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Abstract—In recent years, over-the-air federated learning
(OTA-FL) has emerged as an efficient mechanism that exploits
the superposition property of the wireless medium and performs
model aggregation for federated learning. However, OTA-FL is
sensitive to wireless channel fading, which could significantly
diminish the learning accuracy of OTA-FL. To address this
challenge, in this paper, we propose an OTA-FL algorithm called
CHARLES (channel-quality-aware over-the-air local estimating
and scaling). Our CHARLES algorithm performs channel state
information (CSI) estimation and adaptive scaling to mitigate the
impacts of wireless channel fading. We establish the theoretical
convergence rate performance of CHARLES and analyze the
impacts of CSI error on the convergence of CHARLES. We
show that the adaptive channel inversion scaling scheme in
CHARLES is robust under imperfect CSI scenarios. We also
demonstrate through numerical results that CHARLES achieves
outperforms existing OTA-FL algorithms with heterogeneous
data under imperfect CSI.

I. INTRODUCTION

Fueled by privacy protection and communication-efficiency,
Federated Learning (FL) has drawn a significant amount of
attention in recent years and has found many applications in
practice. FL employs a large number of clients to collabo-
ratively train a global model through infrequent exchanges
of model parameters between the server and clients and
without sharing any local data at each client. As a result,
FL inherently provides privacy protection and communication
efficiency, while also being able to leverage computational
parallelism for numerous clients. However, when deployed in
wireless networks, clients in an FL system have to compete for
temporal and spectral channel resources and often suffer from
power limitation. To avoid interference between clients, the
conventional strategy is to assign orthogonal either spectral or
temporal channel resource blocks to the clients. However, in a
large-scale FL system, an orthogonal channel resource division
scheme could dramatically decrease communication speed
between the server and the clients, which in turn prolong the
information exchange process. Consequently, communication
becomes the major bottleneck during the training process,
which may even render FL infeasible in some bandwidth and
power-limited scenarios.

To overcome this challenge, over-the-air FL (OTA-FL) has
recently been proposed to perform model aggregation for free
by utilizing the superposition property of the wireless medium.
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Specifically, rather than relying on using orthogonal channels
to avoid interference and recover each client’s information
individually, OTA-FL “embrace” interference by allowing all
clients to simultaneously communicate in the same channel
and obtain aggregation over the air directly. Hence, OTA-
FL experiences no resource degradation in communication
parallelism, regardless of the number of clients in the system.

However, despite the aforementioned salient features, one
major challenge in OTA-FL is that it is highly susceptible
to channel fading in wireless communication, which could
significantly distort each client’s component in the over-the-
air aggregation. Exacerbating the problem is the fact that
such distortions are time-varying due to the nature of channel
fading. To date, most existing works on OTA-FL with channel
fading focus on developing efficient algorithms based on
perfect channel state information (CSI). For example, A-
DSGD is proposed in [1] based on an analog scheme with
sparsification under simple Gaussian multiple access channels
(MAC). Fading is also considered in [2], [3], where perfect
CSI is assumed to be available to mitigate channel noise
and ensure convergence (see Section II for more in-depth
discussions). However, perfect CSI is usually difficult to
obtain in practice, especially for fast fading channels [4]. In
addition to the impacts of channel fading, FL deployments
over wireless networks also face challenges in data and system
heterogeneity due to the inherent geo-location diversity of
wireless networks (non-i.i.d. and unbalanced dataset sizes;
vastly different channel qualities and computation capabilities
of clients, etc.).

To address the aforementioned challenges, in this paper, we
propose a new OTA-FL algorithm called CHARLES (channel-
quality-aware over-the-air local estimating and scaling), which
performs CSI estimation and adaptive scaling to mitigate the
impacts of both channel fading and data/system heterogeneity.
Our main contributions are summarized as follows:

• Our proposed CHARLES algorithm allows each client to (in
a distributed manner) adaptively determine its transmission
power level and number of local update steps based on
its estimated CSI (potentially imperfect) to fully utilize the
computation and communication resources.

• We analyze the convergence performance of CHARLES for
non-convex FL settings and the impacts of CSI estimation
error on the convergence of CHARLES. We show that the
impact of imperfect CSI on stationarity gap convergence



can be bounded in terms of channel estimation error.
• We conduct experiments using convolutional neural net-

work (CNN) on non-i.i.d. MNIST datasets to evaluate the
performance of our CHARLES algorithm. We show that
CHARLES outperforms existing OTA-FL algorithms.

II. RELATED WORK

OTA-FL with channel fading has been actively researched
recently in [1], [7], [12]–[16]. However, most of these existing
works assume perfect CSI at the transmitter side, which
allows relatively straightforward precoding designs to mitigate
the distortion due to channel fading. So far, research on
OTA-FL with imperfect CSI remain in its infancy (see [5]–
[11], [17], [18]). In [7], the performance of the proposed
compressed analog DSGD algorithm under imperfect CSI was
only investigated in experiments, which shows that imperfect
CSI could lead to signal misalignment at the server-side. In
[5], a whitened matched filtering and a sampling scheme is
proposed to deal with imperfect CSI on the receiver side. A
Bayesian approach was further proposed in the follow-up work
of the same authors [17]. In [8], a receive beamforming pattern
is proposed to compensate the server-side imperfect CSI by
equipping the server with a sufficiently large number of an-
tennas. Without assuming perfect receiver-side CSI (CSIR), a
fixed rate federated learning approach is proposed in [11] using
only receiver channel CDF but with slower FL convergence
time. Instead of assuming perfect transmitter-side CSI (CSIT),
one-bit quantization and major voting was used in [6] to
reduce communication cost in FL for digital communication,
each user transmits only one bit for each element of the
local update vector. In [18], MSE of the aggregated global
update E||x̂t − xt||2 (x̂t is the estimated aggregation that
contains CSI) is minimized in each communication round and
an alternating optimization approach is used to find optimal
receiver beamforming and power control. Another line of work
on OTA with imperfect CSI related to this paper is based on
device scheduling design. For example, a dynamic energy-
aware scheduling algorithm was proposed in [9] by taking
computation energy constraint into account, while resource
allocation with client scheduling was also considered in [10].

We note that the aforementioned existing works only at-
tempted to mitigate the impacts of imperfect CSI from either
CSIT or CSIR perspectives. So far, there remains a lack of
theoretical and quantitative understanding on the combined
overall impacts of imperfect CSI. Moreover, the power con-
trol component is also decoupled from the FL optimization
problem and treated separately in these existing works. These
limitations motivate us to pursue a unified OTA-FL algorith-
mic design that achieves convergence guarantee under both
imperfect CSIT and CSIR. In our previous work [3], we have
explored a joint computation and power control design under
the Gaussian MAC, albeit with perfect CSI assumption. Built
upon the promising results in [3], our proposed CHARLES also
jointly consider computation and power control, while taking
imperfect CSI into consideration. To highlight our contri-

butions, we summarize the state-of-the-art of OTA-FL with
imperfect CSI in Table I.

III. SYSTEM MODEL

In this section, we introduce the system model of OTA-FL
with imperfect CSI.

A. Federated Learning Model

Consider an FL system with m clients collaboratively train-
ing a model coordinated by a server. Each client i maintains
a local dataset Di following a distribution Xi. The datasets
are assumed to be non-i.i.d. across clients, i.e., Xi ̸= Xj if
i ̸= j,∀i, j ∈ [m]. The goal of FL is to minimize a global loss
function by finding an optimal model parameter x:

min
x∈Rd

F (x) ≜ min
x∈Rd

∑
i∈[m]

αiFi(x, Di), (1)

where αi = |Di|∑
i∈[m] |Di| is the proportion of the size

of local dataset i in the global dataset, Fi(x, Di) ≜
1

|Di|
∑

ξij∈Di
F (x, ξij) denotes the local loss function. In this

paper, we assume that Fi(x, Di) is non-convex, which is
typical in FL. In practice, the proportions of different client
datasets are typically different, i.e., αi ̸= αj if i ̸= j.

In the t-th communication round, the server broadcasts the
current global model parameter xt to each client. Then, client
i starts training local model from xt based on its local dataset
Di. Each client employs stochastic gradient descent (SGD)
with initialization xi

t,0 = xt for τ it steps:

xi
t,k+1 = xi

t,k − η∇F (xi
t,k, ξ

i
t,k), k = 0, . . . , τ it − 1, (2)

where ξit,k is a training sample randomly drawn from Di in the
k-th local step in the t-th round. As in our previous work [3],
the number of local steps τ it vary across clients and times.

The clients upload the model updates to the server once
the local training is done. Upon receiving all local updates,
the server aggregates them and update the global model to
xt+1 accordingly. Then, the server broadcasts it to the clients
and the next communication round t + 1 starts. The training
process stops if the global model converges or reaches some
predefined limit of iteration number. Note that, under OTA-
FL, the communication and aggregation happen at the same
time at the server due to the inherent superposition property
of the wireless medium.

B. Communication Model

For simplicity, we consider a synchronous error-free down-
link1 and a wireless fading uplink MAC communication model
for the OTA-FL system. The server and devices are all
equipped with a single antenna. We assume that each client
receives the global model perfectly, i.e., xi

t,0 = xt,∀i ∈ [m].
However, for the uplink, devices transmit their update through
a shared wireless medium. We denote zit ∈ Rd as the transmit-
ted signal from client i, which experiences a fading channel

1Our results extend straightforwardly to the noisy downlink case, which
yields an extra error term in convergence bound.



TABLE I
RELATED WORK (“ × ” MEANS THE OPPOSITE SITUATION, BLANK MEANS NONE).

Method Perfect CSIT Perfect CSIR Compression Non-IID Analog Device Schedule
COTAF [2]

√ √ √

WMFS [5] ×
√

OBDA [6] ×
√

×
√

CA-DSGD [7]
√ √ √ √ √

Reference [8] ×
√ √

Reference [9] ×
√ √ √

QAW-GPR [10] ×
√ √ √

FRFL [11] ×(only CDF)
√ √ √

CHARLES (This Paper) ×
√ √

during transmission. We assume that in each communication
round t, the uplink channels follow a block fading model,
where each channel gain remains constant during transmission
of d symbols and changes in the next communication round.
In this paper, we use analog transmission in OTA-FL to fully
utilize the superposition property of MAC. The received signal
at the server can be written as: yt =

∑
i∈[m] h

i
tz

i
t+wt, where

hi
t ∈ C denotes the channel gain from client i to the server in

round t, wt represents the i.i.d. additive white Gaussian noise
with zero mean and variance σ2

c . We assume i.i.d Rayleigh
fading channels, i.e., hi

t ∼ CN (0, σ2
h),∀i ∈ [m]. We also

consider the following power constraint for each client at t-
th communication round: ∥zit∥2 ≤ P i

t , ∀i ∈ [m], ∀t, where
P i
t represents the maximum power that client i can transmit.

We assume that the clients do not have perfect CSIT. Instead,
each client i can estimate its channel and obtain an imperfect
CSI in each global round. To facilitate our later analysis, we
decompose the estimated CSI ĥi

t of client i in iteration t into
the follow two parts: ĥi

t = hi
t +∆i

t, ∀i ∈ [m], ∀t, where ∆i
t

represents the channel estimation error of client i in the t-th
round, which is assumed to be a random variable with zero
mean and variance σ̃2

h.
We note that without perfect CSIT, we are not able to

completely offset the influence of fading channels. However,
we will show that, with imperfect CSIT, we can still achieve
an acceptable performance by adaptive power control and
dynamic local training design.

IV. THE CHARLES ALGORITHM

To mitigate the impacts of channel fading, one simple
and intuitive approach is to inverse the channel gain at the
transmitter by leveraging with CSIT. As mentioned in section-
III, each client trains local model via SGD (cf. Eq. (2)). Once
the local training is done, client i computes its transmission
signal zit and uploads it to the server. Similar to our previous
algorithm ACPC-OTA-FL [3], we propose a dynamic power
control (PC) scheme that endows an adaptive scaling factor
for each client with a common scaling factor for the server.
Specifically, denote βi

t as PC parameter of client i in the t-th
round and βt as server-side PC factor. The transmission signal
zit is designed as:

zit = βi
t(x

i
t,τ i

t
− xi

t,0). (3)

The server receives the aggregated signal over-the-air and
then scales it by βt. Accordingly, the global update can be
expressed as:

xt+1 = xt +
1

βt

m∑
i=1

zit + w̃t, (4)

where w̃t is the equivalent Gaussian noise after scaling,
w̃t ∼ N (0,

σ2
c

β2
t
Id). The key difference and novelty in this work

compared to [3] is the design of the local PC parameter βi
t ,

which will be illustrated in the next sub-section. The design
maintains the advantages of previous work [3], where dynamic
local steps allow clients to fully exploit its computation
resources while satisfying the communication constraints at
the same time. Furthermore, the new design in this work
alleviates the negative fading impacts on both perfect CSI and
imperfect CSI cases.

A. Perfect CSI at the Clients

We first assume that all clients have perfect CSI. In this case,
the influence of fading can be fully canceled via the following
PC design: βi

t =
βtαi

τ i
th

i
t
. After scaling at the server, the global

update remains the same as those of OTA-FL systems without
fading. Thus, the convergence analysis is the same as in [3].

B. Imperfect CSI at the Clients

We now generalize our power control design by assuming
clients only have imperfect CSI. The idea is to use the
estimated fading coefficient in the local PC factor to offset
the channel fading effect:

βi
t =

βtαi

τ it ĥ
i
t

. (5)

Note that we no longer have a perfect alignment at the server
due to imperfect CSI. Instead, the information of client i is
scaled by hi

t

ĥi
t

in the aggregated signal. The CSI estimation error
results in a distortion in each global model update in every
iteration. As a result, the accumulated mismatch will degrade
the overall training performance. Next, we will analyze the
convergence performance and this cumulative error impact
theoretically. We first state three assumptions:

Assumption 1. (L-Lipschitz Continuous Gradient) There ex-
ists a constant L > 0, such that ∥∇Fi(x) − ∇Fi(y)∥ ≤
L∥x− y∥, ∀x,y ∈ Rd, and i ∈ [m].



Assumption 2. (Unbiased Local Stochastic Gradients and
Bounded Variance) Let ξi be a random local data sample at
client i. The local stochastic gradient is unbiased and has a
bounded variance, i.e., E[∇Fi(x, ξi)] = ∇Fi(x), ∀i ∈ [m],
and E[∥∇Fi(x, ξi)−∇Fi(x)∥2] ≤ σ2, where the expectation
is taken over the local data distribution Xi.

Assumption 3. (Bounded Stochastic Gradient) There exist a
constant G ≥ 0, such that the norm of each local stochastic
gradient is bounded: E[∥∇Fi(x, ξi)∥2] ≤ G2, ∀i ∈ [m].

The convergence result of our CHARLES algorithm is stated
below under the assumptions above:

Theorem 1 (Convergence Rate of CHARLES). Let {xt} be
the global model parameter. Under Assumptions 1- 3 and a
constant learning rate ηt = η,∀t ∈ [T ], it holds that:

min
t∈[T ]

E∥∇F (xt)∥2 ≤ 2 (F (x0)− F (x∗))

Tη︸ ︷︷ ︸
optimization error

+
Lσ2

c

ηβ2︸︷︷︸
channel noise

error

+ 2mL2η2G2
m∑
i=1

(αi)
2 (τi)

2

︸ ︷︷ ︸
local update error

+Lησ2 1

T

T−1∑
t=0

m∑
i=1

α2
iEt

∥∥∥∥hi
t

ĥi
t

∥∥∥∥2︸ ︷︷ ︸
statistical error

+ 2mG2 1

T

T−1∑
t=0

m∑
i=1

(αi)
2Et

∥∥∥∥1− hi
t

ĥi
t

∥∥∥∥2︸ ︷︷ ︸
channel estimation error

,

where (τi)
2
=

∑T−1
t=0 (τ

i
t)

2

T and 1
β̄2 = 1

T

∑T−1
t=0

1
β2
t

.

Proof Sketch. The proof of Theorem 1 follows a similar token
as in our previous work [3]. We start with one-step function
descent and decouple the channel noise term. However, the
new technical challenge arises from distortion caused by the
CSI estimation error of each client. In each round, the global
model update aggregates distorted local updates scaled by
hi
t

ĥi
t

,∀i ∈ [m], t ∈ [T ]. Since channel estimation is independent
of training, we can decouple the expectation of this factor
as an additional error term when calculating the difference
of local SGD updates (∇Fi(x

i
t,)−

hi
t

ĥi
t

∇Fi(x
i
t,k)), which will

become an extra scaled factor in statistical noise. Due to space
limitation, we relegate the full proof to [19].

Theorem 1 indicates five sources of errors that affect the
convergence rate: 1) the optimization error depending on
initial guess x0; 2) the statistical error due to stochastic
gradients noise; 3) channel noise error from the noisy OTA
transmissions; 4) local update error from local update steps
coupled with data heterogeneity; and 5) channel estimation
error due to imperfect CSI. Compared to the convergence
analysis with perfect CSI in [3], the additional errors stem
from the imperfect CSI at each client. The CSI estimation
errors in each global iteration accumulate and also contribute
to statistical error, which are coupled with bounded local
gradient variance and data heterogeneity. With perfect CSI,

we can fully cancel this effect. However, with imperfect CSI,
we can only partially prevent the fading effect.

Note that when we have perfect CSI, i.e., hi
t = ĥi

t, the
accumulated channel estimation error will disappear and the
statistical error will not be influenced by hi

t

ĥi
t

. This matches our
previous convergence analysis of Gaussian MAC. However,
when we consider imperfect CSI with Gaussian estimation
noise, the convergence upper bound will diverge. Yet, in
practice, the channel estimation error is a small perturbation.
Similar to [20], we can use Taylor expansion to yield the
following relation: hi

t

ĥi
t

= 1

1+
∆i

t
hi
t

= 1 − ∆i
t

hi
t
+ O((

∆i
t

hi
t
)2). By

ignoring the higher order term, we have the following result:

Corollary 1. Let |∆i
t| ≪ |hi

t|,∀t ∈ [T ], i ∈ [m], hm =
mint∈[T ],i∈[m]{|hi

t|}, the convergence rate of CHARLES is
bounded. The statistical error and channel estimation error
are bounded by:

Lησ2 1

T

T−1∑
t=0

m∑
i=1

α2
iEt

∥∥∥∥hi
t

ĥi
t

∥∥∥∥2 ≤ Lησ2
m∑
i=1

α2
i

(
1 +

σ̃2
h

h2
m

)
,

2mG2 1

T

T−1∑
t=0

m∑
i=1

(αi)
2Et

∥∥∥∥1− hi
t

ĥi
t

∥∥∥∥2 ≤ 2mG2
m∑
i=1

(αi)
2 σ̃

2
h

h2
m

.

Finally, we note that we can further extend our results to
fast fading channels. When channel states change quickly over
time, it is hard to estimate the instantaneous channel gain in
each coherent channel duration. However, we can obtain the
distribution of fading coefficient. By replacing the estimated
CSI with the expectation of CSI, the aggregated signal remains
the same and the convergence results in Theorem 1 still hold.

V. NUMERICAL RESULTS

To verify the effectiveness and robustness of CHARLES , we
conduct numerical experiments by using logistic regression for
classification tasks on the MNIST dataset [21]. The experimen-
tal setup follows from [3], where data is equally distributed
to m = 10 clients based on labels. We use parameter p to
represent data heterogeneity level, where p = 10 means i.i.d.
and the rest values are non-i.i.d cases. We consider standard
i.i.d. Rayleigh fading channels, i.e. hi

t ∼ CN (0, 1), ∀t ∈
[T ],∀i ∈ [M ]. We simulate channel estimation error as a
complex Gaussian variable, i.e., ∆i

t ∼ CN (0, 0.1), ∀t ∈ [T ],
∀i ∈ [M ]. The maximum SNR is set to −1 dB, 10 dB, 20 dB.

In this experiment, we only focus on imperfect CSIT. From
table I, OBDA is a digital method, CA-DSGD considers
compression, EADDS has a computation energy constraint.
All of these methods have different perspectives that we do
not consider. For a fair comparison, we compare CHARLES
with COTAF [2] and FedAvg [22] in different communication
scenarios. In an imperfect CSI case, we let each client use an
estimated channel to inverse the fading effect in both COTAF
and FedAvg. Specifically, the transmitted signal from client i
is scaled by 1

ĥi
t

. We assume that there is no deep fading so
all the clients can satisfy power constraints and participate in
every communication round.



TABLE II
LOGISTIC REGRESSION TEST ACCURACY (%) FOR CHARLES COMPARED
WITH COTAF AND FEDAVG ON THE MNIST DATASET WITH DIFFERENT
NON-I.I.D. INDEX p FOR SNR=10. “ / ” MEANS THAT THE ALGORITHM

DOES NOT CONVERGE.

Non-IID Level Algorithm Communication Model
Imperfect Perfect No Fading

p = 1
CHARLES 85.87 87.46 89.08

COTAF / 63.96 65.54
FedAvg / 69.64 68.08

p = 2
CHARLES 86.45 89.07 89.58

COTAF / 77.47 78.80
FedAvg 51.96 79.42 78.03

p = 5
CHARLES 89.27 91.07 90.64

COTAF / 85.96 86.52
FedAvg 59.49 82.19 82.84

p = 10
CHARLES 90.06 91.19 90.75

COTAF / 91.04 91.08
FedAvg 61.79 84.85 84.94

TABLE III
LOGISTIC REGRESSION TEST ACCURACY (%) FOR CHARLES COMPARED
WITH COTAF AND FEDAVG ON THE MNIST DATASET WITH DIFFERENT

SIGNAL-TO-NOISE RATIOS WHEN NON-IID INDEX p = 2. “ / ” MEANS
THAT THE ALGORITHM DOES NOT CONVERGE.

SNR Algorithm Communication Model
Imperfect Perfect No Fading

SNR = −1
CHARLES 79.54 82.88 81.89

COTAF / 61.33 63.59
FedAvg / 73.17 71.55

SNR = 10
CHARLES 86.45 89.07 89.58

COTAF / 77.47 78.80
FedAvg 51.96 79.42 78.03

SNR = 20
CHARLES 87.10 90.17 90.43

COTAF / 86.10 86.57
FedAvg 63.36 79.32 79.86

From the test accuracy in Table II and III, we observe
that the performance of perfect CSI is the same as no fading
case, which implies that the increased local steps due to the
inverse fading channel gain do not introduce bias to the global
model. In the imperfect CSI scenario, our CHARLES algorithm
can still achieves an acceptable test accuracy, although it is
worse than the perfect CSI because of CSI estimation error.
Yet, CHARLES outperforms COTAF and FedAvg significantly.
COTAF and FedAvg fail to converge, suggesting that the
impacts of CSI estimation error could be significant. Our
CHARLES algorithm allows clients to choose local steps
dynamically, where the joint computation and communication
design can mitigate the effect of CSI estimation error and
maintain system robustness.

VI. CONCLUSION

In this paper, we proposed a new adaptive OTA-FL al-
gorithm called CHARLES , which is adaptive to wireless
channel fading by introducing channel inversion in power
control design. We considered the practical scenario where the
clients only have imperfect CSI. We studied the convergence
performance of CHARLES in the absence of perfect CSI and
quantified the impact of CSI estimation error. We demonstrated
the effectiveness and robustness of the joint communication
and computation design under data and system heterogeneity.
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[7] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading
channels,” IEEE Transactions on Wireless Communications, vol. 19,
no. 5, pp. 3546–3557, 2020.

[8] M. M. Amiri, T. M. Duman, D. Gündüz, S. R. Kulkarni, and H. V.
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VII. PROOF

Theorem 1 (Convergence Rate of CHARLES). Let {xt} be the global model parameter. Under Assumptions 1- 3 and a
constant learning rate ηt = η,∀t ∈ [T ], it holds that:

min
t∈[T ]

E∥∇F (xt)∥2 ≤ 2 (F (x0)− F (x∗))

Tη︸ ︷︷ ︸
optimization error

+
Lσ2

c

ηβ2︸︷︷︸
channel noise

error

+ 2mL2η2G2
m∑
i=1

(αi)
2 (τi)

2

︸ ︷︷ ︸
local update error
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T
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m∑
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iEt

∥∥∥∥hi
t

ĥi
t
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T
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m∑
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2Et

∥∥∥∥1− hi
t

ĥi
t

∥∥∥∥2︸ ︷︷ ︸
channel estimation error

,

where (τi)
2
=

∑T−1
t=0 (τ

i
t)

2

T and 1
β̄2 = 1

T

∑T−1
t=0

1
β2
t

.

Proof.
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m∑
i=1
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t
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hi
t

(
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t
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)
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=

m∑
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(
∇Fi(x

i
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i
t,k)
)
+ w̃t (8)

We first take expectation conditioned on xt. There exists three sources of randomness: stochastic gradient noise, channel
noise, and imperfect CSI estimation noise; but we assume they are independent. According to assumption 1,

Et[F (xt+1)]− F (xt) ≤ ⟨∇F (xt),Et [xt+1 − xt]⟩+
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ĥi
t

τ i
t−1∑
k=0

(
∇Fi(x

i
t,k, ξ

i
t,k)
) ∥∥∥∥2

+
Lσ2

c

2β2
t

(16)



≤ −1

2
ηt∥∇F (xt)∥2 +

1

2
ηtEt

∥∥∥∥ m∑
i=1

αi

τ it

τ i
t−1∑
k=0

(
∇Fi(xt)−

hi
t

ĥi
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The first inequality holds if ηt ≤ 1
L . Because channel estimation is independent of learning,
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Plugging inequality (24) and (32) into (20), we have
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Rearranging and telescoping:
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