst(f) ≡
0, for all f . It can be readily verified that the coefficient matrix
of the linear equation in (9) is nonsingular. Therefore, the
primal Newton direction ∆yk and the dual variables wk can be
uniquely determined by solving (9). However, solving for ∆yk

and wk simultaneously via (9) requires global information and
is difficult to be decentralized.

The first key step towards designing a distributed Newton’s
method is to solve (9) in an alternative fashion as follows:

∆yk = −H−1
k (∇fµ(y

k) +MTwk), (11)

wk = (MH−1
k MT)−1(−MH−1

k ∇fµ(y
k)). (12)

Hence, given yk, we can first compute wk from (12). With wk,
we can solve for ∆yk from (11). Then, ∆yk can be used in (8)
(along with an appropriate step-size πk) to determine the next
primal feasible solution yk+1. However, as we shall see later,
computing H−1

k and (MH−1
k MT)−1 (which is the Laplacian

matrix [19] weighted by H−1
k) remains difficult due to the non-

separable structure of Hk and requires global information.
This is in stark contrast to those optimization problems for
wireline networks [9]–[11], where the Hessian matrices are
(block) diagonal and their distributed inversion computations
are much easier.

B. The Structure of the Hessian Matrix

To see the coupled and non-separable structure of Hk, we
evaluate the first and second partial derivatives of fµ(y), for
which the non-zero ones are:
∂fµ
∂sf

= −µU ′
f (sf)−

1

sf
,

∂2fµ
∂s2f

= −µU ′′
f (sf) +

1

s2f
,

∂fµ

∂x
(f)
l

=
1

δl
− 1

x
(f)
l

,
∂2fµ

∂(x
(f)
l)2

=
1

δ2l
+

1

(x
(f)
l)2

,

∂2fµ

∂x
(f1)
l ∂x

(f2)
l

=
1

δ2l

∂fµ
∂ti

= −
L∑

l=1

(
C

(i)
l

δl

)
− 1

ti
,

∂2fµ
∂t2i

=

L∑
l=1

(C
(i)
l)2

δ2l
+

1

t2i
,

∂2fµ
∂ti1∂ti2

=

L∑
l=1

C
(i1)
l C

(i2)
l

δ2l
,

∂2fµ

∂x
(f)
l ∂ti

= −
C

(i)
l

δ2l
,

where δl ,
∑I

i=1 tiC
(i)
l −

∑F
f=1 x

(f)
l represents the unused

link capacity of link l. For convenience, we use a vector

cl , [C
(1)
l , . . . , C

(I)
l]T ∈ RI (13)

to group the capacity values of the l-th link in each of the I
link rate vectors. We further define the following matrices:

S , Diag

{
−µU ′′

1 (s1) +
1

s21
, . . . ,−µU ′′

F (sF) +
1

s2F

}
, (14)

Xl , Diag

{
1

(x
(1)
l)2

, . . . ,
1

(x
(F)
l)2

}
+

1

δ2l
1F1

T
F , ∀l, (15)

Cl , − 1

δ2l
1F c

T
l , ∀l, (16)

T , Diag

{
1

t21
, . . . ,

1

t2I

}
+

L∑
l=1

1

δ2l
clc

T
l . (17)

Then, it can be verified that the Hessian matrix Hk has the
following “arrow-head” structure:

Hk =

S

X1 C1

. . .
...

XL CL

CT
1 · · · CT

L T

. (18)

Remark 1. It is insightful to compare the structure of Hk

with that in [11]. Due to the absence of the time-sharing
component, the Hessian in [11, Section V-C] is block di-
agonal and exactly the same as the principal submatrix
Diag {S,X1, . . . ,XL} in (18). In this paper, however, the
coupling between the routing x-variables and the time-sharing
t-variables yields two non-zero “bands” consisting of the Cl-
matrices. Thus, the block diagonal structure is destroyed in
(18) after incorporating the time-sharing component. Hence,
H−1

k needs not be sparse even though Hk itself has certain
sparsity structure. Also, due to the “arrow-head” structure in
(18), finding closed-form expressions for H−1

k is intractable
in general. Fortunately, as will be shown in later sections, the
arrow-head structure still provides some unique features that
can be exploited to iteratively and distributedly compute H−1

k .
Furthermore, under an interesting special case, this arrow-
head structure leads to closed-form expressions for H−1

k and
reveals many interesting networking insights.

C. Distributed Computation of Primal Newton Directions

In this subsection, we first consider a special collision-
based network setting in which every two links in the network
mutually interfere. In this special network setting, we derive
closed-form expressions for H−1

k , which further lead to a fully
distributed computational scheme for primal Newton direc-
tions. Next, we propose a matrix-splitting based technique for
computing the primal Newton directions for general wireless
network settings.

1) Primal Newton Directions: A Special Network Setting.
We now consider a special network setting where every two
links in the network mutually interfere with each other. This
special setting is interesting in that it is a relevant model
for many collision-based network architectures within one
common interference domain (e.g., CSMA networks, cellular
uplinks/downlinks, or dense ad hoc networks, etc.). In this

network setting, due to the pairwise interference relationship,
it is apparent that there can only be L link rate vectors (i.e.,
I = L), each of which has only one active link. In this
case, without loss of generality, we can redefine cl in (13)
as follows:

cl = [0 · · · 1 · · · 0]T ∈ RL ≡ e
(l)
L , (19)

i.e., the only non-zero entry “1” appears at the l-th position.
For simplicity, we assume that each active link has a unit ca-
pacity. The extension to cases with arbitrary positive capacity
values is straightforward, but at the expense of more complex
notation. With this new notion of cl and (17), we have

T = Diag

{(
1

t21
+

1

δ21

)
, . . . ,

(
1

t2L
+

1

δ2L

)}
. (20)

We point out that the diagonal structure of T in (20) will play
a critical role in deriving the closed-form expressions for H−1

k

and the primal Newton directions.
Our key idea to compute H−1

k in the special setting is to
rewrite Hk in a decomposition structure to enable the ap-
plication of the Sherman–Morrison–Woodbury (SMW) matrix
inversion lemma [7]. In what follows, we outline the key steps.
First, we define two new vectors as follows:

ẽl , [0T
F , . . . ,1

T
F , . . . ,0

T
F ,0

T
L]

T ∈ R(L+1)F+L,

c̃l , [0T
F , . . . ,0

T
F , c

T
l]

T ∈ R(L+1)F+L.

In the definition of ẽl, the vector 1F appears at the (l + 1)-
st block. Then, it can be readily verified that the “arrow-
head” structure of Hk in (18) can be decomposed into a block
diagonal matrix coupled with a rank-2L update as follows:

Hk = Diag {S,X1, . . . ,XL,T}+
L∑

l=1

(
− 1

δ2l

)
ẽlc̃

T
l +

L∑
l=1

(
− 1

δ2l

)
c̃lẽ

T
l , (21)

where rank-L updates
∑L

l=1(−
1
δ2l
)ẽlc̃

T
l and

∑L
l=1(−

1
δ2l
)c̃lẽ

T
l

yield the vertical and horizontal bands in (18), respectively.
For convenience, we define the following matrices:

D , Diag {S,X1, . . . ,XL,T} ,
U ,

[
ẽ1

−δ1
, · · · , ẽL

−δL
, c̃1

−δ1
, · · · , c̃L

−δL

]
,

V ,
[
c̃1

δ1
, · · · , c̃L

δL
, ẽ1

δ1
, · · · , ẽL

δL
,
]T

.

Then, Eq. (21) can be compactly written as Hk = D+UV.
It then follows from the SMW matrix inversion lemma that

H−1
k = D−1 −D−1U(I+VD−1U)−1VD−1. (22)

Now, we consider the computation of each term in the
right-hand-side (RHS) of (22). First, thanks to the block
diagonal structure of D, we have that D−1 is simply
Diag

{
S−1,X−1

1 , . . . ,X−1
L ,T−1

}
. Further, due to the same

structures as their counterparts in [11], S−1 and X−1
l can be

computed in closed-form by using Lemma 4 and Theorem 5
in [11]. Also, since T is diagonal, we immediately have that
T−1 can be computed distributedly (link-wise) in closed-form
as: T−1 = Diag

{
t21δ

2
1

t21+δ21
, . . . ,

t2Lδ2L
t2L+δ2L

}
. Next, by exploiting

the sparsity structure of ẽl, c̃l, and the diagonal structure of
T, we can derive a closed-form expression for the inverse
of the Schur complement (i.e., (I + VD−1U)−1, see [21,
Theorem 4.4]). Then, through the SMW lemma, we arrive at
the first key result of this paper (the proof is relegated to [21,
Appendix C] due to space limitation):

Theorem 1. H−1
k has the same “arrow-head” structure as in

Hk, i.e.,

H−1
k =

Ŝ

X̂1 Ĉ1

. . .
...

X̂L ĈL

ĈT
1 · · · ĈT

L T̂

, (23)

where the closed-form expressions for Ŝ, X̂l, Ĉl, and T̂ are
respectively stated in [21, Eqs. (29)–(32)] due to limited space.

Thanks to the nice closed-form expressions of H−1
k , we

can show that the primal Newton directions can be computed
distributedly as stated in the following theorem:

Theorem 2. In the special wireless network setting (19), given
dual variables w, the Newton direction ∆sf , ∆x

(f)
l , ∆tl for

each source rate sf , link flow rate x
(f)
l , and link time-sharing

variable tl can be computed using local information at each
source node s and link l, respectively, as follows:

∆sf =
sf
(
µsfU

′
f (sf) + 1− sfw

(f)
Src(f)

)
1− µs2fU

′′
f (sf)

, (24)

∆x
(f)
l =

(
x
(f)
l

)2 [(
1− (1−Rl,1)

(x
(f)
l)

∥x̂l∥2

)(
1

x
(f)
l

− 1

δl
+

w
(f)
Tx(l) − w

(f)
Rx(l)

)
+Rl,1(x

(f)
l)2

(
1

tl
− 1

δl
− w

)
−

F∑
f ′=1, ̸=f

(1−Rl,1)(x
(f ′)
l)2

(
1

x
(f ′)
l

− 1

δl
+ w

(f ′)
Tx(l)− w

(f ′)
Rx(l)

) ,(25)

∆tl = Rl,1

 F∑
f=1

(x
(f)
l)2

(
1

x
(f)
l

− 1

δl
+ w

(f)
Tx(l) − w

(f)
Rx(l)

)
+Rl,2

(
1

tl
− 1

δl
− w

)
, (26)

where the expressions of Rl,1 and Rl,2 are respectively stated
in [21, Eqs. (26)–(27)] due to space limitation.

Sketch of the Proof: The basic idea of proving Theorem 2
is to apply Theorem 1 and exploit the second-order prosperities
of the a

(f)
l and b(f) vectors to simplify the result. We relegate

the proof details to [21, Appendix D].

Remark 2. In addition to providing closed-form expressions
for primal Newton directions, Theorem 2 offers an interesting
networking interpretation. Here, we can think of the difference
of the dual variables (w

(f)
Tx(l) − w

(f)
Rx(l)) in (25) and (26) as

“the queue length difference” in the back-pressure algorithm:

if the positive (w
(f)
Tx(l)−w

(f)
Rx(l))–values outweigh the negative

ones, i.e., the “pressure” on the transmitter side of link l is
greater than the “pressure” on the receiver side, then x

(f)
l

and tl will be increased in the next iteration.

2) Primal Newton Directions: General Network Settings.
So far, we have used an SMW-based approach to derive a
fully distributed computational scheme for the primal Newton
directions under the special network setting. For general
network settings, however, the SMW-based approach usually
fails because the cl-vectors are not orthogonal to each other
due to the arbitrary interference relationships. As a result,
the Schur complement I+VD−1U becomes a dense matrix,
which yields little special structure to exploit, and makes the
computation of (I+VD−1U)−1 equally difficult comparing to
that of H−1

k itself. To handle this challenge, we now propose
a matrix-splitting technique to compute the primal Newton
directions for general network settings.

Simply speaking, matrix-splitting is a generic framework
for solving linear equation systems iteratively [22]. Consider
a consistent linear equation system Fz = d, where F is non-
singular. Split F as F = F1−F2, where F1 is also nonsingular.
Clearly, there are multiple choices in splitting F. A good
splitting strategy, however, is to choose an F1 that is easier to
invert than F. Then, it follows that z = (F−1

1 F2)z + F−1
1 d.

Now, let z0 be an arbitrary starting vector and consider the
following iterative scheme [22]:

zk+1 = (F−1
1 F2)z

k + F−1
1 d, k ≥ 0. (27)

It can be shown that the iterative scheme in (27) converges to
the unique solution z = F−1d if and only if ρ(F−1

1 F2) < 1,
where ρ(·) represents the spectral radius of a matrix.

Now, we apply the matrix-splitting idea in (27) to compute
∆yk. But before deriving the details of the matrix-splitting
scheme, we point out that due to the block diagonal structure
between the S-block and the rest of Hk (cf. Eq. (18)), we
are still able to compute ∆sf in closed-form by (24) even
in general wireless network settings. As a result, the matrix-
splitting scheme is only needed to compute ∆x

(f)
l and ∆ti.

Now, we let Hk denote the submatrix block obtained by
removing S and its associated rows and columns from (18).
We define the following matrices: Λk = Diag

{
diag

{
Hk

}}
and Ωk = Hk − Λk. Further, let Ωk be a diagonal matrix
with diagonal entries given by (Ωk)ii =

∑
j |(Ωk)ij |. Then,

we have the following result:

Lemma 3. Let Hk be split as Hk = (Λk + αΩk)− (αΩk −
Ωk), where α > 1

2 is a parameter for tuning convergence
speed. Then, the sequence {∆yk

m}∞m=1 generated by

∆yk
m+1 = (Λk + αΩk)

−1(αΩk −Ωk)∆yk
m

+ (Λk + αΩk)
−1(−∇fµ(y

k)−MTwk) (28)

converges to ∆yk in (11) as m → ∞.
Sketch of the proof: The key idea of proving Lemma 3

is to verify that both the sum and difference of the two
components in the splitting scheme are strictly diagonally

dominant. Then, the result follows from Lemmas 4.7 and 4.8
in [21]. We relegate the proof details to [21, Appendix E].

Remark 3. Lemma 3 is inspired by, and is also a generaliza-
tion of, the matrix-splitting scheme in [10]. In both schemes,
the basic idea is to construct a diagonal nonsingular matrix
for which the inverse can be distributedly computed. However,
our scheme is parameterized by α, which enables convergence
speed tuning in (28), while the scheme in [10] can be viewed
as a special case of our scheme with α ≡ 1.

Remark 4. We show in [21, Lemma 4.10] that if α1 ≤ α2,
then ρα1 ≤ ρα2 . This suggests that in order for (28) to
converge faster, one should choose a smaller α, provided that
(28) is convergent. We point out that the technical condition
α > 1

2 in Lemma 3 is a sufficient condition to guaran-
tee the convergence of (28). In practical implementations,
α ≤ 1

2 could be used for faster convergence as long as
ρ((Λk + αΩk)

−1(αΩk − Ωk)) < 1. This eigen-spectrum
condition, however, is more inconvenient to check.

Next, we show that the matrix-splitting scheme in Lemma 3
can be implemented in a distributed fashion to compute the
primal Newton directions. We state the result as follows:

Theorem 4. In general wireless settings, let ∆x
(f)
l,m, and ∆ti,m

denote the the values of ∆x
(f)
l and ∆ti in the m-th iteration,

respectively. Given dual variables wk, the Newton directions
∆x

(f)
l and ∆ti can be iteratively computed as follows:

∆x
(f)
l,m+1=

1

P
(f)
l,1

[
P

(f)
l,2 +

(
1

x
(f)
l

− 1

δl
+w

(f)
Tx(l)−w

(f)
Rx(l)

)]
, (29)

∆ti,m+1 =
1

Qi,1

[
Qi,2 +

(
1

ti
+

L∑
l=1

(
C

(i)
l

δl

))
− w

]
, (30)

where P
(f)
l,1 , P (f)

l,2 , Qi,1, and Qi,2 are, respectively, stated in
Eqs. (43)–(46) in [21] due to space limitation.

Sketch of the proof: Theorem 4 can be proved by using
the “arrow-head” structure of Hk and exploiting the second-
order properties of al and b̃(f) to compute the element-wise
expansion of (28). See [21, Appendix G] for more details.

D. Distributed Computation of the Dual Variables
Recall that the dual variables wk can be computed by

solving the linear equation system in (12). However, there
remain two key technical challenges in dual updates:

C1) MH−1
k MT (i.e., the weighted Laplacian matrix) is

clearly a dense matrix and it is intractable to derive any closed-
form result for its inverse even in the special setting.

C2) Due to the lack of closed-form expressions for H−1
k in

the general setting, MH−1
k MT and −MH−1

k ∇fµ(y
k) cannot

be written explicitly in terms of the s-, x-, and t-variables.
As a result, the basic matrix-splitting technique in (27) fails
to compute (MH−1

k MT)−1 and −MH−1
k ∇fµ(y

k), let alone
their distributed implementations.

In what follows, according to the different approaches to
obtain H−1

k , we again classify the dual updates into special and
general settings and combat the above difficulties separately.

1) Dual updates: The Special Network Setting. Dual
updates in the special setting is relatively easier thanks to
the closed-form result of H−1

k in Theorem 1. By exploiting
the blockwise structures in MH−1

k MT and −MH−1
k ∇fµ(y

k)
(see [21, Eqs. (65)–(66)]), it can be shown that the distributed
dual updates can again be done following the basic matrix-
splitting scheme in (27) plus a convergence speed tuning
parameter. Due to space limitation, we refer readers to [21,
Theorem 4.17] for further details.

2) Dual updates: General Network Settings. As men-
tioned in C2), the basic matrix-splitting technique fails in the
general settings. To address this challenge, we propose a new
double matrix-splitting technique to compute (MH−1

k MT)−1

and −MH−1
k ∇fµ(y

k) and show that they can also be imple-
mented in a distributed fashion. In what follows, we outline
the key steps. First, consider MH−1

k MT , for which we have
the following decomposition result:

Lemma 5. MH−1
k MT can be decomposed into:

MH−1
k MT = B̃0S

−1B̃T
0 + M̂H

−1

k M̂T , (31)

where B̃0 , [B̃T ,0F]
T and M̂ , Diag{[A1, . . . ,AL], 1

T
I }.

Due to the (block) diagonal structure of B̃ and S−1, the term
B̃0S

−1B̃T
0 in (31) can be easily computed in a distributed

fashion at each source node. However, the main challenge
arises from M̂H

−1

k M̂T , where we do not have closed-form
expressions for H

−1

k . Fortunately, a closer look at M̂H
−1

k M̂T

reveals that it can be further decomposed into:

M̂H
−1

k M̂T = M̂Zk, and Zk = H
−1

k M̂T .

Further, Zk = H
−1

k M̂T can be written as z
(k)
j = H

−1

k m̂j ,
∀j, where z

(k)
j and m̂j are the j-th columns in Zk and

M̂, respectively. Now, it is important to recognize that the
expression z

(k)
j = H

−1

k m̂j is in a similar form as in (11).
Hence, z

(k)
j can be computed by the basic matrix-splitting

technique similar to that in the primal Newton directions
(iteration index k is omitted for simplicity):

Proposition 6 (First layer of matrix-splitting). Let z(x
(f)
l)

j and
z
(ti)
j denote the entries in z

(k)
j that correspond to variables

x
(f)
l and ti, respectively. Let z(x

(f)
l)

j,m and z
(ti)
j,m denote the m-th

iteration values of z
(x

(f)
l)

j and z
(ti)
j , respectively. Then, z(k)j

can be iteratively computed by:

z
(x

(f)
l)

j,m+1 =
1

P
(f)
l,1

[
P

(f)
l,3 (j) + P

(f)
l,4 (j)

]
, ∀l, f, (32)

z
(ti)
j,m+1 =

1

Qi,1
[Qi,3(j) +Qi,4(j)] , ∀i, (33)

where P
(f)
l,1 , Qi,1 are the same as in Theorem 4; P

(f)
l,3 (j),

P
(f)
l,4 (j), Qi,3(j), Qi,4(j) are stated in [21, Eqs. (52)–(55)].

The proof of Proposition 6 is similar to that of Theorem 4,
and we regelate the details to [21, Appendix H].

Remark 5. We point out that the z-variables in (32) and (33)
are obtained by using the same matrix-splitting scheme as in
(29) and (30). Therefore, they can be computed along with the
primal Newton directions in (29) and (30) by sharing P

(f)
l,1 and

Qi,1, thus saving a significant amount of computing resources.

With z
(k)
j , it can be shown that M̂H

−1

k M̂T = M̂Zk can be
computed distributedly as follows (see [21, Appendix I] for
proof details):

Proposition 7. Let βf (n), n ̸= Dst(f), be an index function
such that βf (n) = n if n < Dst(f) or n − 1 if n > Dst(f).
Let (M̂Zk)j1j2 be the entry in the j1-th row and j2-column
of M̂Zk. Then, (M̂Zk)j1j2 can be distributedly computed as

(M̂Zk)j1j2 =

∑
l∈O(n) z

(x
(f)
l)

j2
−
∑

l∈I(n) z
(x

(f)
l)

j2
,

if j1 = (f − 1)(N − 1) + n, n ̸= βf (Src(f)),

and j2 = (f ′ − 1)(N − 1) + n′,

z
(sf)
j2

+
∑

l∈O(n) z
(x

(f)
l)

j2
−
∑

l∈I(n) z
(x

(f)
l)

j2
,

if j1 = (f − 1)(N − 1) + n, n ̸= βf (Src(f)),

and j2 = (f ′ − 1)(N − 1) + n′,∑I
i=1 z

(ti)
j2

, if j1 = (N − 1)F + 1,

and j2 = 1, . . . , (N − 1)F + 1.

(34)

Next, we consider −MH−1
k ∇fµ(y

k), which can be decom-
posed into B̃0S

−1(−∇sfµ(y
k)) + M̂H

−1

k (−∇x,tfµ(y
k)),

where ∇sfµ(y
k) and ∇x,tfµ(y

k) represent the partial deriva-
tives with respect to the s-variables and remaining variables,
respectively. Following the same approach, it can be shown
that B̃0S

−1(−∇sfµ(y
k)) can be distributedly computed at

each source node. M̂H
−1

k (−∇x,tfµ(y
k)) can be further de-

composed into:

M̂H
−1

k (−∇x,tfµ(y
k)) = M̂g, g = H

−1

k (−∇x,tfµ(y
k)).

Then, the distributed computations of g and M̂g follow from
the same approach as in Propositions 6 and 7. We omit the
results here for brevity and refer readers to [21, Proposi-
tions 4.14 and 4.15] for details. Finally, based on the above
results, we can compute MH−1

k MT and −MH−1
k ∇fµ(y

k)
without explicitly knowing H−1

k .
Now, we are ready to use the second layer of matrix-

splitting to compute dual updates. To this end, we define
the following matrices: Πk = Diag{diag{MH−1

k MT }} and
Ψk = MH−1

k MT −Πk. Also, let Ψ be the diagonal matrix
with diagonal entries given as (Ψ)ii =

∑
j |(Ψ)ij |. Then,

adopting the same approach as in Lemma 3, we have

Proposition 8 (Second layer of matrix-splitting). Split
MH−1

k MT as MH−1
k MT = (Πk + αΨk) − (αΨk − Ψk),

where α > 1
2 is a parameter for tuning convergence speed.

Then, the sequence {wk
m}∞m=1 generated by wk

m+1=(Πk+
αΨk)

−1(αΨk−Ψk)w
k
m+(Πk+αΨk)

−1(−MH−1
k ∇fµ(y

k))
converges to wk in (12) as m → ∞.

Algorithm 1 Distributed Newton’s Method for Problem CLO.
Initialization:
1. Each source and link: Choose some appropriate values for sf , x(f)

l , ∀f ,
and ti, ∀i.

2. Each node: Choose appropriate values for w(f)
n , ∀f and w.

Main Iteration:
3. Primal Newton directions (special setting): Update ∆sf , ∆x

(f)
l , and ∆tl

using (24), (25), and (26) at each source node and link, respectively.
4. Primal Newton directions (general settings): Update ∆sf , ∆x

(f)
l , and

∆tl using (24), (29), and (30) at each source node and link, respectively.
Meanwhile, compute and store z

(k)
j , ∀j, using (32) and (33); compute

and store g using [21, Proposition 4.14].
5. Dual updates (special setting): Update w

(f)
n and w using [21, Theo-

rem 4.17] at each node.
6. Dual updates (general settings): First compute M̂H

−1
k M̂T using

(34) and the z
(k)
j -vectors obtained from Step 4. Also, compute

−M̂H
−1
k ∇x,tfµ(yk) using [21, Proposition 4.15] and the g-vector

obtained from Step 4. Then, update w
(f)
n and w using Proposition 8.

7. Terminate the algorithm if a predefined run-time limit is reached or if the
Newton decrement criterion is satisfied. Otherwise, go to Step 3 for the
special setting case or to Step 4 for the general setting case.

So far, we have derived the main components of our dis-
tributed Newton’s method. We point out that there are several
topics remained to be discussed for its implementation, e.g.,
information exchange scale, initialization of the algorithm,
stopping criterion, step-size selection, etc. We refer readers
to [21, Section 4.5] for further discussions on these topics.

To conclude this section, we summarize our distributed
Newton’s method in Algorithm 1. In Algorithm 1, after initi-
alization in Steps 1-2, Steps 3 and 4 are for computing primal
Newton directions ∆yk in (11) under the special and general
settings, respectively; while Steps 5 and 6 are for dual updates
wk in (12) under the special and general settings, respectively.
The main iteration stops if the criterion in Step 7 is met.

V. NUMERICAL RESULTS

In this section, we present some numerical results to
demonstrate the efficacy of our proposed distributed Newton’s
method. First, we examine the convergence speed of the
parameterized matrix-splitting scheme in computing the primal
Newton directions ∆yk and dual variables wk. We use an 8-
node 3-session network as an example. For ∆yk and wk, we
vary α from 0.1 to 1. In both cases, the matrix-splitting scheme
is terminated when the error between the true solution of ∆yk

in Eq. (11) (resp., wk in Eq. (12)) and the matrix-splitting
based solution is less than 1× 10−6. The errors for ∆yk and
wk are plotted (in log scale) in top and bottom halves in Fig. 1,
respectively. We can see that for all values of α, the errors
decrease exponentially. Also, the smaller the value of α, the
faster the convergence speed. For example, when α = 0.1, the
number of iterations is approximately half of that when α = 1
(9 vs. 15 in the primal case and 27 vs. 53 in the dual case).
This confirms our analysis of the choice of α in Remark 4. To
illustrate the convergence behavior of our distributed Newton’s
method, we use a network example as shown in Fig. 2, where
five nodes are distributed in a region of 800m × 800m. The
network is assumed to be operating under the special setting
with normalized link capacity. There are two sessions in the

2 4 6 8 10 12 14 16

10
0

Number of iterations

E
rr

or
Primal Newton directions

10 20 30 40 50

10
0

Number of iterations

E
rr

or

Dual variables

α=0.1α=0.2α=0.3α=0.4α=0.5α=0.6α=0.7α=0.8α=0.9α=1

α=0.1α=0.2α=0.3α=0.4α=0.5α=0.6α=0.7α=0.8α=0.9α=1

Fig. 1. Convergence behavior of the matrix-splitting
scheme.

0 200 400 600 800
0

100

200

300

400

500

600

700

800

N1

N2

N3

N4

N5

(m)

(m
)

Fig. 2. A five-node two-session network.

5 10 15 20 25
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Number of iterations

O
bj

ec
tiv

e
va

lu
e

Approximate Problem Objective Value
Original Problem Objective Value

Fig. 3. Convergence behavior for the network in
Fig. 2.

network: N5 to N4 and N1 to N3. We adopt log(sf) as our
utility function, which is a well-known model for “proportional
fairness” [1]. The convergence behavior is illustrated in Fig. 3,
which shows both the objective values of the approximating
and the original problems. It can be seen that our proposed
algorithm takes only 27 iterations to converge. To compare our
algorithm with the subgradient method, we randomly generate
50 networks with 30 nodes and six sessions. For these 50
examples, the mean numbers of iterations for our method and
the subgradient method are 720.58 and 53870.12, respectively,
which shows that our proposed algorithm converges two orders
of magnitude faster.

VI. CONCLUSION

In this paper, we developed new second-order distributed
methods for cross-layer optimization in wireless networks. We
first considered a special network setting where all links mutu-
ally interfere with each other. In this case, we derived closed-
form expressions for the Hessian inverse, which further yielded
a distributed implementation of the Newton’s method. For
general wireless networks where the interference relationships
are arbitrary, we proposed a double matrix-splitting scheme
to compute the primal Newton directions and dual variables,
respectively, which also led to a distributed implementation
of the Newton’s method. Collectively, these results serve as
the first building block of a new second-order theoretical
framework for cross-layer optimization in wireless networks.
Distributed second-order methods for wireless networks is an
important and yet under-explored area. Future research topics
may include to incorporate signal to interference plus noise
ratio (SINR) based interference models, to analyze the impact
of inexact line searches on convergence, to design efficient
scheduling schemes, and to consider stochastic traffic models.

REFERENCES

[1] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer opti-
mization in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1452–1463, Aug. 2006.

[2] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queuing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[3] X. Lin and N. B. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. IEEE CDC, Atlantis, Paradise Island,
Bahamas, Dec. 2006, pp. 1484–1489.

[4] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” IEEE J. Sel. Areas
Commun., vol. 23, no. 1, pp. 89–103, Jan. 2005.

[5] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless
networks using queue-length-based scheduling and congestion control,”
in Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, pp. 1804–1814.

[6] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer congestion control in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 2, pp. 302–315, Apr. 2006.

[7] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, 3rd ed. New York, NY: John Wiley & Sons
Inc., 2006.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[9] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed Newton
method for network optimization,” in Proc. IEEE Conference on Deci-
sion and Control (CDC), Shanghai, China, Dec. 16-18, 2009.

[10] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utitlity maximization,” in Proc. IEEE Conference on Deci-
sion and Control (CDC), Atlanta, GA, Dec. 15-17, 2010.

[11] J. Liu and H. D. Sherali, “A distributed Newton’s method for joint multi-
hop routing and flow control: Theory and algorithm,” in Proc. IEEE
INFOCOM, Orlando, FL, Mar. 25-30, 2012, pp. 2489–2497.

[12] D. P. Bertsekas and E. M. Gafni, “Projected Newton methods and
optimization of multi-commodity flows,” IEEE Trans. Autom. Control,
vol. 28, no. 12, pp. 1090–1096, Dec. 1983.

[13] J. G. Klincewicz, “A Newton method for convex separable network flow
problems,” Networks, vol. 13, no. 3, pp. 427–442, Mar. 1983.

[14] A. Zymnis, N. Trichakis, S. Boyd, and D. ONeill, “An interior-point
method for large scale network utility maximization,” in Proc. Allerton
Conference on Communication, Control, and Computing, Monticello,
IL, Sep. 26-28, 2007.

[15] D. Bickson, Y. Tock, O. Shental, and D. Dolev, “Polynomial linear
programming with Gaussian belief propagation,” in Proc. Allerton
Conference on Communication, Control, and Computing, Monticello,
IL, Sep. 23-26, 2008, pp. 895–901.

[16] D. Bickson, Y. Tock, A. Zymnis, S. Boyd, and D. Dolev, “Distributed
large scale network utility maximization,” in Proc. IEEE International
Symposium on Information Theory (ISIT), Seoul, Korea, Jun.28–Jul.3,
2009, pp. 829–833.

[17] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms
in Convex Programming, 3rd ed. Philadelphia, PA: SIAM, 2001.

[18] D. Bickson, “Gaussian belief propagation: Theory and application,”
Ph.D. dissertation, Hebrew University of Jerusalem, 2009.

[19] F. R. K. Chung, Spectral Graph Theory. Providence, RI: American
Mathematical Society, 1994.

[20] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows, 4th ed. New York: John Wiley & Sons Inc., 2010.

[21] J. Liu, C. H. Xia, N. B. Shroff, and H. D. Sherali, “Distributed cross-
layer optimization in wireless networks: A second-order approach,”
Technical Report, Dept. of ECE, Ohio State University, Jul. 2012.
[Online]. Available: http://www2.ece.ohio-state.edu/∼liu/publications/
DNewton Wireless.pdf

[22] Z. I. Woznicki, “Matrix splitting principles,” International Journal of
Mathematics and Mathematical Sciences, vol. 28, no. 5, pp. 251–284,
May 2001.

