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Abstract—MIMO-based communications have great potential
to improve network capacity for multi-hop wireless networks.
Although there has been significant progress on MIMO at the
physical layer or single-hop communication, advances in the
theory of MIMO for multi-hop wireless networks remain limited.
This stagnation is mainly due to the lack of an accurate and
more important, analytically tractable model that can be used
by networking researchers. In this paper, we propose such a
model to enable the networking community to carry out cross-
layer research for multi-hop MIMO networks. In particular,
at the physical layer, we develop a simple model for MIMO
channel capacity computation that captures the essence of spatial
multiplexing and transmit power limit without involving complex
matrix operations and the water-filling algorithm. We show that
the approximation gap in this model is negligible. At the link
layer, we devise a space-time scheduling scheme called OBIC
that significantly advances the existing zero-forcing beamforming
(ZFBF) to handle interference in a multi-hop network setting. The
proposed OBIC scheme employs simple algebraic computation on
matrix dimensions to simplify ZFBF in a multi-hop network. As a
result, we can characterize link layer scheduling behavior without
entangling with beamforming details. Finally, we apply both the
new physical and link layer models in cross-layer performance
optimization for a multi-hop MIMO network.

I. INTRODUCTION

Since its inception [1], [2], MIMO has been widely accepted
as a key technology to increase wireless capacity. Researchers
have shown that by employing multiple antennas on the
transmitting and receiving nodes, wireless channel capacity
can scale almost linearly with the number of antennas. Such
capability is the driving force for the wide deployment of
MIMO in wireless LAN (802.11n), WiMAX access networks
(802.16), and 4G cellular networks (LTE).

Although there have been extensive studies on MIMO at the
physical layer for point-to-point and cellular communications
(see, e.g., [3] for an overview), fundamental understanding and
results on MIMO in multi-hop networks remain limited, partic-
ularly from a cross-layer perspective. This stagnation is mainly
due to the lack of an accurate and more importantly, tractable
model that is amenable for analysis by networking researchers.
Traditional signal processing and channel models for MIMO
in communications research are clogged with complex matrix
representations and operations, rendering enormous challenges
for multi-hop network optimizations. Due to these challenges,
most efforts on multi-hop MIMO networks to date [4]–[12]
fall into the following two approaches.

The first approach is to formulate the problems by faithfully
incorporating the MIMO channel and signal models without

any loss of accuracy. However, the problem formulations
under this approach soon become intractable due to the heavy
burden from the underlying models. For example, Kim et al.
studied a maxmin optimization problem in [4] for multi-hop
MIMO backhaul networks where they formulated a nonlinear
optimization problem to maximize the fair throughput of the
access points in the network under the routing, MAC, and
physical layer constraints. The physical layer in [4] is based
on minimum mean square error (MMSE) beamforming. In
[5], Chu and Wang also studied cross-layer algorithms for
MIMO ad hoc networks where MMSE sequential interference
cancellation technique (MMSE-SIC) was employed at the
physical layer to maximize signal to interference and noise
ratio (SINR). Due to the complex MMSE mechanics, the
cross-layer optimization problems in [4] and [5] are intractable
and the authors had to resort to heuristic algorithms.

The second approach is to simplify MIMO physical layer
behavior so that tractable analysis can be developed for
networking research. Although such approach is attractive,
the problem with existing models under this approach suffer
from “over simplification.” That is, existing simple models
ignore some important characteristics of MIMO and thus lead
to results far from MIMO’s achievable performance. In [6],
[7], a simplified MIMO cross-layer model was employed
to study different throughput optimization problems. By us-
ing this model, the network throughput performance can be
characterized simply by counting the number of degrees of
freedom (DoF) in the network. However, this model does
not consider transmit power constraint and power allocation
at each node in the network. Also, although some ideas of
zero-forcing beamforming (ZFBF) were employed to handle
interference, the proposed interference cancellation scheme at
the link layer was not designed efficiently, resulting in a small
DoF region and inferior throughput performance. Also, in [8]–
[12], various studies on MAC designs and routing schemes are
given based on very simple MIMO models that do not fully
exploit MIMO physical capabilities.

The goal of this paper is to achieve the best of both ap-
proaches while avoiding their pitfalls. We want to construct a
model for MIMO that is both tractable and accurate for cross-
layer optimization. Our main contributions are as follows.

• At the physical layer, we devise a simple model for
computing MIMO channel capacity. This model captures
the essence of both spatial multiplexing and transmit
power constraint. More importantly, this model does not



require complex matrices computation and complicated
water-filling process (which does not admit a close-form
solution). We show that the gap between our proposed
model and the exact capacity model is negligible.

• At the link layer, we construct a model that takes into
account the interference nulling/supression by exploit-
ing ZFBF. More specifically, we propose a space-time
scheduling scheme called OBIC (abbreviation of order-
based interference cancelation). The proposed OBIC em-
ploys simple algebraic computation on matrix dimensions
to model ZFBF in a multi-hop network. Moreover, by
carefully arranging the cancellation order among the
nodes, OBIC does not waste unnecessary DoF resources
on interference mitigation, thus offering superior through-
put performance than those in [6], [7].

• As an application, we use the proposed new models
to study a cross-layer utility maximization problem for
multi-hop MIMO networks. We show that the resulting
optimization problem no longer involve complex matrix
variables and operations. Further, the formulated problem
shares a lot of similarities with those cross-layer opti-
mization problems under single-antenna ad hoc networks,
which have been actively studied in recent years. This
suggests that new solutions to multi-hop MIMO networks
may be developed by drawing upon the experiences
gained for single-antenna ad hoc networks.

The remainder of this paper is organized as follows. Sec-
tion II presents a new channel capacity model for MIMO
at the physical layer. Section III presents a new link layer
model called OBIC. In Section IV, as an application of our
new models, we study a cross-layer optimization problem in
a multi-hop MIMO network. Section V concludes this paper.

II. A MODEL FOR PHYSICAL LAYER CAPACITY
COMPUTATION

From networking research perspective, the most important
aspect of physical layer modeling for MIMO is its channel ca-
pacity computation. In Section II-A, we first give background
on MIMO channel capacity computation and analyze why it
is difficult to work with for networking research. Then, in
Section II-B, we propose a new model for MIMO channel
capacity that is both simple and accurate.

A. Why Existing Physical Model for MIMO is Difficult to Use?

The channel of a MIMO link l is characterized by a matrix
Hl, as shown in Fig. 1. Communication over such a MIMO
channel with nt transmit antennas and nr receive antennas can
be described by

yl =
√
ρlαlHlxl + nl, (1)

where xl, yl and nl denote the vectors of transmitted signal,
received signal, and white Gaussian noise with unit variance,
respectively. In (1), ρl represents the received SNR of the
channel, αl ∈ [0, 1] represents the fraction of the transmit
power that is assigned to link l (in the case when the source
of link l also transmits on other links). As we shall see later
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Fig. 1. A MIMO channel.
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Fig. 2. The equivalent parallel scalar channels after transformation.

in Section IV, αl is useful to model the power allocation at
each node if multi-hop multi-path routing is employed in the
network. For the single link case in Fig. 1, we have αl = 1.

The channel gain matrix Hl is typically assumed to be a
complex random matrix with each of its entries being i.i.d.
Gaussian distributed [13] with zero mean and unit variance.
From basic linear algebra, we know that by singular value
decomposition (SVD), the channel model in (1) can be written
as yl =

√
ρlαlUlΛlV

†
lxl +nl, where Ul and Vl are unitary

matrices, Λl is a diagonal matrix with the singular values of
Hl on its main diagonal. By letting x̃l = V†

lxl, ỹl = U†
lyl,

and ñl = U†
lnl, the channel model can be re-written as

ỹl =
√
ρlαlΛlx̃l + ñl, (2)

which is equivalent to a set of parallel channels shown in
Fig. 2. The number of non-zero singular values (i.e., non-zero
diagonal entries in Λl) is dl ≤ min{nt, nr}, i.e., the rank
of Hl. The rank of Hl is also called the degrees of freedom
(DoF), which measures the number of independent signaling
dimensions that are available in the channel.

The capacity for the set of parallel channels in (2) can be
found by the water-filling power allocation algorithm [1]:

C
(wf)
l = max

Ql

W log2 det(I+ ρlαlHlQlH
†
l )

=
∑dl

i=1 W (log2(ρlαlµλi))+ ,

where W represents the bandwidth of the channel; Ql =
E{xlx

†
l } is the input covariance matrix representing the power

allocation of signal xl; det(·) represents matrix determinant;
I represents an nr × nr identity matrix; (·)+ represents
max(0, ·); λi denotes an eigenvalue of matrix HlH

†
l (having

the same number of non-zero singular values in Λl and equal
to the square of the singular values of Hl); and µ is the optimal
water-level satisfying

∑dl

i=1(µ− (ρlαlλi)
−1)+ = 1.

Further, since Hl is a random matrix, the ergodic capacity



of such a fading MIMO channel can be computed as [14]:

C
(wf)
l,ergodic = EHl

[C
(wf)
l ] = W

dl∑
i=1

Eλi

[
(log2(ρlαlµλi))+

]
= W

∑dl

i=1

∫
(log2(ρlαlµλi))+ fλi

(λ)dλ , (3)

where Eλi [·] represents the expectation taken over the dis-
tribution of λi and fλi(·) denotes the distribution of λi.
Although (3) is the exact formula for computing MIMO
channel capacity, there are some issues that prevent (3) from
being easily adopted in cross-layer optimization.

1) To determine the eigenvalues λi of HlH
†
l , one needs to

solve the characteristic polynomial equation. However, it is
known that there is no formula for roots of polynomials of
degree 5 or greater. Even for a cubic or quartic polynomial
equation (corresponding to 3× 3 and 4× 4 MIMO channels),
the root formula is cumbersome to use and the equation is
often solved approximately by numerical methods instead.
Further, due to the complexity in computing λi, it is even
harder to determine the distribution of fλi(·) from HlH

†
l .

2) Even if we have solved λi’s for a given Hl, it remains
to solve the optimal water-level µ for the optimal power
allocation. However, due to the discontinuity property of
the water-filling solution, there is no closed-form solution to
determine µ. Instead, µ can only be evaluated numerically.

3) Since it is difficult to determine λi, fλi
(·), and µ,

computing the integration in (3) becomes a challenging task.
Instead of integrating (log2(ρlαlµλi))+ fλi

(·), we can calcu-
late a sample mean of (log2(ρlαlµλi))+ as an approximation
for the expectation. However, this calculation requires a large
number of random samples of Hl (so as to obtain a good
approximation).

Due to the above difficulties, Eq. (3) cannot be readily used
to offer tractable analysis in cross-layer optimization.

B. A Simple and Accurate Model for MIMO Channel Capacity

To avoid the difficulties incurred in using (3), we propose
a simple and yet non-trivial model to approximate the MIMO
channel capacity computation as follows:

C
(sim)
l = W · dl · log2

(
1 +

ρlαl

dl

)
. (4)

The construction of (4) is based on the following intuition.
First, note that in (3), the capacity is determined by the
averaging behavior of the eigenvalues of HlH

†
l . Although

these eigenvalues are random, in practice they tend to be i.i.d.
faded. As a result, when averaged over a large number of
channel realizations, the mean channel gain for each parallel
spatial channel (see Fig. 2) is roughly the same. Therefore,
we approximate the random matrix Hl by a deterministic
identity matrix (i.e., we replace Hl by Idl

), thus eliminating
the expectation computation. With such a simplification, it is
easy to verify that the optimal water-filling scheme degenerates
into a trivial equal power allocation since all spatial channels
have equal gain. It then follows that the channel capacity can
be roughly approximated by (4). The main benefit of (4) is

TABLE I
NORMALIZED GAP VERSUS THE NUMBER OF ANTENNAS.

Number of Normalized gap
antennas SNR = 20 dB SNR = 30 dB

2 0.96% 0.82%
3 2.23% 1.87%
4 2.89% 2.39%
5 3.21% 2.73%
6 3.46% 2.93%
7 3.46% 3.08%
8 3.70% 3.23%

that we no longer need to explicitly compute the eigenvalues
of HlH

†
l , the p.d.f. of λi, the optimal water level µ, and the

expectation function. Note that when dl = 1, (4) is reduced to
Shannon formula for single-antenna case.

We now formally examine the accuracy of (4). First, we
quantify the gap between (3) and (4) for one channel realiza-
tion. We have the following lemma and its proof is given in
[15].

Lemma 1. For a MIMO link with instantaneous channel gain
Hl of rank dl, ∆Cl , C

(wf)
l − C

(sim)
l ≈ W

∑dl

i=1 log2 λi

under a high SNR regime.

Based on Lemma 1, we show the gap between (3) and (4)
is small by showing EHl

[
∑dl

i=1 log λi] is negligibly small. We
state the result in the following theorem and give a proof in
Appendix A.

Theorem 1. Under a high SNR regime, for a MIMO link
with Gaussian random channel matrix Hl of rank dl, the
approximation gap incurred by the simple model in (4) is close
to zero.

To offer some quantitative insights on this gap, in Table I,
we show the normalized gap between (3) and (4) for a MIMO
channel under ρl = 20 dB and ρl = 30 dB, respectively.
We vary the number of antennas from 2 to 8 (range for
practical MIMO systems). We can see that the gap between
the approximation and the exact capacity is indeed negligibly
small. For example, with 4 antennas under 30 dB, the gap is
only 2.39%.

III. LINK LAYER MODELING FOR MULTI-HOP MIMO
NETWORKS

At the link layer, MIMO opens up new opportunities
in space domain to mitigate interference. In Section III-A,
we first describe zero forcing beamforming (ZFBF), which
is a powerful MIMO interference mitigation technique. We
also discuss its benefits and challenges in multi-hop network
setting. In Section III-B, we propose a space-time scheduling
scheme called OBIC and in Section III-C, we construct its
mathematical model.

A. Zero-Forcing Beamforming: Benefits and Challenges

In cellular MIMO systems, one of the most powerful inter-
ference mitigation technique is called ZFBF [16], [17]. ZFBF
uses multi-antenna arrays to steer beams toward the intended



receiver to increase SNR, while forming nulls to unintended
receivers to avoid interference. In MIMO cellular systems,
however, ZFBF is usually performed at the transmitter side.
In this paper, we generalize ZFBF to multi-hop networks by
allowing beamforming to be performed on both transmitter
and receiver sides.

To see how the generalized ZFBF can be used in multi-hop
MIMO networks, consider a network having L links among
which L0 links are active. We denote Īl the set of links
that interfere with the reception of link l’s intended receiver,
l = 1, 2, . . . , L0. We denote HTx(m),Rx(l) the interference
channel gain matrix from transmitting node of interference
link m (Tx(m)) to receiving node of link l (Rx(l)).

To extract the transmitted signal through a MIMO channel,
a transmit beamforming matrix and a receive beamforming
matrix are employed on the channel. Thus, the received signal
at link l can be written as

yl =
√
ρlαl R

†
Rx(l)HlTTx(l)xl︸ ︷︷ ︸

Desired signal part

+
∑
m∈Īl

√
ρm,lαmR†

Rx(l)HTx(m),Rx(l)TTx(m)xm︸ ︷︷ ︸
Interference part

+nl, ∀l,

where ρm,l denotes the interference-to-noise ratio (INR) from
node Tx(m) to node Rx(l).

By exploiting the multi-antenna array at each node, it is
possible to cancel out all interferences by judiciously config-
uring T’s and R’s. Specifically, we can configure T’s and R’s
in such a way that

R†
Rx(l)HTx(m),Rx(l)TTx(m) = 0, ∀l,m ∈ Īl. (5)

Note that if there exist non-trivial solutions to (5) (i.e.,
RRx(l) ̸= 0, TTx(m) ̸= 0, ∀l,m ∈ Īl), then it
means that all L0 links can be active simultaneously in
an interference-free environment. Moreover, the ranks of
TTx(l) and RRx(l) determine the maximum number of data
streams zl that can be transmitted over link l, i.e., zl ≤
min{rank(TTx(l)), rank(RRx(l))}.

Although ZFBF’s benefits are appealing, there remain sig-
nificant challenges to employ it in multi-hop networks. This
is because finding an optimal set of T’s and R’s satisfying
(5) requires solving a large number of bilinear equations.
Unlike linear equation systems, a general solution to bilinear
equation systems remains unknown [18]. Thus, it becomes an
intractable problem to design scheduling schemes based on
solving (5).

B. OBIC: Basic Idea

We find that the specific element configurations in T’s and
R’s are more closely tied to beamforming design than to link
layer scheduling. Therefore, instead of focusing on solving (5),
we propose to reposition ourselves to exploit matrix dimension
constraints that are sufficient for (5) to hold. By doing so, we
can characterize the link layer scheduling performance without
entangling with the details of beamforming designs.

HTx(l),Rx(m) zl

3× 3

Link m Link l

TTx(l)5× 5
RRx(m)

zm
Rx(m) Tx(l)

Fig. 3. A two-link example.
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Fig. 4. DoF region of two-link example.

To understand how we can extract the matrix dimension
constraints for ZFBF-based scheduling, we first use a sim-
ple two-link network shown in Fig. 3 as an example. In
this network, link l has 3 antennas on each side and link
m has 5 antennas on each side. For this simple network,
we can first choose a TTx(l) arbitrarily without consider-
ing link m’s existence. Suppose that TTx(l) is full-rank
(i.e., 3 data streams being transmitted). Next, we choose
an RRx(m) to cancel the interference from link l, while
receiving data streams from its desired transmitter. This is
equivalent to solving (HTx(l),Rx(m)TTx(l))

†RRx(m) = 0
with TTx(l) already determined. This implies that all col-
umn vectors in RRx(m) have to lie in the null space of
(HTx(l),Rx(m)TTx(l))

†. The dimension of the null space in
this case is dim(null((HTx(l),Rx(m)TTx(l))

†)) = 5 − 3 = 2,
meaning that Rx(m) can receive up to 2 streams. Note
that links l and m are both active in an interference-free
environment. Further, by varying the ranks of TTx(l) and
RRx(m), it is easy to verify that the achievable DoF region
under this ZFBF-based scheme is the trapezoid shown in
Fig. 4.1 Observe that the scheduling scheme in this two-link
example is performed in an ordered fashion: we arbitrarily
choose a TTx(l) first, and then choose an RRx(m) such that
the interference can be eliminated.

We now extend this order-based interference cancellation
idea to a three-link example shown in Fig. 5, which is more
complicated than the previous example. Here, each receiving
node of a link is being interfered by the transmitting nodes of
other links. For this example, we can start with a scheduling
order for the six nodes. Such a scheduling order will be subject
to an optimization in Section III-C. Suppose the scheduling
order for the six nodes is Tx(l) → Rx(m) → Rx(l) →
Tx(m) → Tx(n) → Rx(n). Then, through the following
scheduling decision, we can show that the stream combination
(1, 1, 2) is achievable.

1Note that the achievable DoF region in Fig. 4 coincides with the maximum
DoF region described in [19, Theorem 2]. Thus, for this two-link example,
the proposed scheduling scheme is an optimal scheduling scheme.
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Fig. 5. A three-link example.

1) Tx(l): Since nodes Tx(l) is the first to be scheduled, it
does not have any interference to concern about. Also, since
Tx(l) has only 1 antenna, we can let Tx(l) transmit 1 data
stream;

2) Rx(m): Since Rx(m) is scheduled after Tx(l),
it needs to suppress the interference from Tx(l), i.e.,
solving (HTx(l),Rx(m)TTx(l))

†RRx(m) = 0. We have
dim(null((HTx(l),Rx(m)TTx(l))

†)) = 2 − 1 = 1, i.e., we can
let Rx(m) receive 1 stream in this case;

3) Rx(l): Since no interfering transmitting node is scheduled
before Rx(l), Rx(l) does not need to concern about any
interference. Given Rx(l) has only 1 antenna, we can let it
receive 1 stream;

4) Tx(m): Following the similar argument as for Rx(m),
we can let Tx(m) transmit 1 stream;

5) Tx(n): Since Tx(n)’s transmission should not in-
terfere with Rx(l) and Rx(m), it follows that TTx(n)

should satisfy

[
R†

Rx(l)HTx(n),Rx(l)

R†
Rx(m)HTx(n),Rx(m)

]
TTx(n) = 0. Since

dim

(
null

[
R†

Rx(l)HTx(n),Rx(l)

R†
Rx(m)HTx(n),Rx(m)

])
= 4−(1+1) = 2, we

can schedule 2 data streams at Tx(n);
6) Rx(n): Following a similar analysis as in 5), it can be

shown that 2 streams can be scheduled at Rx(n).
The idea in the three-link example can be synthesized for

a general multiple-link setting. The essence of this scheduling
scheme is to perform interference cancellation successively
based on an ordered node list:

• If a node is transmitting, then it is only necessary to
ensure that its transmissions do not interfere with previ-
ously scheduled receiving nodes in the ordered node list.
It does not need to expend precious DoF resources to null
its interference to those receiving nodes to be scheduled
after itself in the node list.

• If a node is receiving, it only needs to suppress inter-
ference from transmitting nodes scheduled before itself
in the node list. It does not need to concern interfering
transmitting nodes to be scheduled after itself.

The interference cancellation behavior described above of-
fers the basic idea for a node-based scheduling scheme.
For easy reference, we call this scheduling scheme OBIC
(order-based interference cancelation). Additional quantitative
constraints on DoF on each transmitting and receiving node
(as shown in last two examples) will be discussed in the next
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Fig. 6. The flow chart of OBIC scheduling scheme.
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Fig. 7. Achievable DoF region comparison between OBIC and CiM for the
example in Fig. 3.

section. Fig. 6 shows the flow chart of the OBIC scheme.

Remark 1. In [6], Hamdaoui and Shin proposed several
interference avoidance schemes based on ZFBF. For the so-
called CiM scheme (the best among the proposed schemes
in [6]), the authors also recognized that interference can be
cancelled by either the transmitting or the receiving node of an
interference link. However, without employing a node-based
sequential scheduling, it is impossible to know which node
should perform interference mitigation. As a result, the CiM
scheme requires both the transmitting and receiving nodes of
an interference link to expend precious DoFs for interference
cancellation (c.f. [6, Eq. (10)]). This approach adversely leads
to a much smaller DoF region. As an example, we compare the
performance of OBIC and the CiM model on the simple two-
link example in Fig. 3. Under the CiM model, it is not difficult
to verify that the achievable DoF region is the shaded triangle
in Fig. 7, representing the convex hull of the white dots, which
are the DoF combinations directly achievable under CiM. It
can be seen that this region is smaller than the achievable
DoF region by OBIC. In general, it can be shown that the
DoF region achieved under the CiM model is always a subset
of that under the OBIC [15].

Remark 2. We point out that for the three-link network
example in Fig. 5, a larger DoF region can be achieved by
interference alignment (IA) [20]. The basic idea of IA is that
by aligning the interference from two interfering transmitters
at each receiving node, the interference from different nodes
becomes dependent, implying a smaller rank of the effective
interference channel. This in turn leads to a higher dimensional
null space that can be exploited for data transmissions. We
note, however, that IA also has its limitations. IA was pro-
posed for the classical interference channel in the context of
network information theory [21], where the channel possesses



a “fully-connected” structure. That is, each link in the network
is interfered by all remaining links. For general multi-hop
network topology where the full connectivity may not hold,
the achievable DoF region of IA remains an open problem.

C. OBIC: A Mathematical Model

Having introduced the basic idea of OBIC, we now develop
its mathematical model. We represent the topology of a multi-
hop MIMO network by a directed graph, denoted by G =
{N ,L}, where N and L are the sets of nodes and all possible
MIMO links, respectively. Suppose that the cardinalities of the
sets N and L are |N | = N and |L| = L, respectively. In
this paper, we assume that scheduling operates in a frame-
by-frame system with T time slots in each frame. We remark
that this time-slotted assumption is not a necessary restriction.
For this work, there is no fundamental distinction between
time and frequency dimensions. Thus, the time slot index t in
the mathematical modeling described below could equivalently
be used to describe frequency slots or even a time-frequency
tuple.
Modeling an Ordered Node List. Refer to Fig. 6 and the
discussion in Section III-B. Before we start scheduling on a
node, we must have an ordered node list, which will be subject
to an optimization.

To model an ordered node list that can be optimized, we
define the following binary variable. For i, j ∈ N , i ̸= j, we
let πij(t) = 1 if node j is scheduled after node i in time slot
t and 0 otherwise. It is easy to see that πij(t) must satisfy the
following two properties.

i) Mutual exclusiveness: If node j is scheduled after node
i (i.e., πij(t) = 1), then it also implies that node i is before
node j (i.e., πji(t) = 0). This relationship can be modeled as

πij(t) + πji(t) = 1, ∀i, j ∈ N : i ̸= j, ∀t. (6)

ii) Transitivity: If node j is scheduled after i (i.e., πij = 1)
and node k is scheduled after node j (i.e., πjk = 1), then it
implies that node k is scheduled after node i (i.e., πik = 1). To
model this transitivity property, we have the following lemma
and refer readers to [15] for the details of the proof due to
space limitation.

Lemma 2. Let Ω(·) be a one-on-one mapping from each
element in the set N to a natural number in {1, 2, . . . , N}.
For nodes i, j, k ∈ N with Ω(i) < Ω(j) < Ω(k), the follow-
ing two constraints are sufficient to describe the transitivity
relationship among nodes node triplet i, j, and k:

1 ≤ πij(t) + πjk(t) + πki(t) ≤ 2. (7)

The constraint in (7) can be interpreted in a logical sense.
It is easy to see that 1 ≤ πij(t)+ πjk(t)+ πki(t) ≤ 2 implies
that at least 1 and at most 2 π-variables can be equal to one.
If not, then we have either πij(t) = πjk(t) = πki(t) = 0 or
πij(t) = πjk(t) = πki(t) = 1, both of which cannot be true
since the ordering for i, j, and k would then form a loop.
Modeling the Transmitting Node Behavior. Next, we
model the block in Fig. 6 where a node i is scheduled to be

a transmitting node. Note that in each time slot t, 1 ≤ t ≤ T ,
due to half-duplex, each node either transmit, receive, or be
idle. To model half-duplex, we introduce two groups of binary
variables gi(t)’s and hi(t)’s as follows. gi(t) = 1 if node i
is transmitting in time slot t and 0 otherwise; hi(t) = 1 if
node i is receiving in time slot t and 0 otherwise. Then, the
half-duplex constraint can be characterized by

gi(t) + hi(t) ≤ 1, ∀i, t. (8)

We assume that scattering is rich enough in the environment
such that all channel matrices are of full-rank. As a result, the
number of data streams that a node can transmit or receive is
limited by its number of antennas and we have the following
two constraints:

gi(t) ≤
∑

l∈LOut
i

zl(t) ≤ gi(t)Ai, (9)

hi(t) ≤
∑
l∈LIn

i

zl(t) ≤ hi(t)Ai, (10)

where LOut
i and LIn

i represent the sets of outgoing and in-
coming links at node i, respectively; zl(t) denotes the number
of data streams over link l in time slot t, and Ai represents
the number of antennas at node i.

From Fig. 6, we see that the data streams transmitted
by node i should not interfere with those receiving nodes
scheduled previously. This is equivalent to saying that the
transmission beamforming vectors in Ti should lie in the null
space of the stacked matrix formed by stacking all R†

jHi,j

matrices, where j denotes a previously scheduled receiving
node that could be interfered by node i. That is,

Ti ∈ null


...

R†
jHi,j

...

 ,
j ∈ Ii and j is
scheduled before i
(i.e., πji = 1),

(11)

where Ii represents the set of nodes within the interference
range of node i. For convenience, we let S denote the stacked
matrix in (11). Note that

∑
l∈LOut

i
zl(t) is the number of data

streams that node i transmits in time slot t. Thus, from (11),
we have that

∑
l∈LOut

i
zl(t) should be less than or equal to

the nullity of S, i.e.,
∑

l∈LOut
i

zl(t) ≤ null(S). Also, note

that the rank of S is
∑

j∈Ii
πji(t)

∑Tx(l)̸=i
l:Rx(l)=j zl(t). Therefore,

according to rank-nullity theorem [22] (i.e., rank(S)+null(S)
is equal to the number of columns in S), we can model the
dimensional constraint as follows: for all i, j ∈ N and for all
t ∈ [1, . . . , T ],∑
l∈LOut

i

zl(t) +
∑
j∈Ii

πji(t)
∑

l:Rx(l)=j
Tx(l) ̸=i

zl(t) ≤ Ai + (1− gi(t))M. (12)

In (12), M is a sufficiently large number (e.g., we can set
M =

∑
j∈Ii

Ai). When node i is a transmission node (i.e.,
gi(t) = 1), then (12) is reduced to the rank-nullity condition
with respect to S. Otherwise, if node i is scheduled to be a



receiving node or in idle status (i.e., gi(t) = 0), then (12)
trivially holds due to the large value of M .

We note that the nonlinear terms πji(t)
∑Tx(l)̸=i

l:Rx(l)=j zl(t)
in (12) could complicate optimizations. To remove these
nonlinear terms, we can introduce a new integer variable ϕji(t)
and reformulate (12) as follows:∑

l∈LOut
i

zl(t) +
∑
j∈Ii

ϕji(t) ≤ Ai + (1− gi(t))M, (13)

where ϕji(t), ∀i ∈ N , j ∈ Ii, ∀t ∈ [1, . . . , T ], satisfies the
following constraints:

ϕji(t) ≤
∑Tx(l)̸=i

l:Rx(l)=j zl(t), (14)

ϕji(t) ≤ Aiπji(t), (15)

ϕji(t) ≥ Aiπji(t)−Ai +
∑Tx(l)̸=i

l:Rx(l)=j zl(t). (16)

It is easy to verify that this set of new constraints (13)–(16)
is equivalent to (12).
Modeling the Receiving Node Behavior. Similarly, for the
block in Fig. 6 where a node i is scheduled to be a receiving
node, we can derive the following constraints: for all i, j ∈ N
and for all t ∈ [1, . . . , T ],∑

l∈LIn
i
zl(t) +

∑
j∈Ii

φji(t) ≤ Ai + (1− hi(t))M, (17)

φji(t) ≤
∑Rx(l)̸=i

l:Tx(l)=j zl(t), (18)

φji(t) ≤ Aiπji(t), (19)

φji(t) ≥ Aiπji(t)−Ai +
∑Rx(l) ̸=i

l:Tx(l)=j zl(t). (20)

Link Capacity Computation under OBIC. In Section II,
we proposed a simple and accurate physical layer model to
approximate the capacity of a single MIMO link. We are now
ready to further extend (4) to approximate the capacity of
each MIMO link under OBIC. First, we note that there is no
interference among links due to ZFBF. Thus, as the single link
case in Section II, the capacity of each link under OBIC is not
affected by interference. However, compared with the single
MIMO link case, a key difference in OBIC is that each active
link l now transmits zl data streams instead of dl and zl ≤ dl.
In this case, one may conjecture that a simple way to modify
(4) for OBIC is to replace dl with zl. Indeed, the following
theorem says that such an extension is correct and its rigorous
proof is provided in [15].

Theorem 2. Under OBIC, each MIMO link’s capacity in time
slot t can be approximated as

Cl(t) = W · zl(t) · log2
(
1 +

ρlαl(t)

zl(t)

)
. (21)

Moreover, under a high SNR regime, the approximation gap
incurred by (21) is negligible.

IV. APPLICATION IN MULTI-HOP NETWORKS

In Sections II and III, we have developed two models for
the physical layer and the link layer in multi-hop networks,
respectively. In this section, we will show how to apply them
for cross-layer optimization in multi-hop MIMO networks. We

consider a generic utility maximization problem involving a
set of sessions, F , in an ad hoc network. Denote src(f) and
dst(f) the source and destination nodes of session f ∈ F ,
respectively. Denote r(f) the flow rate of session f and rl(f)
the flow rate on link l that is attributed to session f ∈ F ,
respectively. Denote Cl(t) the capacity of link l in time-slot
t. For stability, we have the following constraints on the flow
rates: ∑

f∈F rl(f) ≤ 1
T

∑T
t=1 Cl(t), ∀l. (22)

At the network layer, different routing schemes can be
adopted. Under any routing scheme, the flow balance con-
straints must hold at each node i ∈ N .∑

l∈LOut
i

rl(f)−
∑

l∈LIn
i
rl(f) = r(f), if i = src(f), (23)∑

l∈LOut
i

rl(f) =
∑

l∈LIn
i
rl(f), if i ̸= src(f),dst(f), (24)∑

l∈LIn
i
rl(f)−

∑
l∈LOut

i
rl(f) = r(f), if i = dst(f). (25)

It can be easily verified that if (23) and (24) are satisfied, then
(25) is automatically satisfied. As a result, it is not necessary
to list (25) in problem formulation once we have both (23)
and (24).

When a node is transmitting simultaneously on more than
one outgoing link, it is necessary to consider power allocation
among LOut

i at node i. Recall that αl(t) ∈ [0, 1] represent a
fraction of transmit power allocated to link l in time-slot t.
Then, for each node i in time-slot t, we have∑

l∈LOut
i

αl(t) ≤ gn(t), ∀n, t. (26)

The constraint in (26) ensures that the sum of transmit power
of all outgoing links at node i does not exceed the power
limit. In the case when node i is not in transmission mode,
then gi(t) = 0 and αl(t) = 0 for all l ∈ LOut

i .
Consider a utility function for each session, u

(
r(f)

)
, which

we assume is concave. Then a general MIMO network utility
maximization (MIMO-NUM) problem can be formulated as
follows.

MIMO-NUM
max

∑F
f=1 u

(
r(f)

)
s.t. Network layer flow-balance routing constraints

in (23) and (24);
Link capacity constraints in (22);
OBIC based link layer constraints
in (6), (7), (8), (9), (10) and (13)–(20);

Simplified MIMO physical layer model
in (21) and (26).

Two remarks are in order. 1) Tractability. Recall that existing
MIMO cross-layer optimization involves many matrix vari-
ables in the capacity calculation and ZFBF scheduling, making
network level research quite challenging. With our simple
models, matrix variables no longer appear in the MIMO-
NUM problem, which significantly simplifies formulation and
reduces computational complexity. 2) Solvability. By using
our simple models, the MIMO-NUM problem is reduced to
a similar mathematical form as a NUM problem for single-
antenna ad hoc networks. Note that although the OBIC part
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Fig. 8. A 50-node 5-session multi-hop MIMO network.

is unique, it is of linear form and can be handled easily. This
suggests that we can take advantage of the existing experiences
gained from single-antenna ad hoc networks in the literature
to develop solutions.

As an example to illustrate the solvability of our MIMO-
NUM formulation, we consider a multi-hop MIMO network
consisting of 50 nodes that are uniformly distributed in a
square region of 1500m × 1500m (see Fig. 8). Each node
in the network is equipped with 4 antennas and the maximum
power for each node is 100 mW. The channel bandwidth is
20 MHz. The path-loss index is 3.5. There are 5 sessions in
the network: N26 to N19, N44 to N18, N24 to N15, N48
to N2, and N9 to N32, respectively. Suppose that minimum-
hop routing is employed at the network layer. The objective
is to maximize the sum of the end-to-end session rates, i.e.,
u
(
r(f)

)
= r(f). Suppose that there are 4 time slots in

each time frame, i.e., T = 4. Given these parameters and
network settings, the MIMO-NUM problem is now completely
specified. We can use CPLEX solver to obtain an optimal
solution.

The optimal scheduling ordering for each node in each time
slot is listed in Table II. In this table, each column gives the
node ordering for scheduling in a given time slot of a frame.
For example, in the first time slot, the optimal ordering of the
nodes is N19 → N18 → . . . → N2.

Fig. 9 shows the routing paths for each session and optimal
scheduling solution (shown in shaded boxes). As an example,
the shaded box next to the link from N6 to N18 contains
“1:1 2:1 3:2,” which means that in time slots 1, 2, 3, there are
1, 1, and 2 streams on this link, respectively. In time slot 4,
the link is not transmitting. Based on the number of streams,
the simple physical layer model (21) and the link capacity
constraint in (22), the optimal session rates (in Mb/s) are: 60.4
for N26 → N19, 151 for N44 → N18, 102 for N24 → N15,
36.6 for N48 → N2, and 57.2 for N9 → N32.
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Fig. 9. Scheduling result on each link.

TABLE II
OPTIMAL NODE ORDERING IN EACH TIME SLOT OF A FRAME.

Time Slot 1 Time Slot 2 Time Slot 3 Time Slot 4
1st N19 N48 N24 N24
2nd N18 N27 N22 N32
3rd N44 N32 N44 N26
4th N15 N15 N9 N48
5th N26 N9 N15 N18
6th N22 N19 N27 N24
7th N5 N44 N32 N9
8th N48 N26 N26 N22
9th N6 N18 N19 N5
10th N27 N2 N18 N6
11th N24 N24 N6 N15
12th N32 N22 N5 N19
13th N3 N5 N48 N2
14th N1 N3 N1 N27
15th N9 N1 N3 N1
16th N2 N6 N2 N3

V. CONCLUSION

Existing models for MIMO suffer from either intractability
or inaccuracy when they are employed to study multi-hop
MIMO networks. We proposed a tractable and accurate model
for MIMO that is amenable for cross-layer analysis in multi-
hop setting. Our contributions included a model at the physical
layer and a model at the link layer. At the physical layer, we
proposed a simple model to compute MIMO channel capacity
that captures the essence of spatial multiplexing and transmit
power limit without involving complex matrix operations and
the water-filling algorithm. We proved that the approximation
gap in this physical layer model is negligible. At the link layer,
we proposed a scheduling scheme called OBIC that is based
on ZFBF interference mitigation. The proposed OBIC scheme
cuts through the complexity associated with beamforming
designs in a multi-hop network by using simple algebraic com-
putation. This allows us to explore the link layer scheduling
performance without entangling with beamforming details. By
applying the proposed cross-layer model to a general NUM
problem, we validate its efficacy in practice. The results in
this paper offer an important analytical tool to fully exploit



the potential of MIMO in multi-hop networks.
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APPENDIX A
PROOF OF THEOREM 1

From Lemma 1, we have

EHl
[∆Cl] ≈ W

dl∑
i=1

Eλi [log2 λi] ≤ W

dl∑
i=1

log2 Eλi [λi].

where the last inequality follows from the concavity of the
log function and Jensen’s inequality. The Marc̆enko-Pastur
theorem [23] says that for a matrix Hl with nr

nt
= β, the

limiting p.d.f. of the eigenvalues of the corresponding Wishart
matrix HlH

†
l as nt, nr → ∞ is:

fβ
λ (x) =

(
1− 1

β

)
+

δ(x) +

√
(x− l)+(u− x)+

2πβx
, (27)

where l = (1−
√
β)2, u = (1 +

√
β)2, and (·)+ = max(0, ·),

and δ(x) is the Dirac delta function. Moreover, even for small
values of nt and nr, the p.d.f function in (27) can be used to
serve as an excellent approximation [13].

Now, let us first consider the case when β ≤ 1.
In this case, the p.d.f. can be simplified to fβ

λ (x) =√
(x− l)+(u− x)+/2πβx. Since all eigenvalues are i.i.d.

distributed, we have
dl∑
i=1

log2 Eλi [λi] = dl log2 E[λ]

= dl log2

(
1

2πβ

∫ u

l

√
−x2 + 2(1 + β)x− (1− β)2dx

)
.

For convenience, let R(x) = −x2+2(1+β)x− (1−β)2. By
using [24, Eq. 2.262], we can derive that∫ u

l

√
R(x)dx =

2x− 2(1 + β)

4

√
R(x)

∣∣∣∣u
l

+
16β

8

∫ u

l

dx√
R(x)

.

(28)
Note that the first term in the summation in (28) is zero. Then
by using [24, Eq. 2.261], we can further derive that∫ u

l

√
R(x)dx = 2β arcsin

(
−2x+ 2(1 + β)√

16β

)∣∣∣∣u
l

= −2β(arcsin(−1)− arcsin(1)) = 2πβ.

It then follows that

EHl
[∆Cl] ≤ W

dl∑
i=1

log2 Eλi [λi] = Wdl log2

(
2πβ

2πβ

)
= 0.

For the case when β > 1, the first term in the p.d.f. function
in (27) becomes non-zero. Thus, we need to further evaluate
the expectation of the first term. In this case, it is easy to see
that∫ u

l

x

(
1− 1

β

)
δ(x)dx =

(
1− 1

β

)∫ u

l

xδ(x)dx = 0.

Combining two cases, we have EHl
[∆Cl] ≈ 0 for all β, and

the proof is complete.


