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Abstract—This paper studies bandits with knapsacks (BwK).
In a BwK instance, there are a set of n arms and d types of
resources with limited budgets. Each pull of an arm returns
a noisy reward and consumes some amount of resources in
each type according to some latent distribution of this arm. The
decision-maker adaptively pulls arms in order to maximize the
accumulated reward gained before some type of resources runs
out. We investigate logarithmic distribution-dependent regrets for
the BwK problem, specifically for the instances with deterministic
costs. We propose a new algorithm with regret in the form of
O(n log T/∆) (∆ is the gap of rewards similar to that in standard
MAB), which to our knowledge, is of the lowest order till now, and
has the same order as the standard MAB problem when d = 1.
Simulation results also suggest the performance improvements
using our algorithms.

Index Terms—multi-armed bandits, bandits with knapsacks,
regret minimization

I. INTRODUCTION

A. Background

The multi-armed bandit (MAB) model [10] is a versatile ab-
straction of sequential decision making under uncertainty and
has been widely applied in many areas, such as communication
networking [12], advertising [20], clinical trials [9], product
testing [26], ranking [1], etc. In a traditional MAB problem,
there are a set of arms, each of which is assumed to hold
a distribution. Each pull of an arm generates an independent
reward according to its distribution. The goal of the learner
(or decision-maker) is to maximize the accumulated reward.

In this paper, we focus on bandits with knapsacks (BwK)
[8]. In a BwK instance, there are n arms and d types of
resources. Each arm holds a latent distribution. Each pull of an
arm generates an independent reward and d independent costs
according to its latent distribution and consumes each type of
resources according to the costs. Each type of resources has
a finite budget, and once some type of resources runs out, the
learner must stop pulling. The learner wants to maximize the
expected cumulated reward before stopping pulling.

BwK abstracts the decision making with one or multiple
types of limited resources. When there is only one type of
resource and this resource is time (i.e., number of pulls), BwK
reduces to the traditional MAB. Thus, BwK can be viewed as
a generalized version of MAB. One application of BwK is
the dynamic ad allocation, which has been formulated as a
BwK problem [27]. An advertiser has n advertisements and
a budget B for these ads. There are T incoming new users,

and the ad platform dynamically chooses advertisements to
present to these T users. For each ad presented to and clicked
by a user, the advertiser pays a certain amount of reward to
the platform. We can view the advertisements as arms and the
payments to the platform as rewards, and the budget of the
advertiser and the number of incoming users can be modeled
as two types of limited resources. BwK can also be applied to
other problems, e.g., bid optimization [31], dynamic pricing
[7], and network revenue management [11].

In MAB problems, there are two types of regrets that
have been widely adopted: distribution-dependent regrets
and distribution-free regrets. Simply speaking, a distribution-
dependent regret depends on an actual instance and can better
describe the asymptotic performance of the corresponding
algorithm when time or the budgets go to infinity, while the
distribution-free regrets usually do not assume any knowledge
of the latent distributions. By far, most existing works on BwK
have focused on the distribution-free regrets. However, the
distribution-dependent regrets are less explored. The focus of
this paper is to study the logarithmic distribution-dependent
regrets of the BwK problem. To be specific, we focus on the
instances with deterministic costs.

B. Problem Formulation

Notations. For any positive integer k and vector a in Rk,
we use a(i) to denote the i-th component of a, i.e., a =
[a(1), a(2), ..., a(k)]>. For vectors a in Rk, a ≥ 0 if and only
if ∀i ∈ [k]1, a(i) ≥ 0. For numbers a and b in R, define
a ∧ b := min{a, b} and a ∨ b := max{a, b}. For any positive
integer k and vector a ∈ Rk, the l1 norm of a is ||a||1 :=∑
i∈[k] |a(i)|. For any a ∈ R, define (a)+ := a ∨ 0.
Arms. There are n arms in total indexed by 1, 2, ..., n, and d

types of resources in total (referred to as resource 1, resource
2,..., resource d). For the t-th pull of arm x, we use Rx,t to
denote the reward, and use Cx,t(j) to denote the consumption
of resource j, for any j in [d]. We assume that (Rx,t, t ∈
Z+) are i.i.d. (independently and identically distributed),
(Cx,t(j), t ∈ Z+) are also i.i.d., and (Rx,t, x ∈ [n], t ∈ Z+)
and (Cx,t(j), x ∈ [n], t ∈ Z+, j ∈ [d]) are independent
across time, arms, and resources. We further assume that for
any arm x and time t, (Rx,t, Cx,t(1), Cx,t(2), ..., Cx,t(d)) is
within a same bounded support. Without loss of generality, we

1For any positive integer k, we define [k] := {1, 2, 3, ..., k}.



rescale the support to [0, 1]d+1. For any arm x and j ∈ [d],
define µx := E[Rx,1] as the mean reward of arm x, and
λx(j) := E[Cx,1(j)] as the mean cost of resource j of arm
x. We write ~λx = [λx(1), λx(2), ..., λx(d)]>. The values of
(µx, x ∈ [n]) and (~λx, x ∈ [n]) are unknown to the learner.

Resources. For any j in [d], let B(j) > 0 denote the
budget of resource j. We write ~B = [B(1), B(2), ..., B(d)]>.
The learner knows the values of ~B. The learner repeats
pulling arms, and if for some j, the cumulated consumption
of resource j exceeds the budget B(j), the learner must stop
pulling. The goal of the learner is to maximize the expected
cumulated reward within the limited resources.

Rewards. We use At to denote the t-th arm the learner pulls.
Let Rt be the reward gained from the t-th pull, and Ct(j) be
amount of consumption of resource j incurred by the t-th pull.
Let N be the number of pulls before termination, i.e.,

N := inf{t : ∃j ∈ [d] such that
t∑

k=1

Ck(j) ≥ B(j)}.

The expected reward is defined as

Rw := E
[ N∑
t=1

E[Rt | At]
]

= E
[ N∑
t=1

µAt
]
.

Regrets. Define OPT as the expected reward obtained by
an oracle algorithm that knows the values of (µx, x ∈ [n])
and (~λx, x ∈ [n]). We define the regret as Rg := OPT−Rw.
We note that unlike traditional MAB problems, an optimal
algorithm for BwK may not always be sampling the optimal
arm, and the notion of optimal arm may not even exist. For
instance, let n = d = 2, µ1 = µ2 = 1, ~λ1 = [1, 0]>, ~λ2 =
[0, 1]>, and ~B = [100, 100]>. The optimal policy is to pull
each arm for 100 times. In traditional MAB, it is intuitive to
denote the regret of an algorithm by (OPT − Rw). However,
for BwK, it can be hard to determine the value of OPT. In
fact, the problem of finding BwK’s OPT value remains open.
When the rewards and costs are deterministic, BwK reduces
to the bounded knapsack problem, which is already NP-hard
[23]. Whether there exists a polynomial-time algorithm that
finds the (approximate) value of OPT is unknown.

Since we do not know the value of OPT, we need to find
another value to define the regret. In this paper, we adopt
the linear programming relaxation, which was also adopted
by many previous works [3], [8], [14], [15]. For any ~β =
[β(1), β(2), ..., β(d)]> ∈ Rd+, define

LP(~β) := max
ξ(1),...,ξ(n)≥0

∑
x∈[n]

ξ(x)µx, (1)

s.t.
∑
x∈[n]

ξ(x) · λx(j) ≤ β(j),∀j ∈ [d].

We then define OPTLP := LP( ~B) + 1, where 1 comes from
our setting that the last pull of an arm may consume more
than the remaining resources for some resource j. It has been
shown in [8] that OPTLP ≥ OPT.

Additional Assumptions. In this paper, we focus on the
cases where the costs are deterministic. When there is only one
type of resource and this resource is time, the BwK problem
reduces to the standard MAB problem. For some applications
such as shelf optimization [18], the costs are deterministic. We
provide useful insights for these problems in this section by
proposing new algorithms.

We further make two weak assumptions. First, the last
resource is time, i.e., the number of pulls, and we use T
to denote its budget. Second, the last arm (i.e., arm n) is a
dummy arm such that Rtn = 0 almost surely for any time t,
and λx(j) = 0 for any j in [d − 1], that is, arm n does not
generate any reward and only costs time. The first assumption
has been adopted by many previous works (e.g., [3], [8]). For
the second assumption, the dummy arm does not affect the
algorithm and is mainly for simplifying the analysis. For the
cases where time is not budget-limited, since the budgets of
the resources are known and the arms’ costs are deterministic,
we can find a number T that is an upper bound on the number
of pulls and view T as a budget of time.

C. Main Results

We propose a new algorithm with regret upper bound of
the form O(log T )(

∑
x∈[n] ∆−1

sx ), where ∆sx is the gap of
rewards similar to that in traditional MAB, which does not
directly depend on the number of resource types. When d is
large, our algorithm outperforms previous works [15], [25]
significantly.

D. Related Works

Dating back to 2010, the authors of [28] studied budget-
limited MAB problems with a single cost, which can be
viewed as a special case of the BwK problem. The BwK prob-
lem was first fully formulated in [8], whose authors proposed
algorithms with O(

√
log T )(

√
nOPTLP + OPTLP

√
n/Bmin)

regrets, where Bmin := minj∈[d]B(j). The authors of
[3] proposed an algorithm with O(

√
log T )(

√
nOPTLP +

OPTLP

√
n/Bmin) regret. The Thompson Sampling algorithm

proposed in [14] achieved an O(
√
nT · ploylog(T )) regret.

These regrets are of the same order as the O(
√
nT log T )

distribution-free regret of traditional MAB [5]. However, the
distribution-dependent regret of BwK is less understood.

The authors of [15], [25] studied the distribution-dependent
regrets of BwK. For BwK with deterministic costs, the authors
of [15] proposed two algorithms with regret upper bounds
O((d ∧ n)

(
n+d
d

)
log T/∆) and O((d ∧ n)3 log T/∆2) respec-

tively. Since
(
n+d
d

)
increases exponentially with d, the regret

of the first algorithm also increases exponentially with d. For
the second algorithm, the factor ∆−2 is suboptimal. For best-
arm-optimal instances, with d = 2 and deterministic costs, the
authors of [25] proposed algorithms with regrets in the form
of O(n∆−2 log T ), where “best-arm-optimal” means that there
is an optimal policy that only pulls one arm. In contrast, we
do not require the best-arm-optimal condition, and propose a
new algorithm and improve these regrets to O(n log T/∆),
significantly outperforming the results in [15], [25].



Logarithmic regrets of BwK with non-deterministic costs
are even less understood. The authors of [15] gave a logarith-
mic algorithm for d > 1, but it requires restrictive assumptions,
e.g., there is a constant σ > 0 such that for all t and j,
Rt ≤ σCt(j) almost surely. This condition is not assumed in
our paper. Without these restrictive assumptions, the authors of
[15] show that it is probably impossible to get a distribution-
dependent regret lower than Ω(

√
T ). When there is only one

type of resources, i.e., d = 1, logarithmic regrets have been
obtained by [28] for the cases where costs are deterministic.
For non-deterministic costs, [13], [29], [30], [32]–[34] studied
the single-resource BwK problems under different settings,
and logarithmic regrets were established.

There are also many interesting works on BwK problems
under other settings, which are less related to this paper, e.g.,
the BwK problem in a contextual bandit setting [2], [31], linear
submodular bandits with a knapsack [35], combinatorial semi-
bandits with knapsacks [24].

II. PRELIMINARIES

In this section, we provide some basic definitions and facts
that will be useful in the rest of the paper. Let constant p > 0
be given. We define the confidence radius [7], [19] as

radp(µ,N, T ) :=
√

(cpµ log T )/N + (cp log T )/N, (2)

where cp > 0 is a constant that only depends on p. We then
introduce the following concentration inequality [7], [19].

Lemma 1 ( [7], [19]). Let µ be the expectation of a distribu-
tion with support [0, 1], and let µ̂ be the empirical mean after
N independent sampling of this distribution. Let T > 0 be
given, X = radp(µ̂, N, T ), and Y = radp(µ,N, T ). Then,

P{|µ− µ̂| ≤ X ≤ 3Y } ≥ 1− T−Ω(1).

This inequality is similar to Chernoff-Hoeffding inequality
[17], but works better when µ is much smaller than 1, as
the leading term in the right-hand side of Eq. (2) depends
on
√
µ. This inequality has been shown to be useful for BwK

problems [3], [8]. However, to derive better logarithmic regrets
for BwK problems, this inequality may not be sufficient. In
this paper, we prove a new inequality that can bound the linear
combination of empirical means of multiple distributions. The
proof (in the appendix2) will invoke the works in [19], [22].

Lemma 2. Assume that there are n distributions with sup-
ports being [0, 1]. For any i in [n], let µi be the ex-
pectation of the i-th distribution and µ̂i be its empirical
mean after Ni independent sampling. For s ∈ Rn+, define
M(s) := mini∈[n][Ni/s(i)], µ(s) :=

∑
i∈[n] s(i)µi, and

µ̂(s) :=
∑
i∈[n] s(i)µ̂i. Let cp ≥ 24e3p/(2e − 1)2, X =

radp(µ̂(s),M(s), T ), and Y = radp(µ(s),M(s), T ). Then

P{|µ̂(s)− µ(s)| ≤ X ≤ 3Y } ≥ 1− 2T−p.

2The appendix of this paper can be found in
https://www.dropbox.com/s/bir12z8ydpnvkdt/Appendix.pdf?dl=0

III. ALGORITHMS AND REGRET BOUNDS

In this section, we present our BwK algorithms for instances
with deterministic costs. Define b(j) := B(j)/T for all j ∈ [d]
and write ~b := [b(1), b(2), ..., b(d)]>. We transform the linear
optimization problem LP(~b) into the standard form [21]:

max
s(x)≥0,ηj≥0,∀x,j

∑
x∈[n]

s(x)µx (3)

s.t.
∑
x∈[n]

s(x)λx(j) + ηj = b(j),∀j ∈ [d]

where η1, η2, ..., ηd are slack variables. Let D ⊂ Rn+d be the
feasible region of the above optimization problem. A point
s ∈ D is said to be an extreme point if

(∀α ∈ (0, 1),u,v ∈ D)[s = αu + (1− α)v =⇒ u = v].

It is well known that [21] since all µx’s are non-negative,
Eq. (3) has a maximizer, and therefore, at least one extreme
point of D maximizes Problem (3). We let B be the set of
all extreme points of D. For all extreme points s in B, there
are at most d coordinates of s that are non-zero [21]; and for
each combination of coordinates, there is at most one extreme
point. Thus, we have |B| ≤

(
n+d
d

)
.

Notations. Let N t
x be the number of pulls of arm x till

iteration t. Let µ̂tx be the empirical mean reward of arm x till
iteration t. For all extreme points s in B, define

M t(s) := min
x:s(x)>0

[N t
x/s(x)],

µ(s) :=
∑
x∈[n]

s(x)µx, and µ̂t(s) :=
∑
x∈[n]

s(x)µ̂tx.

Define the optimal extreme point as

s∗ := arg max
s∈B

µ(s), and µ∗ := µ(s∗).

For every extreme point s ∈ B, define the gap ∆s := µ∗−µ(s).
For arm x, define

sx := arg max
s∈B−{s∗}

[s(x)/∆2
s ].

We note that for some x, sx may not exist. In this case, we
let ∆sx =∞. We further define

G :=
∑
x∈[n]

µ∗/∆sx and H :=
∑
x∈[n]

µ∗/∆2
sx .

Basic idea. Since B is finite and at least one extreme point
in B is optimal, one may solve BwK by treating each extreme
point as an arm and using traditional UCB algorithms3, e.g.,
[5], [6], [16]. However, since |B| may scale with

(
n+d
d

)
, if we

directly treat each extreme point as an arm, the regret may
also scale with

(
n+d
d

)
, which increases exponentially with d.

In [15], algorithm UCB-Simplex was proposed, which main-
tains a UCB value for the empirical mean reward µ̂t(s) of
each extreme point s, and “pulls” the extreme point st with

3For instance, at each iteration t, a UCB algorithm may choose an extreme
point st with the largest UCB value, and sample arm x with probability st(x)
or use other strategies to sample arms.



the maximal UCB value for each iteration t. Here, “pulling an
extreme point” means increasing the counter of each arm x by
st(x). When the counter reaches one, the algorithm pulls arm
x once and decreases the counter by one. By this method, a
logarithmic regret can be obtained. However, since the number
of extreme points scales with

(
n+d
d

)
in the worst case, the

regret may also scale with
(
n+d
d

)
. In fact, its regret upper

bound is O(d
∑

s∈B∆−1
s log T ) for d ≤ n, scaling with |B|.

Even with d = 2, the regret upper bound can be of the form
O(n2∆−1 log T ), quadratically dependent on n, the number
of arms, which is not promising.

The authors of [15] proposed another algorithm UCB-
Simplex-v2, which does not directly bound the number of
times when an extreme point is chosen, but bounds the number
of pulls of each arm, i.e., at each iteration t where st has the
maximal UCB value, only the arm that minimizes N t

x/s
t(x)

will be pulled. Through this strategy, the authors obtained
regret upper bound O(d3

∑
x∈[n] ∆−2

sx log T ) for d ≤ n,
which increases linearly with n, better than UCB-Simplex
in this aspect. However, this new bound still has suboptimal
dependence on ∆−2

sx and d3.
We propose new methods and manage to reduce the regret

bounds. First, we improve the dependence of the regret on
∆−2

sx to ∆−1
sx . Roughly speaking, the dependence of the regret

on ∆−2
sx is because different types of resources are not “evenly”

consumed. In UCB-Simplex-v2, due to its specific way of
pulling arms, some resources may run out much earlier before
others, and the above technique cannot be applied if one type
of resources runs out. To solve this problem, we add a new
phase to our algorithm. We choose a parameter ε ∈ [0, 1/2],
and then, for the first (1 − ε) fraction of resources, we use
the similar arm pulling strategy as UCB-Simplex-v2, and for
the rest ε fraction of resources, we use the BwK algorithm
proposed in [3]. The regret upper bound of the algorithm
proposed by [3] is O(

√
nOPTLP log T ). In each iteration,

Algorithm 2 of [3] finds a vector st that solves

max
s≥0: ||s||1≤1

∑
x∈[n]

s(x)
[
µ̂tx + radp(µ̂

t
x, N

t
x, T )

]
,

s.t.
∑
x∈[n]

s(x)
[
λ̂tx(j)− radp(λ̂

t
x(j), N t

x, T )
]

≤ (1− ε′)b(j),∀j ∈ [d],

and samples each arm x with probability st(x). But in this
paper, we make three modifications: (i) We set ε′ = 0 since
the costs are deterministic. (ii) We do not use lower confidence
bounds (LCB) on the costs since they are deterministic. (iii)
The most importantly, we set up n queues for the arms to
ensure that the number of pulls of each arm is close to
what it should be. If we sample arms randomly like in [3],
some resources may run out before T iterations, making the
resources not fully utilized. By separating the pulling to two
phases, the dependence on ∆−2

sx ’s can be replaced by ∆−1
sx ’s.

Second, we remove the factor d (d3) in the regret bound
of UCB-Simplex (UCB-Simplex-v2). One reason for these
dependences is that the linear combinations of the UCB values

of arms’ empirical means, i.e.,
∑
x∈[n][s(x)·UCB(µ̂x)], are not

tight bounds on µ̂(s), the empirical means of extreme points.
To state it clearly, we take the Hoeffding bound as an example.
For an arm x with empirical mean reward µ̂tx after N t

x samples,
by Chernoff-Hoeffding inequality [17], we can get bounds

P{|µ̂tx − µx| ≥
√

log(2/δ)/(2N t
x)} ≤ δ.

However, in some cases (e.g., s(x) = 1/d and N t
x = N t

y for
all arms x and y with s(x), s(y) 6= 0), the linear combination
of these bounds for µ̂tx’s has

∑
x∈[n]

[
s(x)

√
1

2Ntx
log 2

δ

]
=√

d
2Mt(s) log 2

δ , which depends on
√
d/M t(s), while the

bound stated in Lemma 2 depends on
√

1/M t(s). We believe
that this is the reason why the regret upper bound of UCB-
Simplex has a dependence on d. In this paper, by the new
confidence inequality (i.e., Lemma 2), we can remove this d
(or d3) factor.

Algorithm. We assume that there is only one optimal
extreme point s∗. Our algorithm BNPA (Bounding the Number
of Pulls of Arms) is described in Algorithm 1, and its regret
is stated in Theorem 3. The proof is left to the appendix.

Theorem 3. The (expected) regret of BNPA is at most

O
(
G log T +

√
n(εT +H log T ) log(εT +H log T )

)
+ µ∗(36cpH log T − εT )+. (4)

Specifically, if (36cpH log T )/T ≤ ε = O((36cpH log T )/T ),
the (expected) regret is at most

O
(
G log T +

√
nH log T log(H log T )

)
. (5)

Remark. i) By Theorem 3, if (36cpH log T )/T ≤ ε =
O((36cpH log T )/T ),

lim sup
~B=~bT→∞

(OPT−Rw(T ))/ log T = O(G),

and if ε ≤ (36cpH log T )/T ,

lim sup
~B=~bT→∞

(OPT−Rw(T ))/ log T = O(G+H),

which shows that our BNPA algorithm has logarithmic regret.
We note that when d changes, many values including G,
H , and OPT will also change (may increase or decrease,
depending on the instances), and thus, for some instances, the
regret of BNPA may not increase when d increases. In the
algorithm, choosing the value of ε may not be easy. However,
as shown in Section IV, even when choosing ε = 0, our
algorithm can still have promising empirical performance.

ii) We note that the function optimized in Line 5 of BNPA
is not convex. Besides enumerating all the extreme points in
B, we are not aware of a faster approach. Since the size of
B can be up to

(
n+d
d

)
, the time complexity of Line 5 can be

O(
(
n+d
d

)
), which is large when d is large. However, the good

news is that for many applications, d is small. For instance, for
ad allocation and dynamic pricing formulated by [8], d = 2.
Even if d = 2, our regret upper bound still has improvements
compared to previous works [15], [25].



Algorithm 1 Bounding the Number of Pulls of Arms (BNPA).
1: Choose a parameter ε ∈ [0, 1/2];
2: Sample each arm once;
3: t← n and update N t

x and µ̂tx for all arms x;
4: repeat
5: Find an extreme point

st ∈ arg max
s∈B

{
µ̂t(s) + radp(µ̂

t(s),M t(s), T )
}

;

6: Find an xt ∈ arg minx∈[n]{N t
x/s

t(x)};
7: Pull arm xt once;
8: t← t+ 1, and update N t

xt and µ̂txt coordinately;
9: until ∃j ∈ [d] such that

∑t
k=1 C

k(j) ≥ (1− ε)B(j).
10: For any j ∈ [d], let B1(j) be the amount of resource j

that has been consumed, and B′(j)← B(j)−B1(j);
11: Let T1 be the number of pulls till now; T ′ ← T − T1;
12: For any arm x, initialize a queue qx ← 0;
13: repeat
14: Find an st that solves

max
s≥0:||s||1≤1

∑
x∈[n]

s(x)
[
µ̂tx + radp(µ̂

t
x, N

t
x, T

′)
]
, (6)

s.t.
∑
x∈[n]

s(x) · λx(j) ≤ B′(j)/T ′,∀j ∈ [d],

15: For any arm x, update qx ← qx + st(x);
16: for arm x in [n] such that qx ≥ 1 do
17: Pull arm x once, and update qx ← qx − 1;
18: end for
19: Set t← t+ 1, and update N t

x and µ̂tx for all arms;
20: until Some resource runs out.

iii) In fact, if we substitute the problem in Line 5 by the
following linear programming problem,

st ∈ arg max
s∈B

{
s(x)

[
µ̂tx + radp(µ̂

t
x, N

t
x, T )

]}
, (7)

the time complexity of Line 5 becomes poly(n, d), which
follows from the time complexity of linear programming [21],
and the new regret upper bound will be around d times that of
BNPA. We name the new algorithm as BNPA-v2, and state the
new regret in Theorem 4. Its proof is provided in the appendix.

Theorem 4. Replace Line 5 of BNPA with Eq (7), and the
expected regret of the new version BNPA-v2 is at most

O
(
dG log T +

√
n(εT + dH log T ) log(εT + dH log T )

)
+ µ∗(36cpdH log T − εT )+.

If (36cpdH log T )/T ≤ ε = O((36cpdH log T )/T ), the regret
is at most

O
(
dG log T +

√
ndH log T log(dH log T )

)
.

IV. NUMERICAL RESULTS

In this section, we numerically show the improvements of
our algorithm BNPA over previous works.

We compare BNPA and BNPA-v2 with PrimalDualBwK
[8], BwCR [3] (Algorithm 2), and UCB-Simplex [15]. Primal-
DualBwK and BwCR do not have logarithmic regrets, and
their regrets are O(

√
log T )(

√
nOPTLP + OPTLP

√
n/Bmin).

With deterministic costs, the regret upper bound of UCB-
Simplex is O((d∧n) ·

∑
s∈B∆−1

s log T ), exponentially higher
than that of our BNPA algorithm in the worst case.

We choose ε = 0 for our algorithm, and the numerical re-
sults show that our algorithm still outperforms previous works.
For BwCR, we choose ε = 0 as the costs are deterministic.
Also, in the implementations, we modify all algorithms to
versions with known λx(j)-values for fair comparisons, e.g.,
in BwCR, we let the LCB of λx(j) equal to λx(j).

We do not compare the Thompson Sampling algorithm [4]
since it knows additional knowledge on the prior distributions
of µx’s and λx(j)’s and the latent distributions of the arms,
which is not assumed in our algorithm and may result in
unfair comparisons. We do not compare BalancedExploration
[8] because it requires to compute a possibly infinite set, and
the implementation detail was not given in [8]. Ignoring the
difference on the confidence bounds, UCB-Simplex-v2 [15] is
the same as BNPA-v2 with ε = 0 (but when ε > 0, the regret
upper bound of BNPA-v2 is lower than UCB-Simplex-v2), and
we do not compare it in this paper.

Simulation setup. We adopt Bernoulli rewards for all
arms. For fair comparisons, in all algorithms, we use the
confidence bounds in Lemma 2, and set p = 2 and cp =
24e3p/(2e − 1)2. We choose n = 10 (excluding the dummy
arm), d = {2, 3, 5, 7}. The mean rewards and mean costs are
generated as follows: we set µ1 = 0.95 and λ1(j) = 0.45 for
all j ∈ [d]; for all arms x 6= 1, mean rewards are generated by
taking independence samples of Uniform([0.95−σ, 0.95−2σ])
distribution, and mean costs are generated by taking indepen-
dent samples of Uniform([0.45 + σ, 0.45 + 2σ]) distribution,
where σ = 0.2 is fixed. We vary the value of T , and for all
j ∈ [d], we always set B(j) = 0.45T . All algorithms are
performed on the same datasets. In every figure, every point
is averaged over 100 independent trials.

The numerical results are illustrated in Figure 1 (a)-(d), and
we have the following findings. First, as d increases, the regrets
of BNPA in four cases do not increase and even decrease when
T is large, which indicates that its regret does not directly
depend on the number of resources d. The reason of the
decreasing regrets may be that the gaps (i.e., (∆sx , x ∈ [n]))
become larger when d increases.

Second, from Figure 1 (a) and (b), we can see that when the
value of d is small, the empirical performance of these algo-
rithms are close. However, for large values of d, Figure 1 (c)
and (d) indicate that the performance of BNPA becomes
better compared with other algorithms, which suggests that
our algorithm is more promising when d is large.

Third, in all four subfigures, as T increases, the ratio of
BNPA’s regret to log T approaches a constant, which suggests
that BNPA has logarithmic regret, consistent with the theory.

Fourth, we can see from Figure 1 that the regret of BNPA-
v2 is larger than BNPA, especially when d is large, which
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Fig. 1. Comparisons between BNPA, BNPA-v2, and existing methods in the
literature with different values of d.

is consistent with the theoretical results stated in Theorems 3
and 4. Although the time complexity of BNPA-v2 is smaller
than BNPA, it suffers from a loss in the regret performance.

V. CONCLUSION

This paper studied the logarithmic regrets of bandits with
knapsacks (BwK) problems. For BwK with deterministic
costs, we proposed an algorithm with regret upper bound in
the form of O(n log T/∆), which does not directly depend on
the number of resources d and outperforms the state of the
art. Empirical results also confirmed our theories.
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APPENDIX

A. Proof of Lemma 2

Lemma 2. Assume that there are n distributions with supports being [0, 1]. For any i in [n], let µi be the expectation of the
i-th distribution and µ̂i be its empirical mean after Ni independent sampling. For s ∈ Rn+, define M(s) := mini∈[n][Ni/s(i)],
µ(s) :=

∑
i∈[n] s(i)µi, and µ̂(s) :=

∑
i∈[n] s(i)µ̂i. Let cp ≥ 24e3p/(2e − 1)2, X = radp(µ̂(s),M(s), T ), and

Y = radp(µ(s),M(s), T ). Then

P{|µ̂(s)− µ(s)| ≤ X ≤ 3Y } ≥ 1− 2T−p.

Proof. The key is to show the following two Chernoff bounds for µ̂(s): For any δ ∈ (0, 1) and R > 2eµ(s), we have

P{|µ̂(s)− µ(s)| ≥ δµ(s)} ≤ 2e−M(s)µ(s)δ2/3 (8)

P{µ̂(s) ≥ R} ≤ 2−RM(s). (9)

Step 1. For any i ∈ [n], let Xi,t be the value of the t-th sample of the i-th distribution. We let (Xi,t, i ∈ [n], t ∈ Z+) be
independent, and we have EXi,t = µi for any i ∈ [n] and t ∈ Z+.

Since M(s) ≤ Ni/s(i) and Ri,t ∈ [0, 1] almost surely for any i ∈ [n] and t ≤ Ni, we have

s(i)Ri,tM(s)/Ni ∈ [0, 1] almost surely.

Thus, by E[s(i)Ri,tM(s)/Ni] = s(i)µiM(s)/Ni, we have

E[exp{t · s(i)Ri,tM(s)/Ni}] ≤s(i)µiM(s)(et − 1)/Ni + 1 (10)
≤ exp{(et − 1) · s(i)µiM(s)/Ni}, (11)

where Eq. (10) is proved by Lemma 8 in the appendix, and Eq. (11) is due to x+ 1 ≤ ex.
Then, by the independence of the samples and the definitions of µ̂(s) and µ(s), we get

E[eM(s)µ̂(s)] =E
[

exp
(
M(s)

∑
i∈[n]

[s(i)/Ni]

Ni∑
t=1

Ri,t

)]

=
∏
i∈[n]

Ni∏
t=1

E
[

exp
(
s(i)Ri,tM(s)/Ni

)]

≤
∏
i∈[n]

Ni∏
t=1

exp[(et − 1) · s(i)µiM(s)/Ni]

= exp{(et − 1) ·M(s)µ(s)}.

From Step 2 to Step 4, our proof follows the similar steps as in pages 66-70 of [22].
Step 2. By Markov’s inequality, we have that for δ > 0,

P {M(s)µ̂(s) ≥ (1 + δ)M(s)µ(s)} =P
{
et·M(s)µ̂(s) ≥ et(1+δ)M(s)µ(s)

}
≤E

[
et·M(s)µ̂(s)

]
/et(1+δ)M(s)µ(s)

≤ exp
{

(et − 1) ·M(s)µ(s)
}
/et(1+δ)M(s)µ(s).

Setting t = log(1 + δ) > 0, we get

P{M(s)µ̂(s) ≥ (1 + δ)M(s)µ(s)} ≤
(

eδ

(1 + δ)1+δ

)M(s)µ(s)

. (12)

When 0 < δ ≤ 1, we define a function f(·) such that

f(δ) := δ − (1 + δ) log(1 + δ) + δ2/3. (13)

Taking derivative, we get

f ′(δ) = − log(1 + δ) + 2δ/3,

f ′′(δ) = −1/(1 + δ) + 2/3.



When 0 < δ ≤ 1/2, f ′′(δ) ≤ 0, and when δ ≥ 1/2, f ′′(δ) ≥ 0. Thus, for any δ ∈ (0, 1], f ′(δ) ≤ f ′(0) ∨ f ′(1) ≤ 0. Hence,
for all δ ∈ (0, 1], f(δ) ≤ f(0) = 0.

Taking exponential of the right side of Eq. (13), we get

eδ

(1 + δ)1+δ
≤ e−δ

2/3,

which implies

P{M(s)µ̂(s) ≥ (1 + δ)M(s)µ(s)} ≤ e−M(s)µ(s)δ2/3. (14)

This completes the first half of the proof of Eq. (8).
Step 3. For R ≥ 2eµ(s), let R = (1 + δ)µ(s). We have δ > 2e− 1, which, by (12), implies

P{M(s)µ̂(s) ≥ R} ≤
(

eδ

(1 + δ)1+δ

)M(s)µ(s)

≤
(

e

1 + δ

)(1+δ)M(s)µ(s)

≤
( e

2e

)M(s)µ(s)

≤2−M(s)µ(s).

This completes the proof of Eq. (9).
Step 4. For t ≤ 0, again, we use Markov’s inequality, and get

P {M(s)µ̂(s) ≤ (1− δ)M(s)µ(s)} =P
{
et·M(s)µ̂(s) ≥ et(1−δ)M(s)µ(s)

}
≤E

[
et·M(s)µ̂(s)

]
/et(1−δ)M(s)µ(s)

≤ exp
{

(et − 1) ·M(s)µ(s)
}
/et(1−δ)M(s)µ(s).

For δ ∈ (0, 1), setting t = log(1− δ) < 0, we get

P {M(s)µ̂(s) ≤ (1− δ)M(s)µ(s)} ≤
(

e−δ

(1− δ)1−δ

)M(s)µ(s)

.

Now, we define a function f(δ) such that for δ ∈ (0, 1),

f(δ) := −δ − (1− δ) log(1− δ) + δ2/2. (15)

Taking derivative, we get

f ′(δ) = log(1− δ) + δ,

f ′′(δ) =− (1− δ)−1 + 1.

For δ ∈ (0, 1), we have f ′′(δ) < 0, which implies f ′(δ) ≤ f ′(0) = 0. Hence, for δ ∈ (0, 1), f(δ) ≤ f(0) = 0. Then, taking
exponential on both sides of Eq. (15), we get that for δ ∈ (0, 1),

e−δ

(1− δ)1−δ ≤ e
−δ2/2 ≤ e−δ

2/3,

which implies that for δ ∈ (0, 1),

P{M(s)µ̂(s) ≤ (1− δ)M(s)µ(s)} ≤ e−M(s)µ(s)δ2/3. (16)

Combining Eq. (14) and Eq. (16), we get Eq. (8).



Step 5. In this step, we follow the works of [19] to prove the desired result. First, we suppose cp log T ≤ 2eM(s)µ(s).

Applying Eq. (8) with δ = 2e−1
2e

√
cp log T

2eM(s)µ(s) (where we have δ ≤ 1 − 1
2e ), we get that with probability at least 1 −

2T−cp(2e−1)2/(24e3), |µ(s)− µ̂(s)| < δµ(s) ≤ (1− 1
2e )µ(s), which implies

|µ(s)− µ̂(s)| <δµ(s)

≤2e− 1

2e

√
cpµ(s)

2eM(s)
log T

(a)

≤ 2e− 1

2e

√
2e · cpµ̂(s)

2eM(s)
log T

≤radp(µ̂(s),M(s), T )

(b)

≤2radp(µ(s),M(s), T ),

where (a) is due to µ̂(s) ≥ µ(s)/(2e), and (b) is due to µ̂(s) ≤ (2− 1
2e )µ(s), both following from |µ(s)− µ̂(s)| ≤ (1− 1

2e )µ(s).
Next, we suppose cp log T > 2eM(s)µ(s). Applying Eq. (9) with R = cp log T/M(s) > 2e, we get that with probability at

least 1− 2−cp log T , µ̂(s) ≤ cp log T/M(s), and thus,

|µ̂(s)− µ(s)|
(a)

≤ cp log T/M(s)

≤radp(µ̂(s),M(s), T )

(b)

≤(1 +
√

2)cp log T/M(s)

≤3radp(µ(s),M(s), T ),

where (a) is due to cp log T > 2eM(s)µ(s) and µ̂(s) ≤ cp log T/M(s), and (b) is due to µ̂(s) ≤ cp log T/M(s).
Since cp ≥ 24e3p/(2e− 1)2, we get that the desired inequality holds with probability at least 1− 2T−p. This completes the

proof of Lemma 2.

B. Proof of Theorem 3

Theorem 3. The (expected) regret of BNPA is at most

O
(
G log T +

√
n(εT +H log T ) log(εT +H log T )

)
+ µ∗(36cpH log T − εT )+. (4)

Specifically, if (36cpH log T )/T ≤ ε = O((36cpH log T )/T ), the (expected) regret is at most

O
(
G log T +

√
nH log T log(H log T )

)
. (5)

Proof. In this proof, we use Rw1 to denote the reward gained before the first loop ends (i.e., the expected reward obtained
by the first n pulls plus that during the first loop), and Rw2 to denote the reward gained during the second loop.

We also note some facts about the function LP(·) that will be used in the proof. The first fact is that the function LP(·)
is sub-additive, which is proved in the appendix by Lemma 9, where the sub-additivity means that for any ~β1, ~β2 ∈ Rd+,
LP(~β1) + LP(~β2) ≤ LP(~β1 + ~β2). The second fact is that for any a ≥ 0, LP(a~b) = aLP(~b) = aµ∗. The third fact is that with
~B′ resource budgets, the expected reward obtained through any pulling strategy is at most 1 + LP( ~B′), which has been proved
by [8].

Step 1 is to show the following lemma.

Lemma 5. Let s be an arbitrary non-optimal extreme point. At any iteration t of the first loop, if M t(s) ≥ (36cp ·µ∗ log T )/∆2
s ,

then st 6= s with high probability4.

Proof of Lemma 5. Let iterator t and non-optimal extreme point s ∈ B − {s∗} be given. Suppose st = s, and with high
probability, we have

µ̂t(s) + radp(µ̂
t(s),M t(s), T ) ≥ µ̂t(s∗) + radp(µ̂

t(s∗),M t(s∗), T )
(a)

≥ µ∗,

4In this paper, “with high probability” means with probability at least 1− T−c, where c > 0 is a sufficiently large constant.



where (a) follows from the concentration inequality stated in Lemma 2. Using Lemma 2 again and along with the above
inequality, we get that with high probability,

µ(s) + 6radp(µ(s),M t(s), T ) ≥µ(s) + 2radp(µ̂
t(s),M t(s), T )

≥µ̂t(s) + radp(µ̂
t(s),M t(s), T )

≥µ∗,

which implies that with high probability,

radp(µ(s),M t(s), T ) =

√
µ(s)cp log T

M t(s)
+
cp log T

M t(s)

≥(µ∗ − µ(s))/6

=∆s/6.

By setting y =
√
cp log T/M t(s), the above inequality becomes

y2 + y
√
µ(s)−∆s/6 ≥ 0.

Solving it (discarding the negative part), we get√
cp log T/M t(s) ≥

√
µ(s) + (2/3)∆s −

√
µ(s)

2

=
(µ(s) + (2/3)∆s)− µ(s)

2(
√
µ(s) + (2/3)∆s +

√
µ(s))

>
(2/3)∆s

2(
√
µ∗ +

√
µ∗)

=
1

6

∆s√
µ∗
,

which implies that with high probability,

M t(s) < (36cp · µ∗ log T )/∆2
s .

Thus, when M t(s) ≥ (36cp · µ∗ log T )/∆2
s , st 6= s with high probability. This completes the proof of Lemma 5.

Step 2. By the above lemma, we show the following lemma. Let τ be the last iterator of the first loop, i.e., τ − 1 is the
iterator of the last iteration of the first loop during which an st is computed. Recall sx := arg maxs∈B−{s∗}[s(x)/∆2

s ], and
this step is to prove the following lemma.

Lemma 6. With high probability, for any arm x, it holds that

Nτ
x − s∗(x)Mτ (s∗) ≤ 1 + (36cp · µ∗sx(x) log T )/∆2

sx .

Proof of Lemma 6. Let arm x be fixed. Suppose that at some iteration t < τ ,

N t
x > (36cp · µ∗sx(x) log T )/∆2

sx . (17)

Case 1: x /∈ arg miny∈[n]N
t
y/s

t(y). Then, by Line 6 of the algorithm, arm x will not be pulled.
Case 2: x ∈ arg miny∈[n]N

t
y/s

t(y). If st 6= s∗, by the definition of sx, it holds with high probability that

M t(st) =N t
x/s

t(x)

>(36cp · µ∗sx(x) log T )/∆2
sx

≥(36cp · µ∗st(x) log T )/∆2
st ,

which contradicts Lemma 5. Thus, in this case, with high probability, st = s∗, and N t
x = s∗(x)M t(s∗).

By the above two cases, we conclude that for all iterations t < τ during which Eq. (17) holds, arm x is pulled if and only
if N t

x = s∗(x)M t(s∗) with high probability. Thus, for any t ≤ τ , with high probability,

N t
x − s∗(x)M t(s∗) ≤ 1 + (36cp · µ∗sx(x) log T )/∆2

sx .

The desired result follows by setting t = τ . This completes the proof of Lemma 6.

Recall that B1(j) is the amount of resource j consumed when the first loop ends, and T1 is the number of pulls after the
end of the first loop. We write ~B = [B(1), B(2), ..., B(d)]> and ~B1 = [B1(1), B1(2), ..., B1(d)]>.



Step 3 is to find a useful bound of T1. We note that the first loop of BNPA ends if and only if the cumulated resource
consumption of some resource k reaches (1− ε)B(k), i.e., there is a k ∈ [d] such that

∑τ
m=1 C

m(k) ≥ (1− ε)B(k). By the
definition of B1(k), we have

B1(k) ≥ (1− ε)B(k) = (1− ε)Tb(k). (18)

Since T1 is the number of pulls till the end of the first loop, we have

T1 = Mτ (s∗) +
∑
x∈[n]

[Nτ
x − s∗(x)Mτ (s∗)]. (19)

We also have ∑
x∈[n]

s∗(x)λx(k) ≤ b(k).

For all arms x, by sx ∈ B ⊂ D,

sx(x)λx(k) ≤
∑
y∈[n]

sx(y)λy(k) ≤ b(k),

which implies

B1(k) =
∑
x∈[n]

Nτ
xλx(k)

=
∑
x∈[n]

[
λxs
∗(x)Mτ (s∗) + λx(Nτ

x − s∗(x)Mτ (s∗))
]

=Mτ (s∗)
∑
x∈[n]

s∗(x)λx(k) +
∑
x∈[n]

1

sx(x)

[
Nτ − s∗(x)Mτ (s∗)

]
sx(x)λx(k)

≤
[
Mτ (s∗) +

∑
x∈[n]

1

sx(x)

[
Nτ
x − s∗(x)Mτ (s∗)

]]
b(k). (20)

Using the above inequalities, with high probability, it holds that

(1− ε)T − T1

(a)

≤B1(k)/b(k)− T1

(b)
=B1(k)/b(k)−

[
Mτ (s∗)+

∑
x∈[n]

(Nτ
x − s∗(x)Mτ (s∗))

]
(c)

≤
( 1

sx(x)
− 1
) ∑
x∈[n]

[
Nτ
x − s∗(x)Mτ (s∗)

]
(d)

≤36cp
∑
x∈[n]

(1− sx(x))µ∗

∆2
sx

log T +
∑
x∈[n]

1/sx(x)

≤36cp ·H log T + o(
√

log T ), (21)

where (a) is due to Eq. (18), (b) is because of Eq. (19), (c) is by Eq. (20), and (d) follows from Lemma 6.
Step 4 is to bound the “regret” incurred during the second loop, stated in the following lemma.

Lemma 7. Let Rw2 be the expected reward gained during the second loop. We have

LP( ~B − ~B1)−Rw2 = O(
√
n(H log T + εT ) · log(H log T + εT )).

Proof of Lemma 7. Let τ0 be the first iterator of the second loop. Let τs be the iterator of the last iteration of the second
loop during which an st is computed. Note that ~B′ = ~B − ~B1. Also, define

s′ ∈ arg max
s∈Rn

∑
x∈[n]

s(x)µx,

s.t.
∑
x∈[n]

s(x) · λx(j) ≤ B′(j)/T ′,∀j ∈ [d],

||s||1 ≤ 1, and s ≥ 0,



and define µ′ := µ(s′). We have LP( ~B − ~B1) = T ′µ′ + 1, which is the maximal reward of the linear relaxation of the second
loop, i.e., the “OPTLP” value of the second loop.

First, we observe that for any j ∈ [d] and τ0 ≤ t0 ≤ τs, since st is the solution of Eq. (6), we have

t0∑
t=τ0

∑
x∈[n]

st(x)λx(j) ≤ (t0 − τ0 + 1) · B
′(j)

T ′
.

Also, the algorithm does not stop until some resource is exhausted, which implies

τs − τ0 ≥ T ′ − 1.

For any arm x ∈ [n], by the load-balancing step, we have

τs∑
t=τ0

st(x)− 1 ≤ Nτs+1
x −Nτ0

x ≤
τs∑
t=τ0

st(x).

It follows from the above two inequalities that

LP( ~B − ~B1)−Rw2 =LP( ~B − ~B1)−
∑
x∈[n]

µx(Nτs+1
x −Nτ0

x )

=1 + T ′µ′ −
∑
x∈[n]

µx(Nτs+1
x −Nτ0

x )

≤1 + µ′ + (T ′ − 1)µ′ + n−
τs∑
t=τ0

∑
x∈[n]

st(x)µx

≤2 + n+

τs∑
t=τ0

[
µ′ −

∑
x∈[n]

st(x)µx

]
. (22)

Second, for any τ0 ≤ t ≤ τs, we have

∑
x∈[n]

st(x)
[
µ̂tx + radp(µ̂

t
x, N

t
x, T

′)
]
≥
∑
x∈[n]

s′(x)
[
µ̂tx + radp(µ̂

t
x, N

t
x, T

′)
]
,

which, by Lemma 2, implies that with probability at least 1−O((T ′)−p+1),

∑
x∈[n]

st(x)µ̂x ≥
∑
x∈[n]

s′(x)
[
µ̂tx + radp(µ̂

t
x, N

t
x, T

′)
]
−
∑
x∈[n]

st(x)radp(µ̂
t
x, N

t
x, T

′)

≥µ′ − 3
∑
x∈[n]

st(x)radp(µx, N
t
x, T

′).

Applying Lemma 2 again, we get that with probability at least 1−O((T ′)−p+1),

∑
x∈[n]

st(x)µx ≥
∑
x∈[n]

st(x)µ̂x − 3
∑
x∈[n]

st(x)radp(µx, N
t
x, T

′)

≥µ′ − 6
∑
x∈[n]

st(x)radp(µx, N
t
x, T

′). (23)



Third, by Eq. (22) and Eq. (23), we get that with probability at least 1−O((T ′)−p+1),

LP( ~B − ~B1)−Rw2 ≤
τs∑
t=τ0

[
µ′ −

∑
x∈[n]

st(x)µx
]

+O(n)

≤6

τs∑
t=τ0

∑
x∈[n]

st(x)radp(µx, N
t
x, T

′) +O(n)

≤6
∑
x∈[n]

st(x)

τs∑
t=τ0

[√
cp log T ′

N t
x

+
cp log T ′

N t
x

]
+O(n)

=O

∑
x∈[n]

∫ Nτs+1
x

N
τ0
x

(√
log T ′

η
+

log T ′

η

)
dη


=O

∑
x∈[n]

(√
(Nτs+1

x −Nτ0
x ) log T ′ + log2 T ′

)
By the fact that

∑
x∈[n](N

τs
x − Nτ0

x ) ≤ T ′ and the concavity of the function f(x) =
√
x, we have that with probability at

least 1−O((T ′)−p+1),

∑
x∈[n]

√
Nτs+1
x −Nτ0

x ≤n

√√√√ 1

n

∑
x∈[n]

(Nτs+1
x −Nτ0

x )

≤
√
nT ′,

which implies that with probability at least 1−O((T ′)−p+1),

LP( ~B − ~B1)−Rw2 =O
(√

nT ′ log T ′ + n log2 T ′
)

=O(
√
nT ′ log T ′)

(a)
=O(

√
n(εT +H log T ) log(εT +H log T )),

where (a) comes from Eq. (21).
For the rest O((T ′)−p+1) probability, LP( ~B − ~B1)−Rw2 is at most T ′. Thus, in expectation,

LP( ~B − ~B1)−Rw2 =O(
√
n(εT +H log T ) log(εT +H log T )) + T ′ ·O((T ′)−p+1)

=O(
√
n(εT +H log T ) log(εT +H log T )).

This completes the proof of Lemma 7.

Step 5. In this step, we show several inequalities. We suppose that after the first loop, the learner did not do the second
loop, but for each arm x ∈ [n], pulled each arm y 6= x for

[sx(y)(Nτ
x − s∗(x)Mτ (s∗))/sx(x)]

times. That is, under this assumption, each arm y would be pulled for∑
x:x 6=y

sx(y)

sx(x)

[
Nτ
x − s∗(x)Mτ (s∗)

]
extra times. We call these pulls as extra pulls.

We also define

T2 := Mτ (s∗) +
∑
x∈[n]

[ 1

sx(x)

(
Nτ
x − s∗(x)Mτ (s∗)

)]
, (24)

which will be used to bound the “regret” incurred during the first loop.



Let ~b = [b(1), b(2), ..., b(d)]>. We get the first inequality: for any j ∈ [d],

B1(j) +
∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)λy(j)

=
[ ∑
x∈[n]

Nτ
xλx(j)

]
+
[ ∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)λy(j)
]

= Mτ (s∗)
∑
x∈[n]

s∗(x)λx(j) +
∑
x∈[n]

[Nτ
x − s∗(x)Mτ (s∗)]λx(j) +

[ ∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)λy(j)
]

= Mτ (s∗)
∑
x∈[n]

s∗(x)λx(j) +
∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y∈[n]

sx(y)λy(j)

≤Mτ (s∗)b(j) +
∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)] b(j)

≤ T2 · b(j). (25)

Thus, if at time τ (i.e., after the first loop), for each arm x, we pulled each arm y 6= x for [sx(y)(Nτ
x − s∗(x)Mτ (s∗))/sx(x)]

times, the extra amount of resource j consumed would be no more than [T2b(j) − B1(j)] for any j ∈ [d]. Let Rw
′
1 be the

expected reward gained from these extra pulls, i.e.,

Rw
′
1 :=

∑
x∈[n]

1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)µy, (26)

which, by Eq. (25), implies the second inequality:

Rw
′
1 ≤ LP(T2

~b− ~B1). (27)

With T2b(j) budgets for each resource j, the maximal expected reward gain by an optimal algorithm is LP(T2
~b) = 1+T2µ

∗.
The third inequality is that with high probability,

T2µ
∗ −Rw1 −Rw

′
1 =T2µ

∗ −
∑
x∈[n]

[
Nτ
xµx

]
−
∑
x∈[n]

[ 1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)µy

]
=T2µ

∗ −Mτ (s∗)
∑
x∈[n]

s∗(x)µx −
∑
x∈[n]

[
(Nτ

x − s∗(x)Mτ (s∗))µx

]
−
∑
x∈[n]

[ 1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)]
∑
y 6=x

sx(y)µy

]
=T2µ

∗ −Mτ (s∗)µ∗ −
∑
x∈[n]

[ 1

sx(x)
[Nτ

x − s∗(x)Mτ (s∗)] · µ(sx)
]

(a)
=Mτ (s∗)(µ∗ − µ∗) +

∑
x∈[n]

[
1

sx(x)
(Nτ

x − s∗(x)Mτ (s∗))

]
(µ∗ − µ(sx))

=
∑
x∈[n]

[
1

sx(x)
(Nτ

x − s∗(x)Mτ (s∗))

]
∆sx

(b)

≤36cp
∑
x∈[n]

µ∗

∆sx

log T +
∑
x∈[n]

1/sx(x)

=36cpG log T +
∑
x∈[n]

1/sx(x)

=O(G log T ), (28)

where (a) is due to the definition of T2 stated in (24), and (b) is due to Lemma 6.



The fourth inequality that we want to show is

Mτ (s∗)µ∗ =
∑
x∈[n]

s∗(x)Mτ (s∗)µx ≤
∑
x∈[n]

Nτ
xµx

≤LP( ~B1) ≤ 1 + LP((1− ε)T~b)
≤1 + (1− ε)Tµ∗. (29)

Step 6. We prove the regret for ε ≥ (36cpH log T )/T . In this case, by Lemma 6 and Eq. (29), with high probability, we
have

T2µ
∗ =Mτ (s∗)µ∗ +

∑
x∈[n]

[ 1

sx(x)

(
Nτ
x − s∗(x)Mτ (s∗)

)]
µ∗

≤Mτ (s∗)µ∗ + 36cpµ
∗H log T + o(

√
log T )

≤(1− ε)Tµ∗ + εTµ∗ + o(
√

log T )

≤Tµ∗ + o(
√

log T ).

Then, by Eq. (27) and the sub-additivity of LP(·), we get

Rw
′
1 + (T − T2)µ∗ ≤LP(T2

~b− ~B1) + LP(~b(T − T2)+)

≤LP( ~B − ~B1). (30)

Thus, we have

OPTLP −Rw =1 + Tµ∗ −Rw1 −Rw2

=1 +
(
T2µ

∗ −Rw1 −Rw
′
1

)
+
(
Rw
′
1 + (T − T2)µ∗ −Rw2

)
(a)

≤O(G log T ) +
(

LP( ~B − ~B1)−Rw2

)
(b)

≤O(G log T ) +O(
√
n(εT +H log T ) log(εT +H log T )), (31)

where (a) is due to Eq. (28) and Eq. (30), and (b) follows from Lemma 7.
When ε ≥ (36cpH log T )/T and ε = O((H log T )/T ), we get that the regret is at most

O(G log T +
√
H log T log(H log T )).

Step 7. We prove the regret for ε < (36cpH log T )/T . If T2 ≤ T , then we can follow the same steps as in Eq. (31) to get
the same regret as Eq. (31). Thus, we only consider the case where T2 > T .

First, by the definition of T2 and Lemma 6, we have that with high probability,

T2µ
∗ =Mτ (s∗)µ∗ +

∑
x∈[n]

[ 1

sx(x)

(
Nτ
x − s∗(x)Mτ (s∗)

)]
µ∗

≤Mτ (s∗)µ∗ + 36cpµ
∗H log T + o(

√
log T )

Then, Eq. (29) states that

Mτ (s∗)µ∗ ≤ LP( ~B1).

which, by the sub-additivity of LP (·), implies

LP(T2
~b− ~B1) ≤T2µ

∗ − LP( ~B1)

≤36cpµ
∗H log T + o(

√
log T ).

Third, for any j ∈ [d], we have B1(j) ≤ (1− ε)B(j) + 1, which, by Lemma 7, implies

Rw2 ≥LP( ~B − ~B1)−O(
√
n(H log T + εT ) log(H log T + εT ))

≥LP(εT~b)−O(
√
n(H log T + εT ) log(H log T + εT ))

≥εTµ∗ −O(
√
nH log T log(H log T )), (32)

where the last inequality comes from the assumption that ε < (36cpH log T )/T .



Finally, we conclude that

OPTLP −Rw =1 + Tµ∗ −Rw1 −Rw2

=1 +
(
T2µ

∗ −Rw1 −Rw
′
1

)
+
(
Rw
′
1 + (T − T2)µ∗ −Rw2

)
(a)

≤O(G log T ) +
(

LP(T2
~b− ~B1)− (T2 − T )µ∗ −Rw2

)
(b)

≤O(G log T ) + LP(T2
~b− ~B1)−Rw2

≤O(G log T ) + (36cpH log T − εT )µ∗ +O(
√
nH log T log(H log T )),

where (a) is due to Eq. (27) and Eq. (28), (b) is due to the assumption that T2 ≥ T , and (c) is due to Eq. (32). This proves
the regret upper bound when ε < (36cpH log T )/T .

Combine Steps 6 and 7, and the proof of Theorem 3 is complete.

C. Proof of Theorem 4
Theorem 4. Replace Line 5 of BNPA with Eq (7), and the expected regret of the new version BNPA-v2 is at most

O
(
dG log T +

√
n(εT + dH log T ) log(εT + dH log T )

)
+ µ∗(36cpdH log T − εT )+.

If (36cpdH log T )/T ≤ ε = O((36cpdH log T )/T ), the regret is at most

O
(
dG log T +

√
ndH log T log(dH log T )

)
.

Proof.. The key to prove the regret is to show an inequality, and the rest of the proof is the same as the proof of Theorem 4.
Let an extreme point s in B and time t be given. Since there are d types of resources, we have ||s||0 ≤ d, i.e., there are at

most d arms x such that s(x) > 0. We denote these arms by x1, x2, ..., xd1 , where d1 = ||s||0 has 1 ≤ d1 ≤ d. Also, by the
definition of M t(s), for any i ∈ [d1], N t

xi ≥ s(xi)M
t(s). We then use these two facts to show the desired inequality.

We observe that ∑
i∈[d1]

s(xi)

N t
xi

≤
∑
i∈[d1]

s(xi)

s(xi)M t(s)
≤ d

M t(s)
,

and ∑
i∈[d1]

s(xi)

√
µ̂txi
N t
xi

≤
∑
i∈[d1]

s(xi)

√
µ̂txi

s(xi)M t(s)

=
∑
i∈[d1]

√
s(xi)µ̂txi
M t(s)

(a)

≤d1

√
1
d1

∑
i∈[d1] s(xi)µ̂

t
xi

M t(s)

≤

√
dµ̂t(s)

M t(s)
,

where (a) is due to Jensen’s inequality. Thus, we have∑
i∈[d1]

s(xi)radp(µ̂
t
xi , N

t
xi , T ) =

∑
i∈[d1]

[
s(xi)

(√cpµ̂txi log T

N t
xi

+
cp log T

N t
xi

)]

≤

√
cpµ̂t(s) log T

M t(s)/d
+

cp log T

M t(s)/d

=radp(µ̂
t(s),M t(s)/d, T ). (33)

By Eq. (33) and similar steps as in the proof of Theorem 3, we can show that in the first loop, for any non-optimal
extreme point s, if M t(s)/d ≥ (36cp · µ∗ log T )/∆2

s , then with high probability st 6= s. Also, we can prove that for any
arm x, with high probability, Nτ

x − s∗(x)Mτ (s∗) ≤ 1 + (36cp · dµ∗sx(x) log T )/∆2
sx . It follows that with high probability,

(1− ε)T − (T1 − 1) ≤ 36cp · dH log T + o(
√

log T ). The rest of the proof is the same as that of Theorem 3 by substituting
G with dG and H with dH .



D. Proof of Eq. (10)

Lemma 8. Let X be a random variable taking values in [0, 1] and µ = EX . For any t ∈ R, we have

E[etX ] ≤ µ(et − 1) + 1.

Proof. Define a function f(·) such that for any t ∈ R,

f(t) := E[etX ]− µ(et − 1)− 1.

We have

f ′(t) = E[XetX ]− µet,

and

f ′′(t) = E[X2etX ]− µet.

Case 1: For t ≥ 0, since X ∈ [0, 1] almost surely and µ = EX , we have that

f ′′(t) ≤ E[X2et]− E[X]et = etE[X2 −X] ≤ 0.

Thus, for t ≥ 0, we have f ′(t) ≤ f ′(0) = 0, which implies f(t) ≤ f(0) = 0 for t ≥ 0.
Case 2: For t ≤ 0, we have

f ′(t) ≥ E[Xet]− µet = 0.

Thus, for t ≤ 0, f(t) ≤ f(0) = 0.
The desired result follows by combining these two cases.

E. Sub-Additivity of LP(·)
Lemma 9 (Sub-additivity of LP(·)). For all ~β1, ~β2 ∈ Rd+, we have LP(~β1) + LP(~β2) ≤ LP(~β1 + ~β2).

Proof. We recall the definition of LP(·):

LP(~β) := max
ξ(1),...,ξ(n)

∑
x∈[n]

ξ(x)µx,

s.t.
∑
x∈[n]

ξ(x) · λx(j) ≤ β(j),∀j ∈ [d],

ξ(x) ≥ 0, ∀x ∈ [n].

Let ξ1 = [ξ1(1), ξ1(2), ..., ξ1(n)]> be a maximizer of LP(~β1), and let ξ2 = [ξ2(1), ξ2(2), ..., ξ2(n)]> be a maximizer of
LP(~β2). We have that for any j ∈ [d],∑

x∈[n]

ξ1(x)λx(j) ≤ β1(j), and
∑
x∈[n]

ξ2(x)λx(j) ≤ β2(j),

which implies ∑
x∈[n]

(ξ1(x) + ξ2(x))λx(j) ≤ β1(j) + β2(j),

and the sub-additivity of LP(·) follows from the definition of LP(·). This completes the proof of Lemma 9.


